Citation: Ali Akgül, Esra Karatas Akgül, Sahin Korhan. New reproducing kernel functions in the reproducing kernel Sobolev spaces[J]. AIMS Mathematics, 2020, 5(1): 482-496. doi: 10.3934/math.2020032
[1] | E. F. Gregory, Y. Qi, Reproducing kernels of Sobolev spaces via a green kernel approach with differential operators and boundary operators, Adv. Comput. Math., 38 (2013), 891-921. doi: 10.1007/s10444-011-9264-6 |
[2] | M. G. Sakar, Iterative reproducing kernel Hilbert spaces method for Riccati differential equations, J. Comput. Appl. Math., 309 (2017), 163-174. doi: 10.1016/j.cam.2016.06.029 |
[3] | M. Cui, Y. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel Space, Nova Science Publishers Inc, New York, 2009. |
[4] | S. Zaremba, Sur le calcul numérique des fonctions demandées dan le probléme de dirichlet et le probleme hydrodynamique, Bulletin International l'Académia des Sciences de Cracovie, 68 (1908), 125-195. |
[5] | S. Bergman, The Kernel Function and Conformal Mapping, American Mathematical Society, New York, 1950. |
[6] | M. Zorzi, A. Chiuso, The harmonic analysis of kernel functions, Automatica, 94 (2018), 125-137. doi: 10.1016/j.automatica.2018.04.015 |
[7] | M. Zorzi, A. Chiuso, Sparse plus low rank network identification: A nonparametric approach, Automatica, 76 (2017), 355-366. doi: 10.1016/j.automatica.2016.08.014 |
[8] | M. Zorzi, Empirical Bayesian learning in AR graphical models, Automatica, 109 (2019), 108516. |
[9] | E. Novak, Reproducing Kernels of Sobolev Spaces on Rd and Applications to Embedding Constants and Tractability, Arxiv. |
[10] | O. A. Arqub, Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions, Comput. Math. Appl., 73 (2017), 1243-1261. doi: 10.1016/j.camwa.2016.11.032 |
[11] | S. Momani, O. A. Arqub, T. Hayat, et al. A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm-Voltera type, Appl. Math. Comput., 240 (2014), 229-239. |
[12] | B. Azarnavid, K. Parand, An iterative reproducing kernel method in Hilbert space for the multipoint boundary value problems, J. Comput. Appl. Math., 328 (2018), 151-163. doi: 10.1016/j.cam.2017.07.015 |
[13] | A. Akgül, New reproducing kernel functions, Math. Probl. Eng., 2015 (2015), 1-10. |
[14] | A. Akgül, On solutions of variable-order fractional differential equations, An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 7 (2017), 112-116. |
[15] | A. Akgül, E. K. Akgül, D. Baleanu, Numerical solutions of fractional differential equations of Lane-Emden type by an accurate technique, Adv. Differ. Equ., 2015 (2015), 220. |