Citation: Patarawadee Prasertsang, Thongchai Botmart. Improvement of finite-time stability for delayed neural networks via a new Lyapunov-Krasovskii functional[J]. AIMS Mathematics, 2021, 6(1): 998-1023. doi: 10.3934/math.2021060
[1] | Y. Q. Bai, J. Chen, New stability criteria for recurrent neural networks with interval time-varying delay, Neurocomputing, 121 (2013), 179-184. doi: 10.1016/j.neucom.2013.04.031 |
[2] | J. Sun, J. Chen, Stability analysis of static recurrent neural networks with interval time-varying delay, Appl Math Comput, 221 (2013), 111-120. |
[3] | O. M. Kwon, M. J. Park, J. H. Park, S. M. Lee, E. J. Cha, New and improved results on stability of static neural networks with interval time-varying delays, Appl Math Comput, 239 (2014), 346-357. |
[4] | H. B. Zeng, J. H. Park, C. F. Zhang, W. Wang, Stability and dissipativity analysis of static neural networks with interval time-varying delay, J. Frankl. Inst., 352 (2015), 1284-1295. doi: 10.1016/j.jfranklin.2014.12.023 |
[5] | W. J. Lin, Y. He, C. K. Zhang, M. Wu, M. Ji, Stability analysis of recurrent neural networks with interval time-varying delay via free-matrix-based integral inequality, Neurocomputing, 205 (2016), 490-497. doi: 10.1016/j.neucom.2016.04.052 |
[6] | Z. M. Gao, Y. He, M. Wu, Improved stability criteria for the neural networks with time-varying delay via new augmented Lyapunov-Krasovskii functional, Appl. Math. Comput., 349 (2019), 258-269. |
[7] | X. M. Zhang, Q. L. Han, Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach, Neural Networks, 54 (2014), 57-69. doi: 10.1016/j.neunet.2014.02.012 |
[8] | O. M. Kwon, J. H. Park, S. M. Lee, E. J. Cha, Analysis on delay-dependent stability for neural networks with time-varying delays, Neurocomputing, 103 (2013), 114-120. doi: 10.1016/j.neucom.2012.09.012 |
[9] | X. Xie, Z. Ren, Improved delay-dependent stability analysis for neural networks with time-varying delays, ISA Trans., 53 (2014), 1000-1005. doi: 10.1016/j.isatra.2014.05.010 |
[10] | M. D. Ji, Y. He, C. K. Zhang, M. Mu, Novel stability criteria for recurrent neural networks with time-varying delay, Neurocomputing, 138 (2014), 383-391. doi: 10.1016/j.neucom.2014.01.024 |
[11] | O. M. Kwon, M. J. Park, J. H. Park, S. M. Lee, E. J. Cha, On stability analysis for neural networks with interval time-varying delays via some new augmented Lyapunov-Krasovskii functional, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 3184-3201. doi: 10.1016/j.cnsns.2014.02.024 |
[12] | W. I. Lee, S. Y. Lee, P. G. Park, Improved stability criteria for recurrent neural networks with interval time-varying delays via new Lyapunov functionals, Neurocomputing, 155 (2015), 128-134. doi: 10.1016/j.neucom.2014.12.040 |
[13] | X. Wang, K. She, S. Zhong, S. Yang, New and improved results for recurrent neural networks with interval time-varying delay, Neurocomputing, 175A (2016), 492-499. |
[14] | Y. Zhang, D. Yue, E. Tian, New stability criteria of neural networks with interval time-varying delay: A piecewise delay method, Appl. Math. Comput., 208 (2009), 249-259. |
[15] | Q. Yang, Q. Ren, X. Xie, New delay dependent stability criteria for recurrent neural networks with interval time-varying delay, ISA Trans., 53 (2014), 994-999. doi: 10.1016/j.isatra.2014.05.009 |
[16] | R. Rakkiyappan, R. Sivasamy, J. H. Park, T. H. Lee, An improved stability criterion for generalized neural networks with additive time-varying delays, Neurocomputing, 171 (2016), 615-624. doi: 10.1016/j.neucom.2015.07.004 |
[17] | H. B. Zeng, Y. He, P. Shi, M. Wu, S. P. Xiao, Dissipativity analysis of neural networks with time-varying delays, Neurocomputing, 168 (2015), 741-746. doi: 10.1016/j.neucom.2015.05.050 |
[18] | H. T. Wang, Z. T. Liu, Y. He, Exponential stability criterion of the switched neural networks with time-varying delay, Neurocomputing, 331 (2019), 1-9. doi: 10.1016/j.neucom.2018.11.022 |
[19] | J. Tian, S. Zhong, Improved delay-dependent stability criterion for neural networks with time-varying delay, Appl. Math. Comput., 217 (2011), 10278-10288. |
[20] | S. Senthilraj, R. Raja, Q. Zhu, R. Samidurai, Z. Yao, New delay-interval-dependent stability criteria for static neural networks with time-varying delays, Neurocomputing, 186 (2016), 1-7. doi: 10.1016/j.neucom.2015.12.063 |
[21] | M. J. Park, O. M. Kwon, J. H. Park, S. M. Lee, E. J. Cha, On synchronization criterion for coupled discrete-time neural networks with interval time-varying delays, Neurocomputing, 99 (2013), 188-196. doi: 10.1016/j.neucom.2012.04.027 |
[22] | B. Yang, J. Wang, X. Liu, Improved delay-dependent stability criteria for generalized neural networks with time-varying delays, Inf. Sci., 420 (2017), 299-312. doi: 10.1016/j.ins.2017.08.072 |
[23] | M. J. Park, S. H. Lee, O. M. Kwon, J. H. Ryu, Enhanced stability criteria of neural networks with time-varying delays via a generalized free-weighting matrix integral inequality, J. Frankl. Inst., 355 (2018), 6531-6548. doi: 10.1016/j.jfranklin.2018.06.023 |
[24] | C. Hua, Y. Wang, S. Wu, Stability analysis of neural networks with time-varying delay using a new augmented Lyapunov-Krasovskii functional, Neurocomputing, 332 (2019), 1-9. doi: 10.1016/j.neucom.2018.08.044 |
[25] | F. Zhang, Z. Li, Auxiliary function-based integral inequality approach to robust passivity analysis of neural networks with interval time-varying delay, Neurocomputing, 306 (2018), 189-199. doi: 10.1016/j.neucom.2018.04.026 |
[26] | X. Yang, Y. Tian, X. Li, Finite-time boundedness and stabilization of uncertain switched delayed neural networks of neutral type, Neurocomputing, 314 (2018), 468-478. doi: 10.1016/j.neucom.2018.07.020 |
[27] | J. Xiao, Z. Zeng, A. Wu, New criteria for exponential stability of delayed recurrent neural networks, Neurocomputing, 134 (2014), 182-188. doi: 10.1016/j.neucom.2013.07.053 |
[28] | B. Yang, J. Wang, J. Wang, Stability analysis of delayed neural networks via a new integral inequality, Neural Networks, 88 (2017), 49-57. doi: 10.1016/j.neunet.2017.01.008 |
[29] | X. Yang, Q. Song, Y. Liu, Z. Zhao, Finite-time stability analysis of fractional-order neural networks with delay, Neurocomputing, 152 (2015), 19-26. doi: 10.1016/j.neucom.2014.11.023 |
[30] | M. S. Ali, S. Saravanan, Finite-time stability for memristor base d switched neural networks with time-varying delays via average dwell time approach, Neurocomputing, 275 (2018), 1637-1649. doi: 10.1016/j.neucom.2017.10.003 |
[31] | A. Pratap, R. Raja, J. Cao, J. Alzabut, C. Huang, Finite-time synchronization criterion of graph theory perspective fractional-order coupled discontinuous neural networks, Adv. Differ. Equ., 97 (2020), 1-24. |
[32] | A. Pratap, R. Raja, J. Cao, G. Rajchakit, F. E. Alsaadi, Further synchronization in finite time analysis for time-varying delayed fractional order memristive competitive neural networks with leakage delay, Neurocomputing, 317 (2018), 110-126. doi: 10.1016/j.neucom.2018.08.016 |
[33] | A. Pratap, R. Raja, J. Alzabut, J. Dianavinnarasi, J. Cao, G. Rajchakit, Finite-time Mittag-Leffler stability of fractional-order quaternion-valued memristive neural networks with impulses, Neural Process. Lett., 512 (2020), 1485-1526. |
[34] | J. Puangmalai, J. Tongkum, T. Rojsiraphisal, Finite-time stability criteria of linear system with non-differentiable time-varying delay via new integral inequality, Math. Comput. Simulat., 171 (2020), 170-186. doi: 10.1016/j.matcom.2019.06.013 |
[35] | J. Li, H. Jiang, C. Hu, J. Yu, Analysis and discontinuous control for finite-time synchronization of delayed complex dynamical networks, Chaos, Solitons Fractals, 114 (2018), 291-305. doi: 10.1016/j.chaos.2018.07.019 |
[36] | X. Liu, X. Liu, M. Tang, F. Wang, Improved exponential stability criterion for neural networks with time-varying delay, Neurocomputing, 234 (2017), 154-163. doi: 10.1016/j.neucom.2016.12.057 |
[37] | M. Zheng, L. Li, H. Peng, J. Xiao, Y. Yang, H. Zhao, Finite-time stability analysis for neutral-type neural networks with hybrid time-varying delays without using Lyapunov method, Neurocomputing, 238 (2017), 67-75. doi: 10.1016/j.neucom.2017.01.037 |
[38] | M. Zheng, L. Li, H. Peng, J. Xiao, Y. Yang, Y. Zhang, H. Zhao, Finite-time stability and synchronization of memristor-based fractional-order fuzzy cellular neural networks, Commun. Nonlinear Sci. Numer. Simulat., 59 (2018), 272-297. doi: 10.1016/j.cnsns.2017.11.025 |
[39] | B. Wu, C. Wang, A generalized multiple-integral inequality and its application on stability analysis for time-varying delay systems, J. Frankl. Inst., 356 (2019), 4026-4042. doi: 10.1016/j.jfranklin.2019.02.003 |
[40] | S. Boyd, E. L. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadephia, 1994. |
[41] | J. Sun, G. P. Liu, J. Chen, Delay-dependent stability and stabilization of neutral time-delay systems, Int. J. Robust Nonlinear Control, 19 (2009), 1364-1375. doi: 10.1002/rnc.1384 |