Citation: Yasir Rehman, Cindy Zhang, Haolin Ye, Lionel Fernandes, Mathieu Marek, Andrada Cretu, William Parkinson. The extent of the neurocognitive impairment in elderly survivors of war suffering from PTSD: meta-analysis and literature review[J]. AIMS Neuroscience, 2021, 8(1): 47-73. doi: 10.3934/Neuroscience.2021003
[1] | Seung-Yeal Ha, Hansol Park, Yinglong Zhang . Nonlinear stability of stationary solutions to the Kuramoto-Sakaguchi equation with frustration. Networks and Heterogeneous Media, 2020, 15(3): 427-461. doi: 10.3934/nhm.2020026 |
[2] | Hirotada Honda . Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local Coupling. Networks and Heterogeneous Media, 2017, 12(1): 25-57. doi: 10.3934/nhm.2017002 |
[3] | Hirotada Honda . On Kuramoto-Sakaguchi-type Fokker-Planck equation with delay. Networks and Heterogeneous Media, 2024, 19(1): 1-23. doi: 10.3934/nhm.2024001 |
[4] | Seung-Yeal Ha, Yongduck Kim, Zhuchun Li . Asymptotic synchronous behavior of Kuramoto type models with frustrations. Networks and Heterogeneous Media, 2014, 9(1): 33-64. doi: 10.3934/nhm.2014.9.33 |
[5] | Tingting Zhu . Synchronization of the generalized Kuramoto model with time delay and frustration. Networks and Heterogeneous Media, 2023, 18(4): 1772-1798. doi: 10.3934/nhm.2023077 |
[6] | Xiaoxue Zhao, Zhuchun Li . Synchronization of a Kuramoto-like model for power grids with frustration. Networks and Heterogeneous Media, 2020, 15(3): 543-553. doi: 10.3934/nhm.2020030 |
[7] | Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun . Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks and Heterogeneous Media, 2013, 8(4): 943-968. doi: 10.3934/nhm.2013.8.943 |
[8] | Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang . Uniform stability and mean-field limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13(2): 297-322. doi: 10.3934/nhm.2018013 |
[9] | Tingting Zhu . Emergence of synchronization in Kuramoto model with frustration under general network topology. Networks and Heterogeneous Media, 2022, 17(2): 255-291. doi: 10.3934/nhm.2022005 |
[10] | Seung-Yeal Ha, Shi Jin, Jinwook Jung . A local sensitivity analysis for the kinetic Kuramoto equation with random inputs. Networks and Heterogeneous Media, 2019, 14(2): 317-340. doi: 10.3934/nhm.2019013 |
Several years ago, Bensoussan, Sethi, Vickson and Derzko [1] have been considered the case of a factory producing one type of economic goods and observed that it is necessary to solve the simple partial differential equation
{−σ22Δzαs+14|∇zαs|2+αzαs=|x|2forx∈RN,zαs=∞as|x|→∞, | (1.1) |
where σ∈(0,∞) denotes the diffusion coefficient, α∈[0,∞) represents psychological rate of time discount, x∈RN is the product vector, z:=zαs(x) denotes the value function and |x|2 is the loss function.
Regime switching refers to the situation when the characteristics of the state process are affected by several regimes (e.g., in finance bull and bear market with higher volatility in the bear market).
It is important to point out that, when dealing with regime switching, we can describe a wide variety of phenomena using partial differential equations. In [1], the authors Cadenillas, Lakner and Pinedo [2] adapted the model problem in [1] to study the optimal production management characterized by the two-state regime switching with limited/unlimited information and corresponding to the system
{−σ212Δus1+(a11+α1)us1−a11us2−ρσ212∑i≠j∂2us1∂xi∂xj−|x|2=−14|∇us1|2,x∈RN,−σ222Δus2+(a22+α2)us2−a22us1−ρσ222∑i≠j∂2us2∂xi∂xj−|x|2=−14|∇us2|2,x∈RN,us1(x)=us2(x)=∞as|x|→∞, | (1.2) |
where σ1,σ2∈(0,∞) denote the diffusion coefficients, α1,α2∈[0,∞) represent the psychological rates of time discount from what place the exponential discounting, x∈RN is the product vector, usr:=usr(x) (r=1,2) denotes the value functions, |x|2 is the loss function, ρ∈[−1,1] is the correlation coefficient and anm (n,m=1,2) are the elements of the Markov chain's rate matrix, denoted by G=[ϑnm]2×2 with
ϑnn=−ann≤0,ϑnm=anm≥0andϑ2nn+ϑ2nm≠0forn≠m, |
the diagonal elements ϑnn may be expressed as ϑnn=−Σm≠nϑnm.
Furthermore, in civil engineering, Dong, Malikopoulos, Djouadi and Kuruganti [3] applied the model described in [2] to the study of the optimal stochastic control problem for home energy systems with solar and energy storage devices; the two regimes switching are the peak and the peak energy demands.
After that, there have been numerous applications of regime switching in many important problems in economics and other fields, see the works of: Capponi and Figueroa-López [4], Elliott and Hamada [5], Gharbi and Kenne [6], Yao, Zhang and Zhou [7] and Wang, Chang and Fang [8] for more details. Other different research studies that explain the importance of regime switching in the real world are [9,10].
In this paper, we focus on the following parabolic partial differential equation and system, corresponding to (1.1)
{∂z∂t(x,t)−σ22Δz(x,t)+14|∇z(x,t)|2+αz(x,t)=|x|2,(x,t)∈RN×(0,∞),z(x,0)=c+zαs(x),forallx∈RNandfixedc∈(0,∞),z(x,t)=∞as|x|→∞,forallt∈[0,∞), | (1.3) |
and (1.2) respectively
{∂u1∂t−σ212Δu1+(a11+α1)u1−a11u2−ρσ212∑i≠j∂2u1∂xi∂xj−|x|2=−14|∇u1|2,(x,t)∈RN×(0,∞),∂u2∂t−σ222Δu2+(a22+α2)u2−a22u1−ρσ222∑i≠j∂2u2∂xi∂xj−|x|2=−14|∇u2|2,(x,t)∈RN×(0,∞),(u1(x,0),u2(x,0))=(c1+us1(x),c2+us2(x))forallx∈RNandforfixedc1,c2∈(0,∞),∂u1∂t(x,t)=∂u2∂t(x,t)=∞as|x|→∞forallt∈[0,∞), | (1.4) |
where zαs is the solution of (1.1) and (us1(x),us2(x)) is the solution of (1.2). The existence and the uniqueness for the case of (1.1) is proved by [10] and the existence for the system case of (1.2) by [11].
From the mathematical point of view the problem (1.3) has been extensively studied when the space RN is replaced by a bounded domain and when α=0. In particular, some great results can be found in the old papers of Barles, Porretta [12] and Tchamba [13]. More recently, but again for the case of a bounded domain, α=0 and in the absence of the gradient term, the problem (1.3) has been also discussed by Alves and Boudjeriou [14]. The interest of these authors [12,13,14] is to give an asymptotic stable solution at infinity for the considered equation, i.e., a solution which tends to the stationary Dirichlet problem associated with (1.3) when the time go to infinity.
Next, we propose to find a similar result as of [12,13,14], for the case of equation (1.3) and system (1.4) that model some real phenomena. More that, our first interest is to provide a closed form solution for (1.3) and (1.4). Our second objective is inspired by the paper of [14,15], and it is to solve the parabolic partial differential equation
{∂z∂t(x,t)−σ22Δz(x,t)+14|∇z(x,t)|2=|x|2,inBR×[0,T),z(x,T)=0,for|x|=R, | (1.5) |
where T<∞ and BR is a ball of radius R>0 with origin at the center of RN.
Let us finish our introduction and start with the main results.
We use the change of variable
u(x,t)=e−z(x,t)2σ2, | (2.1) |
in
∂z∂t(x,t)−σ22Δz(x,t)+14|∇z(x,t)|2+αz(x,t)=|x|2 |
to rewrite (1.3) and (1.5) in an equivalent form
{∂u∂t(x,t)−σ22Δu(x,t)+αu(x,t)lnu(x,t)+12σ2|x|2u(x,t)=0,if(x,t)∈Ω×(0,T)u(x,T)=u1,0,on∂Ω,u(x,0)=e−c+zαs(x)2σ2,forx∈Ω=RN,c∈(0,∞) | (2.2) |
where
u1,0={1ifΩ=BR,i.e.,|x|=R,T<∞,0ifΩ=RN,i.e.,|x|→∞,T=∞. |
Our first result is the following.
Theorem 2.1. Assume Ω=BR, N≥3, T<∞ and α=0.There exists a unique radially symmetric positive solution
u(x,t)∈C2(BR×[0,T))∩C(¯BR×[0,T]), |
of (2.2) increasing in the time variable and such that
limt→Tu(x,t)=us(x), | (2.3) |
where us∈C2(BR)∩C(¯BR) is the unique positive radially symmetric solution of theDirichlet problem
{σ22Δus=(12σ2|x|2+1)us,inBR,us=1,on∂BR, | (2.4) |
which will be proved. In addition,
z(x,t)=−2σ2(t−T)−2σ2lnus(|x|),(x,t)∈¯BR×[0,T], |
is the unique radially symmetric solution of the problem (1.5).
Instead of the existence results discussed in the papers of [12,13,14], in our proof of the Theorem 2.1 we give the numerical approximation of solution u(x,t).
The next results refer to the entire Euclidean space RN and present closed-form solutions.
Theorem 2.2. Assume Ω=RN, N≥1, T=∞, α>0 and c∈(0,∞) is fixed. There exists aunique radially symmetric solution
u(x,t)∈C2(RN×[0,∞)), |
of (2.2), increasing in the time variable and such that
u(x,t)→uαs(x)ast→∞forallx∈RN, | (2.5) |
where uαs∈C2(RN) is the uniqueradially symmetric solution of the stationary Dirichlet problem associatedwith (2.2)
{σ22Δuαs=αuαslnuαs+12σ2|x|2uαs,inRN,uαs(x)→0,as|x|→∞. | (2.6) |
Moreover, the closed-form radially symmetric solution of the problem (1.3) is
z(x,t)=ce−αt+B|x|2+D,(x,t)∈RN×[0,∞),c∈(0,∞), | (2.7) |
where
B=1Nσ2(12Nσ2√α2+4−12Nασ2),D=12α(Nσ2√α2+4−Nασ2). | (2.8) |
The following theorem is our main result regarding the system (1.4).
Theorem 2.3. Suppose that N≥1, α1,α2∈(0,∞) and\ a11,a22∈[0,∞) with a211+a222≠0. Then, the system (1.4) has a uniqueradially symmetric convex solution
(u1(x,t),u2(x,t))∈C2(RN×[0,∞))×C2(RN×[0,∞)), |
of quadratic form in the x variable and such that
(u1(x,t),u2(x,t))→(us1(x),us2(x))ast→∞uniformlyforallx∈RN, | (2.9) |
where
(us1(x),us2(x))∈C2(RN)×C2(RN) |
is the radially symmetric convex solution of quadratic form in the xvariable of the stationary system (1.2) which exists from the resultof [11].
Our results complete the following four main works: Bensoussan, Sethi, Vickson and Derzko [1], Cadenillas, Lakner and Pinedo [2], Canepa, Covei and Pirvu [15] and Covei [10], which deal with a stochastic control model problem with the corresponding impact for the parabolic case (see [13,16] for details).
To prove our Theorem 2.1, we use a lower and upper solution method and the comparison principle that can be found in [17].
Lemma 2.1. If, there exist ¯u(x), u_(x)∈C2(BR)∩C(¯BR) two positive functions satisfying
{−σ22Δ¯u(x)+(12σ2|x|2+1)¯u(x)≥0≥−σ22Δu_(x)+(12σ2|x|2+1)u_(x)inBR,¯u(x)=1=u_(x)on∂BR, |
then
¯u(x)−u_(x)≥0forallx∈¯BR, |
and there exists
u(x)∈C2(BR)∩C(¯BR), |
a solution of (2.4) such that
u_(x)≤u(x)≤¯u(x),x∈¯BR, |
where u_(x) and ¯u(x) arerespectively, called a lower solution and an upper solution of (2.4).
The corresponding result of Lemma 2.1 for the parabolic equations can be found in the work of Pao [18] and Amann [19]. To achieve our goal, complementary to the works [12,13,14,15] it can be used the well known books of Gilbarg and Trudinger [20], Sattinger [17], Pao [18] and a paper of Amann [19]. Further on, we can proceed to prove Theorem 2.1.
By a direct calculation, if there exists and is unique, us∈C2(BR)∩C(¯BR), a positive solution of the stationary Dirichlet problem (2.4) then
u(x,t)=et−Tus(x),(x,t)∈¯BR×[0,T], |
is the solution of the problem (2.2) and
z(x,t)=−2σ2(t−T)−2σ2lnus(x),(x,t)∈¯BR×[0,T], |
is the solution of the problem (1.5) belonging to
C2(BR×[0,T))∩C(¯BR×[0,T]). |
We prove that (2.4) has a unique radially symmetric solution. The existence of solution for (2.4) is obtained by a standard monotone iteration and the lower and the upper solution method, Lemma 2.1. Hence, starting from the initial iteration
u0s(x)=e−R2−|x|22σ2, |
we construct a sequence {uks(x)}k≥1 successively by
{σ22Δuks(x)=(12σ2|x|2+1)uk−1s(x),inBR,uks(x)=1,on∂BR, | (3.1) |
and this sequence will be pointwise convergent to a solution us(x) of (2.4).
Indeed, since for each k the right-hand side of (3.1) is known, the existence theory for linear elliptic boundary-value problems implies that {uks(x)}k≥1 is well defined, see [20].
Let us prove that {uks(x)}k≥1 is a pointwise convergent sequence to a solution of (2.4) in ¯BR. To do this, first we prove that {uks(x)}k≥1 is monotone nondecreasing of k. We apply the mathematical induction by verifying the first step, k=1.
{σ22Δu1s(x)≤σ22Δu0s(x),inBR,u1s(x)=1=u0s(x),on∂BR. |
Now, by the standard comparison principle, Lemma 2.1, we have
u0s(x)≤u1s(x)in¯BR. |
Moreover, the induction argument yields the following
u0s(x)=e−R2−|x|22σ2≤...≤uks(x)≤uk+1s(x)≤...in¯BR, | (3.2) |
i.e., {uks(x)}k≥1 is a monotone nondecreasing sequence.
Next, using again Lemma 2.1, we find
u_s(x):=u0s(x)=e−R2−|x|22σ2≤...≤uks(x)≤uk+1s(x)≤...≤¯us(x):=1in¯BR, | (3.3) |
where we have used
σ22Δu_s(x)=u_s(x)σ22(|x|2+σ2σ4+N−1σ2)≥u_s(x)(12σ2|x|2+1)σ22Δ¯us(x)=σ22Δ1=0≤¯us(x)(12σ2|x|2+1) |
i.e., Lemma 2.1 confirm.Thus, in view of the monotone and bounded property in (3.3) the sequence {uks(x)}k≥1 converges. We may pass to the limit in (3.3) to get the existence of a solution
us(x):=limk→∞uks(x)in¯BR, |
associated to (2.4), which satisfies
u_s(x)≤us(x)≤¯us(x)in¯BR. |
Furthermore, the convergence of {uks(x)} is uniformly to us(x) in ¯BR and us(x) has a radial symmetry, see [15] for arguments of the proof. The regularity of solution us(x) is a consequence of classical results from the theory of elliptic equations, see Gilbarg and Trudinger [20]. The uniqueness of us(x) follows from a standard argument with the use of Lemma 2.1 and we omit the details.
Clearly, u(x,t) is increasing in the time variable. The regularity of u(x,t) follows from the regularity of us(x). Letting t→T we see that (2.3) holds. The solution of the initial problem (1.5) is saved from (2.1).
Finally, we prove the uniqueness for (2.2). Let
u(x,t),v(x,t)∈C2(BR×[0,T))∩C(¯BR×[0,T]), |
be two solutions of the problem (2.2), i.e., its hold
{∂u∂t(x,t)−σ22Δu(x,t)+12σ2|x|2u(x,t)=0,if(x,t)∈BR×[0,T),u(x,T)=1,on∂BR, |
and
{∂v∂t(x,t)−σ22Δv(x,t)+12σ2|x|2v(x,t)=0,if(x,t)∈BR×[0,T),v(x,T)=1,on∂BR. |
Setting
w(x,t)=u(x,t)−v(x,t),inBR×[0,T], |
and subtracting the two equations corresponding to u and v we find
{∂w∂t(x,t)=σ22Δw(x,t)−12σ2|x|2w(x,t),if(x,t)∈BR×[0,T),w(x,T)=0,on∂BR. |
Let us prove that u(x,t)−v(x,t)≤0 in ¯BR×[0,T]. If the conclusion were false, then the maximum of
w(x,t),inBR×[0,T), |
is positive. Assume that the maximum of w in ¯BR×[0,T] is achieved at (x0,t0). Then, at the point (x0,t0)∈BR×[0,T), where the maximum is attained, we have
∂w∂t(x0,t0)≥0,Δw(x0,t0)≤0,∇w(x0,t0)=0, |
and
0≤∂w∂t(x0,t0)=σ22Δw(x0,t0)−12σ2|x|2w(x0,t0)<0 |
which is a contradiction. Reversing the role of u and v we obtain that u(x,t)−v(x,t)≥0 in ¯BR×[0,T]. Hence u(x,t)=v(x,t) in ¯BR×[0,T]. The proof of Theorem 2.1 is completed.
Finally, our main result, Theorem 2.2 will be obtained by a direct computation.
In view of the arguments used in the proof of Theorem 2.1 and the real world phenomena, we use a purely intuitive strategy in order to prove Theorem 2.2.
Indeed, for the verification result in the production planning problem, we need z(x,t) to be almost quadratic with respect to the variable x.
More exactly, we observe that there exists and is unique
u(x,t)=e−h(t)+B|x|2+D2σ2,(x,t)∈RN×[0,∞),withB,D∈(0,∞), |
that solve (2.2), where
h(0)=c, | (4.1) |
and B, D are given in (2.8). The condition (4.1) is used to obtain the asymptotic behaviour of solution to the stationary Dirichlet problem associated with (2.2). Then our strategy is reduced to find B,D∈(0,∞) and the function h which depends of time and c∈(0,∞) such that
−12h′(t)σ2−σ22[−Bσ4(σ2−B|x|2)−(N−1)Bσ2]+α(−h(t)+B|x|2+D2σ2)+12σ2|x|2=0, |
or, after rearranging the terms
|x|2(1−αB−B2)+Nσ2B−αD−h′(t)−αh(t)=0, |
where (4.1) holds. Now, by a direct calculation we see that the system of equations
{1−αB−B2=0Nσ2B−αD=0−h′(t)−αh(t)=0h(0)=c |
has a unique solution that satisfies our expectations, namely,
u(x,t)=e−ce−αt+B|x|2+D2σ2,(x,t)∈RN×[0,∞), | (4.2) |
where B and D are given in (2.8), is a radially symmetric solution of the problem (2.2). The uniqueness of the solution is followed by the arguments in [10] combined with the uniqueness proof in Theorem 2.1. The justification of the asymptotic behavior and regularity of the solution can be proved directly, once we have a closed-form solution. Finally, the closed-form solution in (2.7) is due to (2.1)–(4.2) and the proof of Theorem 2.2 is completed.
One way of solving this system of partial differential equation of parabolic type (1.4) is to show that the system (1.4) is solvable by
(u1(x,t),u2(x,t))=(h1(t)+β1|x|2+η1,h2(t)+β2|x|2+η2), | (5.1) |
for some unique β1,β2,η1,η2∈(0,∞) and h1(t), h2(t) are suitable chosen such that
h1(0)=c1andh2(0)=c2. | (5.2) |
The main task for the proof of existence of (5.1) is performed by proving that there exist
β1,β2,η1,η2,h1,h2, |
such that
{h′1(t)−2β1Nσ212+(a11+α1)[h1(t)+β1|x|2+η1]−a11[h2(t)+β2|x|2+η2]−|x|2=−14(2β1|x|)2,h′2(t)−2β2Nσ222+(a22+α2)[h2(t)+β2|x|2+η2]−a22[h1(t)+β1|x|2+η1]−|x|2=−14(2β2|x|)2, |
or equivalently, after grouping the terms
{|x|2[−a11β2+(a11+α1)β1+β21−1]−β1Nσ21−a11η2+(a11+α1)η1+h′1(t)+(a11+α1)h1(t)−a11h2(t)=0,|x|2[−a22β1+(a22+α2)β2+β22−1]−β2Nσ22−a22η1+(a22+α2)η2+h′2(t)+(a22+α2)h2(t)−a22h1(t)=0, |
where h1(t), h2(t) must satisfy (5.2). Now, we consider the system of equations
{−a11β2+(a11+α1)β1+β21−1=0−a22β1+(a22+α2)β2+β22−1=0−β1Nσ21−a11η2+(a11+α1)η1=0−β2Nσ22−a22η1+(a22+α2)η2=0h′1(t)+(a11+α1)h1(t)−a11h2(t)=0h′2(t)+(a22+α2)h2(t)−a22h1(t)=0. | (5.3) |
To solve (5.3), we can rearrange those equations 1, 2 in the following way
{−a11β2+(a11+α1)β1+β21−1=0−a22β1+(a22+α2)β2+β22−1=0. | (5.4) |
We distinguish three cases:
1.in the case a22=0 we have an exact solution for (5.4) of the form
β1=−12α1−12a11+12√α21+a211−4a11(12α2−12√α22+4)+2α1a11+4β2=−12α2+12√α22+4 |
2.in the case a11=0 we have an exact solution for (5.4) of the form
β1=−12α1+12√α21+4β2=−12α2−12a22+12√α22+a222−4a22(12α1−12√α21+4)+2α2a22+4 |
3.in the case a11≠0 and a22≠0, to prove the existence and uniqueness of solution for (5.4) we will proceed as follows. We retain from the first equation of (5.4)
β1=12√α21+2α1a11+a211+4β2a11+4−12a11−12α1. |
and from the second equation
β2=12√α22+2α2a22+a222+4β1a22+4−12a22−12α2. |
The existence of β1, β2∈(0,∞) for (5.4) can be easily proved by observing that the continuous functions f1,f2:[0,∞)→R defined by
f1(β1)=−a11(12√α22+2α2a22+a222+4β1a22+4−12a22−12α2)+(a11+α1)β1+β21−1,f2(β2)=−a22(12√α21+2α1a11+a211+4β2a11+4−12a11−12α1)+(a22+α2)β2+β22−1, |
have the following properties
f1(∞)=∞andf2(∞)=∞, | (5.5) |
respectively
f1(0)=−a11(12√α22+2α2a22+a222+4−12a22−12α2)−1<0,f2(0)=−a22(12√α21+2α1a11+a211+4−12a11−12α1)−1<0. | (5.6) |
The observations (5.5) and (5.6) imply
{f1(β1)=0f2(β2)=0 |
has at least one solution (β1,β2)∈(0,∞)×(0,∞) and furthermore it is unique (see also, the references [21,22] for the existence and the uniqueness of solutions).
The discussion from cases 1–3 show that the system (5.4) has a unique positive solution. Next, letting
(β1,β2)∈(0,∞)×(0,∞), |
be the unique positive solution of (5.4), we observe that the equations 3, 4 of (5.3) can be written equivalently as a system of linear equations that is solvable and with a unique solution
(a11+α1−a11−a22a22+α2)(η1η2)=(β1Nσ21β2Nσ22). | (5.7) |
By defining
Ga,α:=(a11+α1−a11−a22a22+α2), |
we observe that
G−1a,α=(α2+a22α1α2+α2a11+α1a22a11α1α2+α2a11+α1a22a22α1α2+α2a11+α1a22α1+a11α1α2+α2a11+α1a22). |
Using the fact that G−1a,α has all ellements positive and rewriting (5.7) in the following way
(η1η2)=G−1a,α(β1Nσ21β2Nσ22), |
we can see that there exist and are unique η1, η2∈(0,∞) that solve (5.7). Finally, the equations 5, 6, 7 of (5.3) with initial condition (5.2) can be written equivalently as a solvable Cauchy problem for a first order system of differential equations
{(h′1(t)h′2(t))+Ga,α(h1(t)h2(t))=(00),h1(0)=c1andh2(0)=c2, | (5.8) |
with a unique solution and then (5.1) solve (1.4). The rest of the conclusions are easily verified.
Next, we present an application.
Application 1. Suppose there is one machine producing two products (see [23,24], for details). We consider a continuous time Markov chain generator
(−121212−12), |
and the time-dependent production planning problem with diffusion σ1=σ2=1√2 and let α1=α2=12 the discount factor. Under these assumptions, we can write the system (5.4) with our data
{β21+β1−12β2−1=0β22−12β1+β2−1=0 |
which has a unique positive solution
β1=14(√17−1),β2=14(√17−1). |
On the other hand, the system (5.7) becomes
(1−12−121)(η1η2)=(β1β2), |
which has a unique positive solution
η1=43β1+23β2=12(√17−1),η2=23β1+43β2=12(√17−1). |
Finally, the system in (5.8) becomes
{(h′1(t)h′2(t))+(1−12−121)(h1(t)h2(t))=(00),h1(0)=c1andh2(0)=c2, |
which has the solution
h1(t)=s1e−12t−s2e−32t,h2(t)=s1e−12t+s2e−32t,withs1,s2∈R. |
Next, from
h1(0)=c1andh2(0)=c2, |
we have
{s1−s2=c1s1+s2=c2⟹s1=12c1+12c2,s2=12c2−12c1, |
and finally
{h1(t)=12(c1+c2)e−12t−12(c2−c1)e−32t,h2(t)=12(c1+c2)e−12t+12(c2−c1)e−32t, |
from where we can write the unique solution of the system (1.4) in the form (5.1).
Let us point that in Theorem 2.3 we have proved the existence and the uniqueness of a solution of quadratic form in the x variable and then the existence of other different types of solutions remain an open problem.
Some closed-form solutions for equations and systems of parabolic type are presented. The form of the solutions is unique and tends to the solutions of the corresponding elliptic type problems that were considered.
The author is grateful to the anonymous referees for their useful suggestions which improved the contents of this article.
The authors declare there is no conflict of interest.
[1] |
Samuelson KW, Neylan TC, Metzler TJ, et al. (2006) Neuropsychological functioning in posttraumatic stress disorder and alcohol abuse. Neuropsychology 20: 716-726. doi: 10.1037/0894-4105.20.6.716
![]() |
[2] |
Vasterling JJ, Proctor SP, Amoroso P, et al. (2006) Neuropsychological Outcomes of Army Personnel Following Deployment to the Iraq War. JAMA 296: 519-529. doi: 10.1001/jama.296.5.519
![]() |
[3] |
Schinka JA, Loewenstein DA, Raj A, et al. (2010) Defining mild cognitive impairment: impact of varying decision criteria on neuropsychological diagnostic frequencies and correlates. Am J Geriatr Psychiatry 18: 684-691. doi: 10.1097/JGP.0b013e3181e56d5a
![]() |
[4] |
Avorn J (1995) Medication use and the elderly: current status and opportunities. Health Aff (Millwood) 14: 276-286. doi: 10.1377/hlthaff.14.1.276
![]() |
[5] |
Shenoy P, Harugeri A (2015) Elderly patients' participation in clinical trials. Perspect Clin Res 6: 184-189. doi: 10.4103/2229-3485.167099
![]() |
[6] |
Hoge CW, Castro CA, Messer SC, et al. (2004) Combat duty in Iraq and Afghanistan, mental health problems, and barriers to care. N Engl J Med 351: 13-22. doi: 10.1056/NEJMoa040603
![]() |
[7] |
Yaffe K, Vittinghoff E, Lindquist K, et al. (2010) Posttraumatic stress disorder and risk of dementia among US veterans. Arch Gen Psychiatry 67: 608-613. doi: 10.1001/archgenpsychiatry.2010.61
![]() |
[8] |
Brandes D, Ben-Schachar G, Gilboa A, et al. (2002) PTSD symptoms and cognitive performance in recent trauma survivors. Psychiatry Res 110: 231-238. doi: 10.1016/S0165-1781(02)00125-7
![]() |
[9] |
Dohrenwend BP, Turner JB, Turse NA, et al. (2006) The psychological risks of Vietnam for U.S. veterans: a revisit with new data and methods. Science 313: 979-982. doi: 10.1126/science.1128944
![]() |
[10] |
Spiro A, Schnurr PP, Aldwin CM (1994) Combat-related posttraumatic stress disorder symptoms in older men. Psychol Aging 9: 17-26. doi: 10.1037/0882-7974.9.1.17
![]() |
[11] |
Qureshi SU, Long ME, Bradshaw MR, et al. (2011) Does PTSD Impair Cognition Beyond the Effect of Trauma? J Neuropsychiatry Clin Neurosci 23: 16-28. doi: 10.1176/appi.neuropsych.23.1.16
![]() |
[12] |
Schuitevoerder S, Rosen JW, Twamley EW, et al. (2013) A meta-analysis of cognitive functioning in older adults with PTSD. J Anxiety Disord 27: 550-558. doi: 10.1016/j.janxdis.2013.01.001
![]() |
[13] |
Scott Mackin R, Lesselyong JA, Yaffe K (2012) Pattern of cognitive impairment in older veterans with posttraumatic stress disorder evaluated at a memory disorders clinic. Int J Geriatr Psychiatry 27: 637-642. doi: 10.1002/gps.2763
![]() |
[14] |
Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57: 925-935. doi: 10.1001/archpsyc.57.10.925
![]() |
[15] |
Van Achterberg ME, Rohrbaugh RM, Southwick SM (2001) Emergence of PTSD in trauma survivors with dementia. J Clin Psychiatry 62: 206-207. doi: 10.4088/JCP.v62n0312c
![]() |
[16] |
Mittal D, Torres R, Abashidze A, et al. (2001) Worsening of post-traumatic stress disorder symptoms with cognitive decline: case series. J Geriatr Psychiatry Neurol 14: 17-20. doi: 10.1177/089198870101400105
![]() |
[17] |
Johnston D (2000) A series of cases of dementia presenting with PTSD symptoms in World War II combat veterans. J Am Geriatr Soc 48: 70-72. doi: 10.1111/j.1532-5415.2000.tb03032.x
![]() |
[18] |
Cook JM, Ruzek JI, Cassidy E (2003) Practical Geriatrics: Possible Association of Posttraumatic Stress Disorder With Cognitive Impairment Among Older Adults. Psychiatr Serv 54: 1223-1225. doi: 10.1176/appi.ps.54.9.1223
![]() |
[19] |
Boscarino JA (2004) Posttraumatic stress disorder and physical illness: results from clinical and epidemiologic studies. Ann N Y Acad Sci 1032: 141-153. doi: 10.1196/annals.1314.011
![]() |
[20] |
Drescher KD, Rosen CS, Burling TA, et al. (2003) Causes of death among male veterans who received residential treatment for PTSD. J Trauma Stress 16: 535-543. doi: 10.1023/B:JOTS.0000004076.62793.79
![]() |
[21] |
Zatzick DF, Marmar CR, Weiss DS, et al. (1997) Posttraumatic stress disorder and functioning and quality of life outcomes in a nationally representative sample of male Vietnam veterans. Am J Psychiatry 154: 1690-1695. doi: 10.1176/ajp.154.12.1690
![]() |
[22] |
Chaplin R (2000) Psychiatrists can cause stigma too. Br J Psychiatry 177: 467. doi: 10.1192/bjp.177.5.467
![]() |
[23] |
Kleim B, Ehlers A (2008) Reduced autobiographical memory specificity predicts depression and posttraumatic stress disorder after recent trauma. J Consult Clin Psychol 76: 231-242. doi: 10.1037/0022-006X.76.2.231
![]() |
[24] |
Levine ME (2012) Modeling the Rate of Senescence: Can Estimated Biological Age Predict Mortality More Accurately Than Chronological Age? J Gerontol A Biol Sci Med Sci 68: 667-674. doi: 10.1093/gerona/gls233
![]() |
[25] |
Harvey PD (2019) Domains of cognition and their assessment. Dialogues Clin Neurosci 21: 227-237. doi: 10.31887/DCNS.2019.21.3/pharvey
![]() |
[26] |
Sachdev PS, Blacker D, Blazer DG, et al. (2014) Classifying neurocognitive disorders: the DSM-5 approach. Nat Rev Neurol 10: 634-642. doi: 10.1038/nrneurol.2014.181
![]() |
[27] |
Moore SA, Zoellner LA (2007) Overgeneral autobiographical memory and traumatic events: an evaluative review. Psychol Bull 133: 419-437. doi: 10.1037/0033-2909.133.3.419
![]() |
[28] |
Guez J, Naveh-Benjamin M, Yankovsky Y, et al. (2011) Traumatic stress is linked to a deficit in associative episodic memory. J Trauma Stress 24: 260-267. doi: 10.1002/jts.20635
![]() |
[29] |
Lagarde G, Doyon J, Brunet A (2010) Memory and executive dysfunctions associated with acute posttraumatic stress disorder. Psychiatry Res 177: 144-149. doi: 10.1016/j.psychres.2009.02.002
![]() |
[30] |
Kanagaratnam P, Asbjørnsen AE (2007) Executive deficits in chronic PTSD related to political violence. J Anxiety Disord 21: 510-525. doi: 10.1016/j.janxdis.2006.06.008
![]() |
[31] |
Sachinvala N, Von Scotti H, McGuire M, et al. (2000) Memory, attention, function, and mood among patients with chronic posttraumatic stress disorder. J Nerv Ment Dis 188: 818-823. doi: 10.1097/00005053-200012000-00005
![]() |
[32] |
Vasterling JJ, Duke LM, Brailey K, et al. (2002) Attention, learning, and memory performances and intellectual resources in Vietnam veterans: PTSD and no disorder comparisons. Neuropsychology 16: 5-14. doi: 10.1037/0894-4105.16.1.5
![]() |
[33] |
Green E, Fairchild JK, Kinoshita LM, et al. (2015) Effects of Posttraumatic Stress Disorder and Metabolic Syndrome on Cognitive Aging in Veterans. Gerontologist 56: 72-81. doi: 10.1093/geront/gnv040
![]() |
[34] |
Hart J, Kimbrell T, Fauver P, et al. (2008) Cognitive Dysfunctions Associated With PTSD: Evidence from World War II Prisoners of War. J Neuropsychiatry Clin Neurosci 20: 309-316. doi: 10.1176/jnp.2008.20.3.309
![]() |
[35] |
Yehuda R, Golier JA, Tischler L, et al. (2007) Hippocampal volume in aging combat veterans with and without post-traumatic stress disorder: relation to risk and resilience factors. J Psychiatr Res 41: 435-445. doi: 10.1016/j.jpsychires.2005.12.002
![]() |
[36] |
Liberati A, Altman DG, Tetzlaff J, et al. (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339: b2700. doi: 10.1136/bmj.b2700
![]() |
[37] |
Singh S, Bajorek B (2014) Defining ‘elderly’ in clinical practice guidelines for pharmacotherapy. Pharm Pract (Granada) 12: 489. doi: 10.4321/S1886-36552014000400007
![]() |
[38] |
Harugeri A, Joseph J, Parthasarathi G, et al. (2010) Potentially inappropriate medication use in elderly patients: a study of prevalence and predictors in two teaching hospitals. J Postgrad Med 56: 186-191. doi: 10.4103/0022-3859.68642
![]() |
[39] |
Weathers FW, Bovin MJ, Lee DJ, et al. (2018) The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5): Development and initial psychometric evaluation in military veterans. Psychol Assess 30: 383-395. doi: 10.1037/pas0000486
![]() |
[40] |
McCarthy S (2008) Post-Traumatic Stress Diagnostic Scale (PDS). Occup Med (Lond) 58: 379-379. doi: 10.1093/occmed/kqn062
![]() |
[41] |
Foa EB, McLean CP, Zang Y, et al. (2016) Psychometric properties of the Posttraumatic Stress Disorder Symptom Scale Interview for DSM-5 (PSSI-5). Psychol Assess 28: 1159-1165. doi: 10.1037/pas0000259
![]() |
[42] | Ruglass LM, Papini S, Trub L, et al. (2014) Psychometric Properties of the Modified Posttraumatic Stress Disorder Symptom Scale among Women with Posttraumatic Stress Disorder and Substance Use Disorders Receiving Outpatient Group Treatments. J Trauma Stress Disord Treat 4. |
[43] |
Golier JA, Yehuda R, Lupien SJ, et al. (2002) Memory performance in Holocaust survivors with posttraumatic stress disorder. Am J Psychiatry 159: 1682-1688. doi: 10.1176/appi.ajp.159.10.1682
![]() |
[44] |
Golier JA, Yehuda R, Lupien SJ, et al. (2003) Memory for trauma-related information in Holocaust survivors with PTSD. Psychiatry Res 121: 133-143. doi: 10.1016/S0925-4927(03)00120-3
![]() |
[45] |
Golier JA, Yehuda R, De Santi S, et al. (2005) Absence of hippocampal volume differences in survivors of the Nazi Holocaust with and without posttraumatic stress disorder. Psychiatry Res 139: 53-64. doi: 10.1016/j.pscychresns.2005.02.007
![]() |
[46] |
Yehuda R, Golier JA, Harvey PD, et al. (2005) Relationship between cortisol and age-related memory impairments in Holocaust survivors with PTSD. Psychoneuroendocrinology 30: 678-687. doi: 10.1016/j.psyneuen.2005.02.007
![]() |
[47] |
Yehuda R, Golier JA, Halligan SL, et al. (2004) Learning and memory in Holocaust survivors with posttraumatic stress disorder. Biol Psychiatry 55: 291-295. doi: 10.1016/S0006-3223(03)00641-3
![]() |
[48] |
Freeman T, Kimbrell T, Booe L, et al. (2006) Evidence of resilience: Neuroimaging in former prisoners of war. Psychiatry Res 146: 59-64. doi: 10.1016/j.pscychresns.2005.07.007
![]() |
[49] |
Yehuda R, Tischler L, Golier JA, et al. (2006) Longitudinal assessment of cognitive performance in Holocaust survivors with and without PTSD. Biol Psychiatry 60: 714-721. doi: 10.1016/j.biopsych.2006.03.069
![]() |
[50] | Agency for Healthcare Research and Quality (US), Rockville (MD) Cognitive Outcomes After Cardiovascular Procedures in Older Adults: A Systematic Review (2014) .Available from: https://pubmed.ncbi.nlm.nih.gov/25905147/. |
[51] |
Parkinson WL, Rehman Y, Rathbone M, et al. (2020) Performances on individual neurocognitive tests by people experiencing a current major depression episode: A systematic review and meta-analysis. J Affective Disord 276: 249-259. doi: 10.1016/j.jad.2020.07.036
![]() |
[52] |
Rathbone M, Parkinson W, Rehman Y, et al. (2016) Magnitude and variability of effect sizes for the associations between chronic pain and cognitive test performances: a meta-analysis. Br J Pain 10: 141-155. doi: 10.1177/2049463716642600
![]() |
[53] | Wells G, Shea B, O'connell D, et al. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses (2014) . |
[54] |
Guyatt GH, Oxman AD, Vist GE, et al. (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336: 924-926. doi: 10.1136/bmj.39489.470347.AD
![]() |
[55] |
Wittekind CE, Jelinek L, Kellner M, et al. (2010) Intergenerational transmission of biased information processing in posttraumatic stress disorder (PTSD) following displacement after World War II. J Anxiety Disord 24: 953-957. doi: 10.1016/j.janxdis.2010.06.023
![]() |
[56] |
Golier JA, Harvey PD, Legge J, et al. (2006) Memory performance in older trauma survivors: implications for the longitudinal course of PTSD. Ann N Y Acad Sci 1071: 54-66. doi: 10.1196/annals.1364.006
![]() |
[57] |
Jelinek L, Wittekind CE, Moritz S, et al. (2013) Neuropsychological functioning in posttraumatic stress disorder following forced displacement in older adults and their offspring. Psychiatry Res 210: 584-589. doi: 10.1016/j.psychres.2013.06.037
![]() |
[58] |
Wessel I, Merckelbach H, Dekkers T (2002) Autobiographical Memory Specificity, Intrusive Memory, and General Memory Skills in Dutch–Indonesian Survivors of the World War II Era. J Trauma Stress 15: 227-234. doi: 10.1023/A:1015207428675
![]() |
[59] |
Schoenberg MR, Lange RT, Marsh P, et al. (2011) Premorbid Intelligence. Encyclopedia of Clinical Neuropsychology New York: Springer New York, 2004-2010. doi: 10.1007/978-0-387-79948-3_2140
![]() |
[60] |
Cicerone KD, Azulay J (2002) Diagnostic utility of attention measures in postconcussion syndrome. Clin Neuropsychol 16: 280-289. doi: 10.1076/clin.16.3.280.13849
![]() |
[61] |
Munjiza J, Britvic D, Radman M, et al. (2017) Severe war-related trauma and personality pathology: a case-control study. BMC Psychiatry 17: 100. doi: 10.1186/s12888-017-1269-3
![]() |
[62] |
Murman DL (2015) The Impact of Age on Cognition. Semin Hear 36: 111-121. doi: 10.1055/s-0035-1555115
![]() |
[63] |
Lapp LK, Agbokou C, Ferreri F (2011) PTSD in the elderly: the interaction between trauma and aging. Int Psychogeriatr 23: 858-868. doi: 10.1017/S1041610211000366
![]() |
[64] |
Hayes JP, Vanelzakker MB, Shin LM (2012) Emotion and cognition interactions in PTSD: a review of neurocognitive and neuroimaging studies. Front Integr Neurosci 6: 89. doi: 10.3389/fnint.2012.00089
![]() |
[65] |
Ben-Zion Z, Fine NB, Keynan NJ, et al. (2018) Cognitive Flexibility Predicts PTSD Symptoms: Observational and Interventional Studies. Front Psychiatry 9: 477. doi: 10.3389/fpsyt.2018.00477
![]() |
[66] |
Tanev KS, Federico LE, Terry DP, et al. (2019) Cognitive Impairment and Predicting Response to Treatment in an Intensive Clinical Program for Post-9/11 Veterans With Posttraumatic Stress Disorder. J Neuropsychiatry Clin Neurosci 31: 337-345. doi: 10.1176/appi.neuropsych.18090208
![]() |
[67] |
Kessler RC, Berglund P, Demler O, et al. (2005) Lifetime Prevalence and Age-of-Onset Distributions of DSM-IV Disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62: 593-602. doi: 10.1001/archpsyc.62.6.593
![]() |
![]() |
![]() |
1. | Seung-Yeal Ha, Javier Morales, Yinglong Zhang, Kuramoto order parameters and phase concentration for the Kuramoto-Sakaguchi equation with frustration, 2021, 20, 1553-5258, 2579, 10.3934/cpaa.2021013 |