Research article

Applications of a certain $q$-integral operator to the subclasses of analytic and bi-univalent functions

  • Received: 11 May 2020 Accepted: 14 October 2020 Published: 06 November 2020
  • MSC : Primary 05A30, 30C45; Secondary 11B65, 47B38

  • In the present investigation, our aim is to define a generalized subclass of analytic and bi-univalent functions associated with a certain $q$-integral operator in the open unit disk $\mathbb{U}$. We estimate bounds on the initial Taylor-Maclaurin coefficients $\left \vert a_{2}\right \vert$ and $\left \vert a_{3}\right \vert $ for normalized analytic functions $f$ in the open unit disk by considering the function $f$ and its inverse $g = f^{{-}{1}}$. Furthermore, we derive special consequences of the results presented here, which would apply to several (known or new) subclasses of analytic and bi-univalent functions.

    Citation: Bilal Khan, H. M. Srivastava, Muhammad Tahir, Maslina Darus, Qazi Zahoor Ahmad, Nazar Khan. Applications of a certain $q$-integral operator to the subclasses of analytic and bi-univalent functions[J]. AIMS Mathematics, 2021, 6(1): 1024-1039. doi: 10.3934/math.2021061

    Related Papers:

  • In the present investigation, our aim is to define a generalized subclass of analytic and bi-univalent functions associated with a certain $q$-integral operator in the open unit disk $\mathbb{U}$. We estimate bounds on the initial Taylor-Maclaurin coefficients $\left \vert a_{2}\right \vert$ and $\left \vert a_{3}\right \vert $ for normalized analytic functions $f$ in the open unit disk by considering the function $f$ and its inverse $g = f^{{-}{1}}$. Furthermore, we derive special consequences of the results presented here, which would apply to several (known or new) subclasses of analytic and bi-univalent functions.


    加载中


    [1] Q. Z. Ahmad, N. Khan, M. Raza, M. Tahir, B. Khan, Certain q-difference operators and their applications to the subclass of meromorphic q-starlike functions, Filomat, 33 (2019), 3385-3397. doi: 10.2298/FIL1911385A
    [2] H. Aldweby, M. Darus, On a subclass of bi-univalent functions associated with the q-derivative operator, J. Math. Comput. Sci., 19 (2019), 58-64. doi: 10.22436/jmcs.019.01.08
    [3] M. Arif, O. Barkub, H. M. Srivastava, S. Abdullah, S. A. Khan, Some Janowski type harmonic q-starlike functions associated with symmetrical points, Mathematics, 8 (2020), 1-16.
    [4] M. Arif, H. M. Srivastava, S. Umar, Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions, RACSAM, 113 (2019), 1211-1221. doi: 10.1007/s13398-018-0539-3
    [5] M. Çaglar, E. Deniz, Initial coefficients for a subclass of bi-univalent functions defined by Salagean differential operator, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66 (2017), 85-91.
    [6] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., 2 (2013), 49-60.
    [7] E. Deniz, J. M. Jahangiri, S. G. Hamidi, S. K. Kina, Faber polynomial coefficients for generalized bi-subordinate functions of complex order, J. Math. Inequal., 12 (2018), 645-653.
    [8] E. Deniz, H. T. Yolcu, Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order, AIMS Mathematics, 5 (2020), 640-649. doi: 10.3934/math.2020043
    [9] P. L. Duren, Univalent functions, New York, Berlin, Heidelberg and Tokyo: Springer-Verlag, 1983.
    [10] D. E. Edmunds, V. Kokilashvili, A. Meskhi, Bounded and compact integral operators, Dordrecht, Boston and London: Kluwer Academic Publishers, 2002.
    [11] H. Ö. Güney, G. Murugusundaramoorthy, H. M. Srivastava, The second Hankel determinant for a certain class of bi-close-to-convex functions, Results Math., 74 (2019), 1-13. doi: 10.1007/s00025-018-0927-1
    [12] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables Theory Appl., 14 (1990), 77-84.
    [13] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.
    [14] F. H. Jackson, q-difference equations, Am. J. Math., 32 (1910), 305-314.
    [15] B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, A study of some families of multivalent q-starlike functions involving higher-order q-Derivatives, Mathematics, 8 (2020), 1-12.
    [16] B. Khan, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, Q. Z. Ahmad, Coefficient estimates for a subclass of analytic functions associated with a certain leaf-like domain, Mathematics, 8 (2020), 1-15.
    [17] N. Khan, M. Shafiq, M. Darus, B. Khan, Q. Z. Ahmad, Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with Lemniscate of Bernoulli, J. Math. Inequal., 14 (2020), 51-63.
    [18] Q. Khan, M. Arif, M. Raza, G. Srivastava, H. Tang, S. U. Rehman, et al. Some applications of a new integral operator in q-analog for multivalent functions, Mathematics, 7 (2019), 1-13.
    [19] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces, Basel and Boston: Birkhäuser, 2016.
    [20] S. Mahmood, Q. Z. Ahmad, H. M. Srivastava, N. Khan, B. Khan, M. Tahir, A certain subclass of meromorphically q-starlike functions associated with the Janowski functions, J. Inequal. Appl., 2019 (2019), 1-11. doi: 10.1186/s13660-019-1955-4
    [21] S. Mahmood, N. Raza, E. S. A. Abujarad, G. Srivastava, H. M. Srivastava, S. N. Malik, Geometric properties of certain classes of analytic functions associated with a q-integral operator, Symmetry, 11 (2019), 1-14.
    [22] S. Mahmood, H. M. Srivastava, N. Khan, Q. Z. Ahmad, B. Khan, I. Ali, Upper bound of the third Hankel determinant for a subclass of q-starlike functions, Symmetry, 11 (2019), 1-13.
    [23] G. V. Milovanović, M. T. Rassias, Analytic number theory, approximation theory, and special functions: In honor of Hari M. Srivastava, Berlin, Heidelberg and New York: Springer, 2014.
    [24] K. I. Noor, On new classes of integral operators, J. Natur. Geom., 16 (1999), 71-80.
    [25] S. Porwal, M. Darus, On a new subclass of bi-univalent functions, J. Egyptian Math. Soc., 21 (2013), 190-193. doi: 10.1016/j.joems.2013.02.007
    [26] M. S. Rehman, Q. Z. Ahmad, B. Khan, M. Tahir, N. Khan, Generalisation of certain subclasses of analytic and univalent functions, Maejo Int. J. Sci. Technol., 13 (2019), 1-9.
    [27] M. S. Rehman, Q. Z. Ahmad, H. M. Srivastava, B. Khan, N. Khan, Partial sums of generalized q-Mittag-Leffler functions, AIMS Mathematics, 5 (2019), 408-420.
    [28] L. Shi, Q. Khan, G. Srivastava, J. L. Liu, M. Arif, A study of multivalent q-starlike functions connected with circular domain, Mathematics, 7 (2019), 1-12.
    [29] H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: Univalent functions, fractional calculus, and their applications, Chichester: Halsted Press (Ellis Horwood Limited), 329-354, 1989.
    [30] H. M. Srivastava, A new family of the λ-generalized Hurwitz-Lerch zeta functions with applications, Appl. Math. Inform. Sci., 8 (2014), 1485-1500. doi: 10.12785/amis/080402
    [31] H. M. Srivastava, Some general families of the Hurwitz-Lerch Zeta functions and their applications: Recent developments and directions for further researches, Proc. Inst. Math. Mech. Nat. Acad. Sci. Azerbaijan, 45 (2019), 234-269.
    [32] H. M. Srivastava, The Zeta and related functions: Recent developments, J. Adv. Engrg. Comput., 3 (2019), 329-354. doi: 10.25073/jaec.201931.229
    [33] H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci., 44 (2020), 327-344. doi: 10.1007/s40995-019-00815-0
    [34] H. M. Srivastava, Q. Z. Ahmad, N. Khan, S. Kiran, B. Khan, Some applications of higher-order derivatives involving certain subclasses of analytic and multivalent functions, J. Nonlinear Var. Anal., 2 (2018), 343-353.
    [35] H. M. Srivastava, Ş. Altınkaya, S. Yalçin, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A Sci., 43 (2019), 1873-1879. doi: 10.1007/s40995-018-0647-0
    [36] H. M. Srivastava, M. K. Aouf, A. O. Mostafa, Some properties of analytic functions associated with fractional q-calculus operators, Miskolc Math. Notes, 20 (2019), 1245-1260. doi: 10.18514/MMN.2019.3046
    [37] H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination, Integr. Transf. Spec. Funct., 18 (2007), 207-216. doi: 10.1080/10652460701208577
    [38] H. M. Srivastava, D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc., 23 (2015), 242-246. doi: 10.1016/j.joems.2014.04.002
    [39] H. M. Srivastava, D. Bansal, Close-to-convexity of a certain family of q-Mittag-Leffler functions, J. Nonlinear Var. Anal., 1 (2017), 61-69.
    [40] H. M. Srivastava, S. Bulut, M. Çaǧlar, N. Yaǧmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), 831-842. doi: 10.2298/FIL1305831S
    [41] H. M. Srivastavaa, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839-1845. doi: 10.2298/FIL1508839S
    [42] H. M. Srivastava, S. M. El-Deeb, The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of bi-close-to-convex functions connected with the q-convolution, AIMS Mathematics, 5 (2020), 7087-7106. doi: 10.3934/math.2020454
    [43] H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient inequalities for q-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407-425. doi: 10.14492/hokmj/1562810517
    [44] H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, M. Tahir, A generalized conic domain and its applications to certain subclasses of analytic functions, Rocky Mountain J. Math., 49 (2019), 2325-2346. doi: 10.1216/RMJ-2019-49-7-2325
    [45] H. M. Srivastava, S. Khan, Q. Z. Ahmad, N. Khan, S. Hussain, The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator, Stud. Univ. Babeş-Bolyai Math., 63 (2018), 419-436. doi: 10.24193/subbmath.2018.4.01
    [46] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192. doi: 10.1016/j.aml.2010.05.009
    [47] H. M. Srivastava, A. Motamednezhad, E. A. Adegan, Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator, Mathematics, 8 (2020), 1-12.
    [48] H. M. Srivastava, N. Raza, E. S. A. AbuJarad, G. Srivastava, M. H. AbuJarad, Fekete-Szegö inequality for classes of (p, q)-starlike and (p, q)-convex functions, RACSAM, 113 (2019), 3563-3584.
    [49] H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of q-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 1-14.
    [50] H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general families of q-starlike functions associated with the Janowski functions, Filomat, 33 (2019), 2613-2626. doi: 10.2298/FIL1909613S
    [51] H. M. Srivastava, A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J., 59 (2019), 493-503.
    [52] T. S. Taha, Topics in univalent function theory, Ph. D. Thesis, University of London, London, 1981.
    [53] M. Tahir, N. Khan, Q. Z. Ahmad, B. Khan, G. Mehtab, Coefficient estimates for some subclasses of analytic and bi-univalent functions associated with conic domain, SCMA, 16 (2019), 69-81.
    [54] H. E. Ö. Uçar, Coefficient inequality for q-starlike functions, Appl. Math. Comput., 276 (2016), 122-126.
    [55] Q. H. Xu, Y. C. Gui, H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012), 990-994. doi: 10.1016/j.aml.2011.11.013
    [56] Q. H. Xu, H. G. Xiao, H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218 (2012), 11461-11465.
    [57] P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014), 169-178. doi: 10.36045/bbms/1394544302
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3692) PDF downloads(218) Cited by(30)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog