Citation: Lulu Ren, JinRong Wang, Michal Fečkan. Periodic mild solutions of impulsive fractional evolution equations[J]. AIMS Mathematics, 2020, 5(1): 497-506. doi: 10.3934/math.2020033
[1] | M. Fečkan, J. Wang, M. Pospíšil, Fractional-Order Equations and Inclusions, De Gruyter, 2017. |
[2] | J. Wang, M. Fečkan, Y. Zhou, A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806-831. |
[3] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, 2006. |
[4] | Y. Zhou, Attractivity for fractional differential equations in Banach space, Appl. Math. Lett., 75 (2018), 1-6. doi: 10.1016/j.aml.2017.06.008 |
[5] | Y. Zhou, Attractivity for fractional evolution equations with almost sectorial operators, Fract. Calc. Appl. Anal., 21 (2018), 786-800. doi: 10.1515/fca-2018-0041 |
[6] | Y. Zhou, L. Shangerganesh, J. Manimaran, et al. A class of time-fractional reaction-diffusion equation with nonlocal boundary condition, Math. Meth. Appl. Sci., 41 (2018), 2987-2999. doi: 10.1002/mma.4796 |
[7] | E. Kaslik, S. Sivasundaram, Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions, Nonlinear Analysis: Real World Applications, 13 (2012), 1489-1497. doi: 10.1016/j.nonrwa.2011.11.013 |
[8] | J. Wang, M. Fečkan, Y. Zhou, Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations, Commun. Nonlinear Sci., 18 (2013), 246-256. doi: 10.1016/j.cnsns.2012.07.004 |
[9] | L. Ren, J. Wang, M. Feckan, Asymptotically periodic solutions for Caputo type fractional evolution equations, Fract. Calc. Appl. Anal., 21 (2018), 1294-1312. doi: 10.1515/fca-2018-0068 |
[10] | C. Cuevas, J. Souza, S-asymptotically ω-periodic solutions of semilinear fractional integrodifferential equations, Appl. Math. Lett., 22 (2009), 865-870. doi: 10.1016/j.aml.2008.07.013 |
[11] | J. Diblík, M. Fečkan, M. Pospíšil, Nonexistence of periodic solutions and S-asymptotically periodic solutions in fractional difference equations, Appl. Math. Comput., 257 (2015), 230-240. |
[12] | M. Fečkan, J. Wang, Periodic impulsive fractional differential equations, Adv. Nonlinear Anal., 8 (2019), 482-496. |
[13] | Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077. doi: 10.1016/j.camwa.2009.06.026 |
[14] | M. Fečkan, J. Wang, Y. Zhou, Periodic solutions for nonlinear evolution equations with noninstantaneous impulses, Nonautonomous Dynamical Systems, 1 (2014), 93-101. |
[15] | H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081. doi: 10.1016/j.jmaa.2006.05.061 |
[16] | B. M. Garay, P. Kloeden, Discretization near compact invariant sets, Random and Computational Dynamics, 5 (1997), 93-124. |
[17] | I. Murdock, C. Robinson, Qualitative dynamics from asymptotic expansions: Local theory, J. Differential Equations, 36 (1980), 425-441. doi: 10.1016/0022-0396(80)90059-5 |