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Abstract: This paper studies the periodic mild solutions of impulsive fractional evolution equations.
Firstly, the existence and stability of periodic solutions of impulsive fractional differential equations
with varying lower limits for general impulses and small shifted impulses are considered. Secondly,
the existence of periodic solutions of impulsive fractional differential equations with fixed lower limits
is proved. Lastly, an example is given to demonstrate the result.
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1. Introduction

Fractional differential equations rise in many fields, such as biology, physics and engineering. There
are many results about the existence of solutions and control problems (see [1–6]).

It is well known that the nonexistence of nonconstant periodic solutions of fractional differential
equations was shown in [7, 8, 11] and the existence of asymptotically periodic solutions was derived
in [8–11]. Thus it gives rise to study the periodic solutions of fractional differential equations with
periodic impulses.

Recently, Fečkan and Wang [12] studied the existence of periodic solutions of fractional ordinary
differential equations with impulses periodic condition and obtained many existence and asymptotic
stability results for the Caputo’s fractional derivative with fixed and varying lower limits. In this
paper, we study the Caputo’s fractional evolution equations with varying lower limits and we prove
the existence of periodic mild solutions to this problem with the case of general periodic impulses
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as well as small equidistant and shifted impulses. We also study the Caputo’s fractional evolution
equations with fixed lower limits and small nonlinearities and derive the existence of its periodic mild
solutions. The current results extend some results in [12].

2. Caputo derivatives with varying lower limits

Set ξq(θ) = 1
qθ
−1− 1

q$q(θ−
1
q ) ≥ 0, $q(θ) = 1

π

∑∞
n=1(−1)n−1θ−nq−1 Γ(nq+1)

n! sin(nπq), θ ∈ (0,∞). Note that
ξq(θ) is a probability density function defined on (0,∞), namely ξq(θ) ≥ 0, θ ∈ (0,∞) and

∫ ∞
0
ξq(θ)dθ =

1.
Define T : X → X and S : X → X given by

T (t) =

∫ ∞

0
ξq(θ)S (tqθ)dθ, S (t) = q

∫ ∞

0
θξq(θ)S (tqθ)dθ.

Lemma 2.1. ( [13, Lemmas 3.2, 3.3]) The operators T (t) and S (t), t ≥ 0 have following properties:

(1) Suppose that supt≥0 ‖S (t)‖ ≤ M. For any fixed t ≥ 0, T (·) and S (·) are linear and bounded
operators, i.e., for any u ∈ X,

‖T (t)u‖ ≤ M‖u‖ and ‖S (t)u‖ ≤
M

Γ(q)
‖u‖.

(2) {T (t), t ≥ 0} and {S (t), t ≥ 0} are strongly continuous.
(3) {T (t), t > 0} and {S (t), t > 0} are compact, if {S (t), t > 0} is compact.

2.1. General impulses

Let N0 = {0, 1, · · · ,∞}. We consider the following impulsive fractional equations
cDq

tk ,tu(t) = Au(t) + f (t, u(t)), q ∈ (0, 1), t ∈ (tk, tk+1), k ∈ N0,

u(t+
k ) = u(t−k ) + ∆k(u(t−k )), k ∈ N,

u(0) = u0,

(2.1)

where cDq
tk ,t denotes the Caputo’s fractional time derivative of order q with the lower limit at tk, A :

D(A) ⊆ X → X is the generator of a C0-semigroup {S (t), t ≥ 0} on a Banach space X, f : R × X → X
satisfies some assumptions. We suppose the following conditions:

(I) f is continuous and T -periodic in t.
(II) There exist constants a > 0, bk > 0 such that‖ f (t, u) − f (t, v)‖ ≤ a‖u − v‖,∀ t ∈ R, u, v ∈ X,

‖u − v + ∆k(u) − ∆k(v)‖ ≤ bk‖u − v‖,∀ k ∈ N, u, v ∈ X.

(III) There exists N ∈ N such that T = tN+1, tk+N+1 = tk + T and ∆k+N+1 = ∆k for any k ∈ N.
It is well known [3] that (2.1) has a unique solution on R+ if the conditions (I) and (II) hold. So we

can consider the Poincaré mapping

P(u0) = u(T−) + ∆N+1(u(T−)).

By [14, Lemma 2.2] we know that the fixed points of P determine T -periodic mild solutions of (2.1).
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Theorem 2.2. Assume that (I)-(III) hold. Let Ξ :=
∏N

k=0 MbkEq(Ma(tk+1− tk)q), where Eq is the Mittag-
Leffler function (see [3, p.40]), then there holds

‖P(u) − P(v)‖ ≤ Ξ‖u − v‖, ∀u, v ∈ X. (2.2)

If Ξ < 1, then (2.1) has a unique T-periodic mild solution, which is also asymptotically stable.

Proof. By the mild solution of (2.1), we mean that u ∈ C((tk, tk+1), X) satisfying

u(t) = T (t − tk)u(t+
k ) +

∫ t

tk
S (t − s) f (s, u(s))ds. (2.3)

Let u and v be two solutions of (2.3) with u(0) = u0 and v(0) = v0, respectively. By (2.3) and (II), we
can derive

‖u(t) − v(t)‖

≤ ‖T (t − tk)(u(t+
k ) − v(t+

k ))‖ +

∫ t

tk
(t − s)q−1‖S (t − s)( f (s, u(s) − f (s, v(s))‖ds

≤ M‖u(t+
k ) − v(t+

k )‖ +
Ma
Γ(q)

∫ t

tk
(t − s)q−1‖ f (s, u(s) − f (s, v(s))‖ds. (2.4)

Applying Gronwall inequality [15, Corollary 2] to (2.4), we derive

‖u(t) − v(t)‖ ≤ M‖u(t+
k ) − v(t+

k )‖Eq(Ma(t − tk)q), t ∈ (tk, tk+1), (2.5)

which implies

‖u(t−k+1) − v(t−k+1)‖ ≤ MEq(Ma(tk+1 − tk)q)‖u(t+
k ) − v(t+

k )‖, k = 0, 1, · · · ,N. (2.6)

By (2.6) and (II), we derive

‖P(u0) − P(v0)‖
= ‖u(t−N+1) − v(t−N+1) + ∆N+1(u(t−N+1)) − ∆N+1(v(t−N+1))‖
≤ bN+1‖u(t−N+1) − v(t−N+1)‖

≤
( N∏

k=0

MbkEq(Ma(tk+1 − tk)q)
)
‖u0 − v0‖

= Ξ‖u0 − v0‖, (2.7)

which implies that (2.2) is satisfied. Thus P : X → X is a contraction if Ξ < 1. Using Banach fixed
point theorem, we obtain that P has a unique fixed point u0 if Ξ < 1. In addition, since

‖Pn(u0) − Pn(v0)‖ ≤ Ξn‖u0 − v0‖, ∀v0 ∈ X,

we get that the corresponding periodic mild solution is asymptotically stable. �
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2.2. Small equidistant and shifted impulses

We study 
cDq

khu(t) = Au(t) + f (u(t)), q ∈ (0, 1), t ∈ (kh, (k + 1)h), k ∈ N0,

u(kh+) = u(kh−) + ∆̄hq, k ∈ N,

u(0) = u0,

(2.8)

where h > 0, ∆̄ ∈ X, and f : X → X is Lipschitz. We know [3] that under above assumptions, (2.8)
has a unique mild solution u(u0, t) on R+, which is continuous in u0 ∈ X, t ∈ R+ \ {kh|k ∈ N} and left
continuous in t ant impulsive points {kh|k ∈ N}. We can consider the Poincaré mapping

Ph(u0) = u(u0, h+).

Theorem 2.3. Let w(t) be a solution of following equationsw′(t) = ∆̄ +
1

Γ(q + 1)
f (w(t)), t ∈ [0,T ],

w(0) = u0.

(2.9)

Then there exists a mild solution u(u0, t) of (2.8) on [0,T ], satisfying

u(u0, t) = w(tqq−1) + O(hq).

If w(t) is a stable periodic solution, then there exists a stable invariant curve of Poincaré mapping of
(2.8) in a neighborhood of w(t). Note that h is sufficiently small.

Proof. For any t ∈ (kh, (k + 1)h), k ∈ N0, the mild solution of (2.8) is equivalent to

u(u0, t) = T (t − kh)u(kh+) +

∫ t

kh
(t − s)q−1S (t − s) f (u(u0, s))ds

= T (t − kh)u(kh+) +

∫ t−kh

0
(t − kh − s)q−1S (t − kh − s) f (u(u(kh+), s))ds. (2.10)

So

u((k + 1)h+) = T (h)u(kh+) + ∆̄hq +

∫ h

0
(h − s)q−1S (h − s) f (u(u(kh+), s))ds = Ph(u(kh+)), (2.11)

and

Ph(u0) = u(u0, h+) = T (h)u0 + ∆̄hq +

∫ h

0
(h − s)q−1S (h − s) f (u(u0, s))ds. (2.12)

Inserting
u(u0, t) = T (t)u0 + hqv(u0, t), t ∈ [0, h],

into(2.10), we obtain

v(u0, t) =
1
hq

∫ t

0
(t − s)q−1S (t − s) f (T (t)u0 + hqv(u0, t))ds
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=
1
hq

∫ t

0
(t − s)q−1S (t − s) f (T (t)u0)ds

+
1
hq

∫ t

0
(t − s)q−1S (t − s)

(
f (T (t)u0 + hqv(u0, t)) − f (T (t)u0)

)
ds

=
1
hq

∫ t

0
(t − s)q−1S (t − s) f (T (t)u0)ds + O(hq),

since ∥∥∥∥∥ ∫ t

0
(t − s)q−1S (t − s)

(
f (T (t)u0 + hqv(u0, t)) − f (T (t)u0)

)
ds

∥∥∥∥∥
≤

∫ t

0
(t − s)q−1‖S (t − s)‖‖ f (T (t)u0 + hqv(u0, t)) − f (T (t)u0)‖ds

≤
MLlochqtq

Γ(q + 1)
max
t∈[0,h]
{‖v(u0, t)‖}

≤ h2q MLloc

Γ(q + 1)
max
t∈[0,h]
{‖v(u0, t)‖},

where Lloc is a local Lipschitz constant of f . Thus we get

u(u0, t) = T (t)u0 +

∫ t

0
(t − s)q−1S (t − s) f (T (t)u0)ds + O(h2q), t ∈ [0, h], (2.13)

and (2.12) gives

Ph(u0) = T (h)u0 + ∆̄hq +

∫ h

0
(h − s)q−1S (h − s) f (T (h)u0)ds + O(h2q).

So (2.11) becomes

u((k + 1)h+)

= T (h)u(kh+) + ∆̄hq +

∫ (k+1)h

kh
((k + 1)h − s)q−1S ((k + 1)h − s) f (T (h)u(kh+))ds + O(h2q).

(2.14)

Since T (t) and S (t) are strongly continuous,

lim
t→0

T (t) = I and lim
t→0

S (t) =
1

Γ(q)
I. (2.15)

Thus (2.14) leads to its approximation

w((k + 1)h+) = w(kh+) + ∆̄hq +
hq

Γ(q + 1)
f (w(kh+)),

which is the Euler numerical approximation of

w′(t) = ∆̄ +
1

Γ(q + 1)
f (w(t)).
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Note that (2.10) implies

‖u(u0, t) −T (t − kh)u(kh+)‖ = O(hq), ∀t ∈ [kh, (k + 1)h]. (2.16)

Applying (2.15), (2.16) and the already known results about Euler approximation method in [16], we
obtain the result of Theorem 2.3.

�

Corollary 2.4. We can extend (2.8) for periodic impulses of following form
cDq

khu(t) = Au(t) + f (u(t)), t ∈ (kh, (k + 1)h), k ∈ N0,

u(kh+) = u(kh−) + ∆̄khq, k ∈ N,

u(0) = u0,

(2.17)

where ∆̄k ∈ X satisfy ∆̄k+N+1 = ∆̄k for any k ∈ N. Then Theorem 2.3 can directly extend to (2.17) withw′(t) =

∑N+1
k=1 ∆̄k

N + 1
+

1
Γ(q + 1)

f (w(t)), t ∈ [0,T ], k ∈ N,

w(0) = u0

(2.18)

instead of (2.9).

Proof. We can consider the Poincaré mapping

Ph(u0) = u(u0, (N + 1)h+),

with a form of
Ph = PN+1,h ◦ · · · ◦ P1,h

where
Pk,h(u0) = ∆̄khq + u(u0, h).

By (2.13), we can derive

Pk,h(u0) = ∆̄khq + u(u0, h) = T (h)u0 + ∆̄khq +

∫ h

0
(h − s)q−1S (h − s) f (T (h)u0)ds + O(h2q).

Then we get

Ph(u0) = T (h)u0 +

N+1∑
k=1

∆̄khq + (N + 1)
∫ h

0
(h − s)q−1S (h − s) f (T (h)u0)ds + O(h2q).

By (2.15), we obtain that Ph(u0) leads to its approximation

u0 +

N+1∑
k=1

∆̄khq +
(N + 1)hq

Γ(q + 1)
f (u0). (2.19)

Moreover, equations

w′(t) =

∑N+1
k=1 ∆̄k

N + 1
+

1
Γ(q + 1)

f (w(t))
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has the Euler numerical approximation

u0 + hq
(∑N+1

k=1 ∆̄k

N + 1
+

1
Γ(q + 1)

f (u0)
)

with the step size hq, and its approximation of N + 1 iteration is (2.19), the approximation of Ph. Thus
Theorem 2.3 can directly extend to (2.17) with (2.18). �

3. Caputo derivatives with fixed lower limits and weak nonlinearities

Now we consider following equations with small nonlinearities of the form
cDq

0u(t) = Au(t) + ε f (t, u(t)), q ∈ (0, 1), t ∈ (tk, tk+1), k ∈ N0,

u(t+
k ) = u(t−k ) + ε∆k(u(t−k )), k ∈ N,

u(0) = u0,

(3.1)

where ε is a small parameter, cDq
0 is the generalized Caputo fractional derivative with lower limit at 0.

Then (3.1) has a unique mild solution u(ε, t). Give the Poincaré mapping

P(ε, u0) = u(ε,T−) + ε∆N+1(u(ε,T−)).

Assume that
(H1) f and ∆k are C2-smooth.
Then P(ε, u0) is also C2-smooth. In addition, we have

u(ε, t) = T (t)u0 + εω(t) + O(ε2),

where ω(t) satisfies
cDq

0ω(t) = Aω(t) + f (t,T (t)u0), t ∈ (tk, tk+1), k = 0, 1, · · · ,N,
ω(t+

k ) = ω(t−k ) + ∆k(T (tk)u0), k = 1, 2, · · · ,N + 1,
ω(0) = 0,

and

ω(T−) =

N∑
k=1

T (T − tk)∆k(T (tk)u0) +

∫ T

0
(T − s)q−1S (T − s) f (s,T (s)u0)ds.

Thus we derive P(ε, u0) = u0 + M(ε, u0) + O(ε2)
M(ε, u0) = (T (T ) − I)u0 + εω(T−) + ε∆N+1(T (T )u0).

(3.2)

Theorem 3.1. Suppose that (I), (III) and (H1) hold.
1). If (T (T ) − I) has a continuous inverse, i.e. (T (T ) − I)−1 exists and continuous, then (3.1) has

a unique T-periodic mild solution located near 0 for any ε , 0 small.
2). If (T (T )− I) is not invertible, we suppose that ker(T (T )− I) = [u1, · · · , uk] and X = im(T (T )−

I) ⊕ X1 for a closed subspace X1 with dim X1 = k. If there is v0 ∈ [u1, · · · , uk] such that B(0, v0) = 0
(see (3.7)) and the k×k-matrix DB(0, v0) is invertible, then (3.1) has a unique T-periodic mild solution
located near T (t)v0 for any ε , 0 small.

3). If rσ(Du0 M(ε, u0)) < 0, then the T-periodic mild solution is asymptotically stable. If
rσ(Du0 M(ε, u0)) ∩ (0,+∞) , ∅, then the T-periodic mild solution is unstable.
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Proof. The fixed point u0 of P(ε, x0) determines the T -periodic mild solution of (3.1), which is
equivalent to

M(ε, u0) + O(ε2) = 0. (3.3)

Note that M(0, u0) = (T (T )− I)u0. If (T (T )− I) has a continuous inverse, then (3.3) can be solved
by the implicit function theorem to get its solution u0(ε) with u0(0) = 0.

If (T (T ) − I) is not invertible, then we take a decomposition u0 = v + w, v ∈ [u1, · · · , uk], take
bounded projections Q1 : X → im(T (T ) − I), Q2 : X → X1, I = Q1 + Q2 and decompose (3.3) to

Q1M(ε, v + w) + Q1O(ε2) = 0, (3.4)

and
Q2M(ε, v + w) + Q2O(ε2) = 0. (3.5)

Now Q1M(0, v+w) = (T (T )−I)w, so we can solve by implicit function theorem from (3.4), w = w(ε, v)
with w(0, v) = 0. Inserting this solution into (3.5), we get

B(ε, v) =
1
ε

(Q2M(ε, v + w) + Q2O(ε2)) = Q2ω(T−) + Q2∆N+1(T (t)v + w(ε, v)) + O(ε). (3.6)

So

B(0, v) =

N∑
k=1

Q2T (T − tk)∆k(T (tk)v) + Q2

∫ T

0
(T − s)q−1S (T − s) f (s,T (s)v)ds. (3.7)

Consequently we get, if there is v0 ∈ [u1, · · · , uk] such that B(0, v0) = 0 and the k × k-matrix DB(0, v0)
is invertible, then (3.1) has a unique T -periodic mild solution located near T (t)v0 for any ε , 0 small.

In addition, Du0 P(ε, u0(ε)) = I + Du0 M(ε, u0) + O(ε2). Thus we can directly derive the stability and
instability results by the arguments in [17].

�

4. An example

In this section, we give an example to demonstrate Theorem 2.2.

Example 4.1. Consider the following impulsive fractional partial differential equation:

cD
1
2
tk ,tu(t, y) =

∂2

∂y2 u(t, y) + sin u(t, y) + cos 2πt, t ∈ (tk, tk+1), k ∈ N0, y ∈ [0, π],

∆k(u(t−k , y)) = u(t+
k , y) − u(t−k , y) = ξu(t−k , y), k ∈ N, y ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ∈ (tk, tk+1), k ∈ N0,

u(0, y) = u0(y), y ∈ [0, π],

(4.1)

for ξ ∈ R, tk = k
3 . Let X = L2[0, π]. Define the operator A : D(A) ⊆ X → X by Au = d2u

dy2 with the
domain

D(A) = {u ∈ X |
du
dy
,

d2u
dy2 ∈ X, u(0) = u(π) = 0}.
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Then A is the infinitesimal generator of a C0-semigroup {S (t), t ≥ 0} on X and ‖S (t)‖ ≤ M = 1 for any
t ≥ 0. Denote u(·, y) = u(·)(y) and define f : [0,∞) × X → X by

f (t, u)(y) = sin u(y) + cos 2πt.

Set T = t3 = 1, tk+3 = tk + 1, ∆k+3 = ∆k, a = 1, bk = |1 + ξ|. Obviously, conditions (I)-(III) hold. Note
that

Ξ =

2∏
k=0

|1 + ξ|E 1
2
(

1
√

3
) = |1 + ξ|3

(
E 1

2
(

1
√

3
)
)3
.

Letting Ξ < 1, we get −E 1
2
( 1
√

3
) − 1 < ξ < E 1

2
( 1
√

3
) − 1. Now all assumptions of Theorem 2.2 hold.

Hence, if −E 1
2
( 1
√

3
) − 1 < ξ < E 1

2
( 1
√

3
) − 1, (4.1) has a unique 1-periodic mild solution, which is also

asymptotically stable.

5. Conclusion

This paper deals with the existence and stability of periodic solutions of impulsive fractional
evolution equations with the case of varying lower limits and fixed lower limits. Although, Fečkan
and Wang [12] prove the existence of periodic solutions of impulsive fractional ordinary differential
equations in finite dimensional Euclidean space, we extend some results to impulsive fractional
evolution equation on Banach space by involving operator semigroup theory. Our results can be
applied to some impulsive fractional partial differential equations and the proposed approach can be
extended to study the similar problem for periodic impulsive fractional evolution inclusions.
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11. J. Diblı́k, M. Fečkan, M. Pospı́šil, Nonexistence of periodic solutions and S-asymptotically periodic
solutions in fractional difference equations, Appl. Math. Comput., 257 (2015), 230–240.
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