Citation: Zongyuan Zhu, Rachael Simister, Susannah Bird, Simon J. McQueen-Mason, Leonardo D. Gomez, Duncan J. Macquarrie. Microwave assisted acid and alkali pretreatment of Miscanthus biomass for biorefineries[J]. AIMS Bioengineering, 2015, 2(4): 449-468. doi: 10.3934/bioeng.2015.4.449
[1] | Kaar WE, Holtzapple MT (2000) Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass Bioenerg 18: 189-199. doi: 10.1016/S0961-9534(99)00091-4 |
[2] | Ju Y-H, Huynh L-H, Kasim NS, et al. (2011) Analysis of soluble and insoluble fractions of alkali and subcritical water treated sugarcane bagasse. Carbohyd Polym 83: 591-599. doi: 10.1016/j.carbpol.2010.08.022 |
[3] | Han M, Choi GW, Kim Y, et al. (2011) Bioethanol Production by Miscanthus as a Lignocellulosic Biomass: Focus on High Efficiency Conversion to Glucose and Ethanol. Bioresources 6: 1939-1953. |
[4] | Lu X, Xi B, Zhang Y, et al. (2011) Microwave pretreatment of rape straw for bioethanol production: Focus on energy efficiency. Bioresource Technol 102: 7937-7940. doi: 10.1016/j.biortech.2011.06.065 |
[5] | Xu J, Chen HZ, Kadar Z, et al. (2011) Optimization of microwave pretreatment on wheat straw for ethanol production. Biomass Bioenerg 35: 3859-3864. doi: 10.1016/j.biombioe.2011.04.054 |
[6] | Brosse N, Dufour A, Meng XZ, et al. (2012) Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels Bioprod Biorefining 6: 580-598. doi: 10.1002/bbb.1353 |
[7] | Chen W-H, Tu Y-J, Sheen H-K (2011) Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Appl Energ 88: 2726-2734. doi: 10.1016/j.apenergy.2011.02.027 |
[8] | Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technol 83: 1-11. doi: 10.1016/S0960-8524(01)00212-7 |
[9] | Kovacs K, Macrelli S, Szakacs G, et al. (2009) Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnol Biofuels 2: 14. doi: 10.1186/1754-6834-2-14 |
[10] | Balat M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energ Combust Sci 34: 551-573. doi: 10.1016/j.pecs.2007.11.001 |
[11] | Alizadeh H, Teymouri F, Gilbert TI, et al. (2005) Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl Biochem Biotech 121: 1133-1141. |
[12] | Kim KH, Hong J (2001) Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresource Technol 77: 139-144. doi: 10.1016/S0960-8524(00)00147-4 |
[13] | Nikolic S, Mojovic L, Rakin M, et al. (2011) Utilization of microwave and ultrasound pretreatments in the production of bioethanol from corn. Clean Technol Environ Policy 13: 587-594. doi: 10.1007/s10098-011-0366-0 |
[14] | Xu N, Zhang W, Ren SF, et al. (2012) Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnol Biofuels 5: 58. doi: 10.1186/1754-6834-5-58 |
[15] | Canilha L, Santos VTO, Rocha GJM, et al. (2011) A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biot 38: 1467-1475. doi: 10.1007/s10295-010-0931-2 |
[16] | Rezende CA, de Lima MA, Maziero P, et al. (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 4: 1-18. doi: 10.1186/1754-6834-4-1 |
[17] | Macquarrie DJ, Clark JH, Fitzpatrick E (2012) The microwave pyrolysis of biomass. Biofuels Bioprod Biorefining 6: 549-560. doi: 10.1002/bbb.1344 |
[18] | Hu Z, Wen Z (2008) Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem Eng J 38: 369-378. |
[19] | Keshwani DR, Cheng JJ (2010) Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production. Biotechnol Progr 26: 644-652. |
[20] | Zhu S, Wu Y, Yu Z, et al. (2006) Microwave-assisted alkali pre-treatment of wheat straw and its enzymatic hydrolysis. Biosyst Eng 94: 437-442. doi: 10.1016/j.biosystemseng.2006.04.002 |
[21] | Kappe CO (2004) Controlled Microwave Heating in Modern Organic Synthesis. Angew Chem Int Ed 43: 6250-6284. doi: 10.1002/anie.200400655 |
[22] | Jones L, Milne JL, Ashford D, et al. (2003) Cell wall arabinan is essential for guard cell function. Proc Natl Acad Sci U S A 100: 11783-11788. doi: 10.1073/pnas.1832434100 |
[23] | Foster CE, Martin TM, Pauly M (2010) Comprehensive Compositional Analysis of Plant Cell Walls (Lignocellulosic biomass) Part II: Carbohydrates. e1837. |
[24] | Foster CE, Martin TM, Pauly M (2010) Comprehensive Compositional Analysis of Plant Cell Walls (Lignocellulosic biomass) Part I: Lignin. e1745. |
[25] | Gomez LD, Whitehead C, Barakate A, et al. (2010) Automated saccharification assay for determination of digestibility in plant materials. Biotechnol Biofuels 3: 23. doi: 10.1186/1754-6834-3-23 |
[26] | Wang W, Yuan TQ, Wang K, et al. (2012) Combination of biological pretreatment with liquid hot water pretreatment to enhance enzymatic hydrolysis of Populus tomentosa. Bioresource Technol 107: 282-286. doi: 10.1016/j.biortech.2011.12.116 |
[27] | Youngmi Kim RH, Nathan S. Mosier,Michael R. Ladisch (2009) Liquid Hot Water Pretreatment of Cellulosic Biomass. Biofuel methods and protocols.Mielenz. JR, editor. New York: Humana Press Inc, 93-102. |
[28] | Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technol 100: 10-18. doi: 10.1016/j.biortech.2008.05.027 |
[29] | Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Als Roh-Und Werkstoff 57: 191-202. doi: 10.1007/s001070050039 |
[30] | Szabolcs A, Molnar M, Dibo G, et al. (2013) Microwave-assisted conversion of carbohydrates to levulinic acid: an essential step in biomass conversion. Green Chem 15: 439-445. doi: 10.1039/C2GC36682G |
[31] | Lee YY, Iyer P, Torget RW (1999) Dilute-Acid Hydrolysis of Lignocellulosic Biomass. In: Tsao GT, Brainard AP, Bungay HR et al., editors. Advances in Biochemical Engineering/Biotechnology.: Springer Berlin Heidelberg. 65: 93-115. |
[32] | Brosse N, Sannigrahi P, Ragauskas A (2009) Pretreatment of Miscanthus x giganteus Using the Ethanol Organosolv Process for Ethanol Production. Ind Eng Chem Res 48: 8328-8334. doi: 10.1021/ie9006672 |
[33] | Yu G, Afzal W, Yang F, et al. (2014) Pretreatment of Miscanthus×giganteus using aqueous ammonia with hydrogen peroxide to increase enzymatic hydrolysis to sugars. J Chem Technol Biotechnol 89: 698-706. doi: 10.1002/jctb.4172 |
[34] | Haverty D, Dussan K, Piterina AV, et al. (2012) Autothermal, single-stage, performic acid pretreatment of Miscanthus x giganteus for the rapid fractionation of its biomass components into a lignin/hemicellulose-rich liquor and a cellulase-digestible pulp. Bioresource Technol 109: 173-177. doi: 10.1016/j.biortech.2012.01.007 |
[35] | Budarin VL, Clark JH, Lanigan BA, et al. (2010) Microwave assisted decomposition of cellulose: A new thermochemical route for biomass exploitation. Bioresource Technol 101: 3776-3779. doi: 10.1016/j.biortech.2009.12.110 |
[36] | Mosier N, Wyman C, Dale B, et al. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol 96: 673-686. doi: 10.1016/j.biortech.2004.06.025 |
[37] | Li JB, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresource Technol 98: 3061-3068. doi: 10.1016/j.biortech.2006.10.018 |
[38] | Mittal A, Katahira R, Himmel ME, et al. (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4: 41. doi: 10.1186/1754-6834-4-41 |
[39] | Liu CF, Xu F, Sun JX, et al. (2006) Physicochemical characterization of cellulose from perennial ryegrass leaves (Lolium perenne). Carbohydr Res 341: 2677-2687. doi: 10.1016/j.carres.2006.07.008 |
[40] | Chen W-H, Ye S-C, Sheen H-K (2012) Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Appl Energ 93: 237-244. doi: 10.1016/j.apenergy.2011.12.014 |
[41] | Kaparaju P, Felby C (2010) Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover. Bioresource Technol 101: 3175-3181. doi: 10.1016/j.biortech.2009.12.008 |
[42] | Corredor DY, Salazar JM, Hohn KL, et al. (2009) Evaluation and Characterization of Forage Sorghum as Feedstock for Fermentable Sugar Production. Appl Biochem Biotechnol 158: 164-179. doi: 10.1007/s12010-008-8340-y |
[43] | Stewart D, Wilson HM, Hendra PJ, et al. (1995) Fourier-Transform Infrared and Raman-Spectroscopic Study of Biochemical and Chemical Treatments of Oak Wood (Quercus-Rubra) and Barley (Hordeum-Vulgare) Straw. J Agric Food Chem 43: 2219-2225. doi: 10.1021/jf00056a047 |
[44] | Kumar R, Mago G, Balan V, et al. (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresource Technol 100: 3948-3962. doi: 10.1016/j.biortech.2009.01.075 |
[45] | Sun JX, Sun XF, Sun RC, et al. (2003) Inhomogeneities in the chemical structure of sugarcane bagasse lignin. J Agric Food Chem 51: 6719-6725. doi: 10.1021/jf034633j |
[46] | Guo GL, Hsu DC, Chen WH, et al. (2009) Characterization of enzymatic saccharification for acid-pretreated lignocellulosic materials with different lignin composition. Enzyme Microb Technol 45: 80-87. doi: 10.1016/j.enzmictec.2009.05.012 |
[47] | Mizi Fan DD, Biao Huang (2012) Fourier Transform Infrared Spectroscopy for Natural Fibres In: Salih DS, editor. Fourier Transform - Materials Analysis: InTech, 45-52. |
[48] | Li CL, Knierim B, Manisseri C, et al. (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technol 101: 4900-4906. doi: 10.1016/j.biortech.2009.10.066 |
[49] | Boonmanumsin P, Treeboobpha S, Jeamjumnunja K, et al. (2012) Release of monomeric sugars from Miscanthus sinensis by microwave-assisted ammonia and phosphoric acid treatments. Bioresource Technol 103: 425-431. doi: 10.1016/j.biortech.2011.09.136 |
[50] | Ju YH, Huynh LH, Kasim NS, et al. (2011) Analysis of soluble and insoluble fractions of alkali and subcritical water treated sugarcane bagasse. Carbohyd Polym 83: 591-599. doi: 10.1016/j.carbpol.2010.08.022 |
[51] | Li HJ, Lu JR, Mo JC (2012) Physiochemical lignocellulose modification by the formosan subterranean termite Coptotermes Formosanus Shiraki (Isoptera: Rhinotermitidae) and its potential uses in the production of biofuels. Bioresources 7: 675-685. |
[52] | Titirici M-M, Antonietti M, Baccile N (2008) Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chemistry 10: 1204-1212. doi: 10.1039/b807009a |
[53] | Lima MA, Lavorente GB, da Silva HKP, et al. (2013) Effects of pretreatment on morphology, chemical composition and enzymatic digestibility of eucalyptus bark: a potentially valuable source of fermentable sugars for biofuel production - part 1. Biotechnol Biofuels 6: 75. doi: 10.1186/1754-6834-6-75 |
[54] | Heiss-Blanquet S, Zheng D, Ferreira NL, et al. (2011) Effect of pretreatment and enzymatic hydrolysis of wheat straw on cell wall composition, hydrophobicity and cellulase adsorption. Bioresource Technol 102: 5938-5946. doi: 10.1016/j.biortech.2011.03.011 |
[55] | Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technol 74: 25-33. |