Citation: Francisco J. Mendoza-Torres, Juan A. Escamilla-Reyna, Daniela Rodríguez-Tzompantzi. The Jordan decomposition of bounded variation functions valued in vector spaces[J]. AIMS Mathematics, 2017, 2(4): 635-646. doi: 10.3934/Math.2017.4.635
[1] | C. Jordan, Sur la série de Fourier, C. R. Acad. Sci. Paris, 92 (1881), 228-230. |
[2] | C. R. Adams, J. A. Clarkson, On definitions of bounded variation for functions of two variables, Trans. Amer. Math. Soc., 35 (1933), 824-854. |
[3] | C. R. Adams, J. A. Clarkson, Properties of functions f (x; y) of bounded variation, Trans. Amer. Math. Soc., 36 (1934), 711-730. |
[4] | V. V. Chistyakov, On mappings of bounded variation, J. Dyn. Control Syst., 2 (1997), 261-289. |
[5] | V. V. Chistyakov, On the theory of multivalued mappings of bounded variation of one real variable, Sb. Math., 189 (1998), 153-176. |
[6] | V. V. Chistyakov, On mappings of bounded variation with values in a metric space, Uspekhi Mat. Nauk, 54 (1999), 189-190. |
[7] | V. V. Chistyakov, Metric-valued mappings of bounded variation, J. Math. Sci. (N. Y.), 111 (2002), 3387-3429. |
[8] | S. Bianchini, D. Tonon, A decomposition theorem for BV functions, Commun. Pure Appl. Anal., 10 (2011), 1549-1566. |
[9] | D. Gou, Y. J. Cho, J. Zhu, Partial Ordering Methods in Nonlinear Problems, New York, NY, USA: Nova Science Publishers, 2004. |
[10] | S. Schwabik, Y. Guoju, Topics in Banach Space Integration, Singapore: Real Analysis, vol. 10, World Scientific, 2005. |