Research article

Exponential stability of periodic solution for stochastic neural networks involving multiple time-varying delays

  • Received: 03 March 2024 Revised: 10 April 2024 Accepted: 18 April 2024 Published: 24 April 2024
  • MSC : 32D40

  • This paper discusses the exponential stability of periodic solutions for stochastic neural networks with multiple time-varying delays. For these networks, sufficient conditions in the linear matrix inequality forms are rare in the literature. We constructed an appropriate Lyapunov-Krasovskii functional to eliminate the items with multiple delays and establish some sufficient conditions in linear matrix inequality forms, to ensure exponential stability of the periodic solutions. Several examples are provided to demonstrate that our results are effective and less conservative than previous ones.

    Citation: Zhigang Zhou, Li Wan, Qunjiao Zhang, Hongbo Fu, Huizhen Li, Qinghua Zhou. Exponential stability of periodic solution for stochastic neural networks involving multiple time-varying delays[J]. AIMS Mathematics, 2024, 9(6): 14932-14948. doi: 10.3934/math.2024723

    Related Papers:

  • This paper discusses the exponential stability of periodic solutions for stochastic neural networks with multiple time-varying delays. For these networks, sufficient conditions in the linear matrix inequality forms are rare in the literature. We constructed an appropriate Lyapunov-Krasovskii functional to eliminate the items with multiple delays and establish some sufficient conditions in linear matrix inequality forms, to ensure exponential stability of the periodic solutions. Several examples are provided to demonstrate that our results are effective and less conservative than previous ones.



    加载中


    [1] Y. H. Zhou, C. D. Li, H. Wang, Stability analysis on state-dependent impulsive Hopfield neural networks via fixed-time impulsive comparison system method, Neurocomputing, 316 (2018), 20–29. https://doi.org/10.1016/j.neucom.2018.07.047 doi: 10.1016/j.neucom.2018.07.047
    [2] S. Arik, A modified Lyapunov functional with application to stability of neutral-type neural networks with time delays, J. Franklin I., 356 (2019), 276–291. https://doi.org/10.1016/j.jfranklin.2018.11.002 doi: 10.1016/j.jfranklin.2018.11.002
    [3] B. Sun, Y. T. Cao, Z. Y. Guo, Z. Yan, S. P. Wen, Synchronization of discrete-time recurrent neural networks with time-varying delays via quantized sliding mode control, Appl. Math. Comput., 375 (2020), 125093. https://doi.org/10.1016/j.amc.2020.125093 doi: 10.1016/j.amc.2020.125093
    [4] Y. X. Wang, Y. T. Cao, Z. Y. Guo, S. P. Wen, Passivity and passification of memristive recurrent neural networks with multi-proportional delays and impulse, Appl. Math. Comput., 369 (2020), 124838. https://doi.org/10.1016/j.amc.2019.124838 doi: 10.1016/j.amc.2019.124838
    [5] Q. K. Song, Y. X. Chen, Z. J. Zhao, Y. R. Liu, F. E. Alsaadi, Robust stability of fractional-order quaternion-valued neural networks with neutral delays and parameter uncertainties, Neurocomputing, 420 (2021), 70–81. https://doi.org/10.1016/j.neucom.2020.08.059 doi: 10.1016/j.neucom.2020.08.059
    [6] J. Chen, M. H. Jiang, Stability of memristor-based fractional-order neural networks with mixed time-delay and impulsive, Neural Process. Lett., 55 (2023), 4697–4718. https://doi.org/10.1007/s11063-022-11061-8 doi: 10.1007/s11063-022-11061-8
    [7] X. Zhang, Z. J. Zhang, T. T. Yu, X. Wang, Global results on exponential stability of neutral Cohen-Grossberg neural networks involving multiple neutral and discrete time-varying delays: A method based on system solutions, Neural Process. Lett., 55 (2023), 11273–11291. https://doi.org/10.1007/s11063-023-11375-1 doi: 10.1007/s11063-023-11375-1
    [8] Z. L. Zhai, H. C. Yan, S. M. Chen, Y. F. Chang, J. Zhou, Novel stability criteria of generalized neural networks with time-varying delay based on the same augmented LKF and bounding technique, Appl. Math. Comput., 460 (2024), 128289. https://doi.org/10.1016/j.amc.2023.128289 doi: 10.1016/j.amc.2023.128289
    [9] Y. Ni, Z. Wang, X. Huang, Q. Ma, H. Shen, Intermittent sampled-data control for local stabilization of neural networks subject to actuator saturation: A work-interval-dependent functional approach, IEEE T. Neur. Net. Lear., 35 (2024), 1087–1097. https://doi.org/10.1109/TNNLS.2022.3180076 doi: 10.1109/TNNLS.2022.3180076
    [10] F. C. Kong, Q. X. Zhu, K. Wang, J. J. Nieto, Stability analysis of almost periodic solutions of discontinuous BAM neural networks with hybrid time-varying delays and D operator, J. Franklin I., 356 (2019), 11605–11637. https://doi.org/10.1016/j.jfranklin.2019.09.030 doi: 10.1016/j.jfranklin.2019.09.030
    [11] M. Abdelaziz, F. Cherif, Piecewise asymptotic almost periodic solutions for impulsive fuzzy Cohen-Grossberg neural networks, Chaos Soliton. Fract., 132 (2020), 109575. https://doi.org/10.1016/j.chaos.2019.109575 doi: 10.1016/j.chaos.2019.109575
    [12] Y. X. Wang, Y. T. Cao, Z. Y. Guo, T. W. Huang, S. P. Wen, Event-based sliding-mode synchronization of delayed memristive neural networks via continuous/periodic sampling algorithm, Appl. Math. Comput., 383 (2020), 125379. https://doi.org/10.1016/j.amc.2020.125379 doi: 10.1016/j.amc.2020.125379
    [13] Q. D. Jiang, Q. R. Wang, Almost periodic solutions for quaternion-valued neural networks with mixed delays on time scales, Neurocomputing, 439 (2021), 363–373. https://doi.org/10.1016/j.neucom.2020.09.063 doi: 10.1016/j.neucom.2020.09.063
    [14] Z. W. Cai, L. H. Huang, Z. Y. Wang, X. M. Pan, S. K. Liu, Periodicity and multi-periodicity generated by impulses control in delayed Cohen-Grossberg-type neural networks with discontinuous activations, Neural Networks, 143 (2021), 230–245. https://doi.org/10.1016/j.neunet.2021.06.013 doi: 10.1016/j.neunet.2021.06.013
    [15] F. C. Kong, Y. Ren, R. Sakthivel, Delay-dependent criteria for periodicity and exponential stability of inertial neural networks with time-varying delays, Neurocomputing, 419 (2021), 261–272. https://doi.org/10.1016/j.neucom.2020.08.046 doi: 10.1016/j.neucom.2020.08.046
    [16] Y. Zhang, Y. H. Qiao, L. J. Duan, J. Miao, Multistability of almost periodic solution for Clifford-valued Cohen-Grossberg neural networks with mixed time delays, Chaos Soliton. Fract., 176 (2023), 114100. https://doi.org/10.1016/j.chaos.2023.114100 doi: 10.1016/j.chaos.2023.114100
    [17] J. Gao, L. H. Dai, H. Y. Jiang, Stability analysis of pseudo almost periodic solutions for octonion-valued recurrent neural networks with proportional delay, Chaos Soliton. Fract., 175 (2023), 4061–4078. https://doi.org/10.1016/j.chaos.2023.114061 doi: 10.1016/j.chaos.2023.114061
    [18] J. X. Cheng, W. D. Liu, Stability analysis of anti-periodic solutions for Cohen-Grossberg neural networks with inertial term and time delays, Mathematics, 12 (2024), 198. https://doi.org/10.3390/math12020198 doi: 10.3390/math12020198
    [19] S. Haykin, Neural networks: A comprehensive foundation, Englewood Cliffs: Prentice-Hall, 1998.
    [20] S. Blythe, X. R. Mao, X. X. Liao, Stability of stochastic delay neural networks, J. Franklin I., 338 (2001), 481–495. https://doi.org/10.1016/S0016-0032(01)00016-3 doi: 10.1016/S0016-0032(01)00016-3
    [21] X. D. Li, Existence and global exponential stability of periodic solution for delayed neural networks with impulsive and stochastic effects, Neurocomputing, 73 (2010), 749–758. https://doi.org/10.1016/j.neucom.2009.10.016 doi: 10.1016/j.neucom.2009.10.016
    [22] W. Q. Wu, L. Yang, Y. P. Ren, Periodic solutions for stochastic Cohen-Grossberg neural networks with time-varying delays, Int. J. Nonlin. Sci. Num., 22 (2021), 13–21. https://doi.org/10.1515/ijnsns-2019-0142 doi: 10.1515/ijnsns-2019-0142
    [23] Y. Y. Hou, L. H. Dai, Square-mean pseudo almost periodic solutions for quaternion-valued stochastic neural networks with time-varying delays, Math. Probl. Eng., 2021 (2021), 6679326. https://doi.org/10.1155/2021/6679326 doi: 10.1155/2021/6679326
    [24] L. Yao, Z. Wang, X. Huang, Y. Li, Q. Ma, H. Shen, Stochastic sampled-data exponential synchronization of markovian jump neural networks with time-varying delays, IEEE T. Neur. Net. Lear., 34 (2023), 909–920. https://doi.org/10.1109/TNNLS.2021.3103958 doi: 10.1109/TNNLS.2021.3103958
    [25] J. Xiang, M. Tan, Existence and stability of Stepanov-almost periodic solution in distribution for quaternion-valued memristor-based stochastic neural networks with delays, Nonlinear Dynam., 111 (2023), 1715–1732. https://doi.org/10.1007/s11071-022-07877-7 doi: 10.1007/s11071-022-07877-7
    [26] Y. K. Li, X. H. Wang, Besicovitch almost periodic stochastic processes and almost periodic solution of Clifford-valued stochastic neural networks, Discrete Cont. Dyn.-B, 28 (2023), 2154. https://doi.org/10.3934/dcdsb.2022162 doi: 10.3934/dcdsb.2022162
    [27] H. Y. Zhao, Global exponential stability and periodicity of cellular neural networks with variable delays, Phys. Lett. A, 336 (2005), 331–341. https://doi.org/10.1016/j.physleta.2004.12.001 doi: 10.1016/j.physleta.2004.12.001
    [28] L. Q. Zhou, G. D. Hu, Global exponential periodicity and stability of cellular neural networks with variable and distributed delays, Appl. Math. Comput., 195 (2008), 402–411. https://doi.org/10.1016/j.amc.2007.04.114 doi: 10.1016/j.amc.2007.04.114
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(522) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog