Citation: Zongyuan Zhu, Rachael Simister, Susannah Bird, Simon J. McQueen-Mason, Leonardo D. Gomez, Duncan J. Macquarrie. Microwave assisted acid and alkali pretreatment of Miscanthus biomass for biorefineries[J]. AIMS Bioengineering, 2015, 2(4): 449-468. doi: 10.3934/bioeng.2015.4.449
[1] |
Kaar WE, Holtzapple MT (2000) Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass Bioenerg 18: 189-199. doi: 10.1016/S0961-9534(99)00091-4
![]() |
[2] |
Ju Y-H, Huynh L-H, Kasim NS, et al. (2011) Analysis of soluble and insoluble fractions of alkali and subcritical water treated sugarcane bagasse. Carbohyd Polym 83: 591-599. doi: 10.1016/j.carbpol.2010.08.022
![]() |
[3] | Han M, Choi GW, Kim Y, et al. (2011) Bioethanol Production by Miscanthus as a Lignocellulosic Biomass: Focus on High Efficiency Conversion to Glucose and Ethanol. Bioresources 6: 1939-1953. |
[4] |
Lu X, Xi B, Zhang Y, et al. (2011) Microwave pretreatment of rape straw for bioethanol production: Focus on energy efficiency. Bioresource Technol 102: 7937-7940. doi: 10.1016/j.biortech.2011.06.065
![]() |
[5] |
Xu J, Chen HZ, Kadar Z, et al. (2011) Optimization of microwave pretreatment on wheat straw for ethanol production. Biomass Bioenerg 35: 3859-3864. doi: 10.1016/j.biombioe.2011.04.054
![]() |
[6] |
Brosse N, Dufour A, Meng XZ, et al. (2012) Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels Bioprod Biorefining 6: 580-598. doi: 10.1002/bbb.1353
![]() |
[7] |
Chen W-H, Tu Y-J, Sheen H-K (2011) Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Appl Energ 88: 2726-2734. doi: 10.1016/j.apenergy.2011.02.027
![]() |
[8] |
Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technol 83: 1-11. doi: 10.1016/S0960-8524(01)00212-7
![]() |
[9] |
Kovacs K, Macrelli S, Szakacs G, et al. (2009) Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnol Biofuels 2: 14. doi: 10.1186/1754-6834-2-14
![]() |
[10] |
Balat M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energ Combust Sci 34: 551-573. doi: 10.1016/j.pecs.2007.11.001
![]() |
[11] | Alizadeh H, Teymouri F, Gilbert TI, et al. (2005) Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl Biochem Biotech 121: 1133-1141. |
[12] |
Kim KH, Hong J (2001) Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresource Technol 77: 139-144. doi: 10.1016/S0960-8524(00)00147-4
![]() |
[13] |
Nikolic S, Mojovic L, Rakin M, et al. (2011) Utilization of microwave and ultrasound pretreatments in the production of bioethanol from corn. Clean Technol Environ Policy 13: 587-594. doi: 10.1007/s10098-011-0366-0
![]() |
[14] |
Xu N, Zhang W, Ren SF, et al. (2012) Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnol Biofuels 5: 58. doi: 10.1186/1754-6834-5-58
![]() |
[15] |
Canilha L, Santos VTO, Rocha GJM, et al. (2011) A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biot 38: 1467-1475. doi: 10.1007/s10295-010-0931-2
![]() |
[16] |
Rezende CA, de Lima MA, Maziero P, et al. (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 4: 1-18. doi: 10.1186/1754-6834-4-1
![]() |
[17] |
Macquarrie DJ, Clark JH, Fitzpatrick E (2012) The microwave pyrolysis of biomass. Biofuels Bioprod Biorefining 6: 549-560. doi: 10.1002/bbb.1344
![]() |
[18] | Hu Z, Wen Z (2008) Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem Eng J 38: 369-378. |
[19] | Keshwani DR, Cheng JJ (2010) Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production. Biotechnol Progr 26: 644-652. |
[20] |
Zhu S, Wu Y, Yu Z, et al. (2006) Microwave-assisted alkali pre-treatment of wheat straw and its enzymatic hydrolysis. Biosyst Eng 94: 437-442. doi: 10.1016/j.biosystemseng.2006.04.002
![]() |
[21] |
Kappe CO (2004) Controlled Microwave Heating in Modern Organic Synthesis. Angew Chem Int Ed 43: 6250-6284. doi: 10.1002/anie.200400655
![]() |
[22] |
Jones L, Milne JL, Ashford D, et al. (2003) Cell wall arabinan is essential for guard cell function. Proc Natl Acad Sci U S A 100: 11783-11788. doi: 10.1073/pnas.1832434100
![]() |
[23] | Foster CE, Martin TM, Pauly M (2010) Comprehensive Compositional Analysis of Plant Cell Walls (Lignocellulosic biomass) Part II: Carbohydrates. e1837. |
[24] | Foster CE, Martin TM, Pauly M (2010) Comprehensive Compositional Analysis of Plant Cell Walls (Lignocellulosic biomass) Part I: Lignin. e1745. |
[25] |
Gomez LD, Whitehead C, Barakate A, et al. (2010) Automated saccharification assay for determination of digestibility in plant materials. Biotechnol Biofuels 3: 23. doi: 10.1186/1754-6834-3-23
![]() |
[26] |
Wang W, Yuan TQ, Wang K, et al. (2012) Combination of biological pretreatment with liquid hot water pretreatment to enhance enzymatic hydrolysis of Populus tomentosa. Bioresource Technol 107: 282-286. doi: 10.1016/j.biortech.2011.12.116
![]() |
[27] | Youngmi Kim RH, Nathan S. Mosier,Michael R. Ladisch (2009) Liquid Hot Water Pretreatment of Cellulosic Biomass. Biofuel methods and protocols.Mielenz. JR, editor. New York: Humana Press Inc, 93-102. |
[28] |
Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technol 100: 10-18. doi: 10.1016/j.biortech.2008.05.027
![]() |
[29] |
Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Als Roh-Und Werkstoff 57: 191-202. doi: 10.1007/s001070050039
![]() |
[30] |
Szabolcs A, Molnar M, Dibo G, et al. (2013) Microwave-assisted conversion of carbohydrates to levulinic acid: an essential step in biomass conversion. Green Chem 15: 439-445. doi: 10.1039/C2GC36682G
![]() |
[31] | Lee YY, Iyer P, Torget RW (1999) Dilute-Acid Hydrolysis of Lignocellulosic Biomass. In: Tsao GT, Brainard AP, Bungay HR et al., editors. Advances in Biochemical Engineering/Biotechnology.: Springer Berlin Heidelberg. 65: 93-115. |
[32] |
Brosse N, Sannigrahi P, Ragauskas A (2009) Pretreatment of Miscanthus x giganteus Using the Ethanol Organosolv Process for Ethanol Production. Ind Eng Chem Res 48: 8328-8334. doi: 10.1021/ie9006672
![]() |
[33] |
Yu G, Afzal W, Yang F, et al. (2014) Pretreatment of Miscanthus×giganteus using aqueous ammonia with hydrogen peroxide to increase enzymatic hydrolysis to sugars. J Chem Technol Biotechnol 89: 698-706. doi: 10.1002/jctb.4172
![]() |
[34] |
Haverty D, Dussan K, Piterina AV, et al. (2012) Autothermal, single-stage, performic acid pretreatment of Miscanthus x giganteus for the rapid fractionation of its biomass components into a lignin/hemicellulose-rich liquor and a cellulase-digestible pulp. Bioresource Technol 109: 173-177. doi: 10.1016/j.biortech.2012.01.007
![]() |
[35] |
Budarin VL, Clark JH, Lanigan BA, et al. (2010) Microwave assisted decomposition of cellulose: A new thermochemical route for biomass exploitation. Bioresource Technol 101: 3776-3779. doi: 10.1016/j.biortech.2009.12.110
![]() |
[36] |
Mosier N, Wyman C, Dale B, et al. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol 96: 673-686. doi: 10.1016/j.biortech.2004.06.025
![]() |
[37] |
Li JB, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresource Technol 98: 3061-3068. doi: 10.1016/j.biortech.2006.10.018
![]() |
[38] |
Mittal A, Katahira R, Himmel ME, et al. (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4: 41. doi: 10.1186/1754-6834-4-41
![]() |
[39] |
Liu CF, Xu F, Sun JX, et al. (2006) Physicochemical characterization of cellulose from perennial ryegrass leaves (Lolium perenne). Carbohydr Res 341: 2677-2687. doi: 10.1016/j.carres.2006.07.008
![]() |
[40] |
Chen W-H, Ye S-C, Sheen H-K (2012) Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Appl Energ 93: 237-244. doi: 10.1016/j.apenergy.2011.12.014
![]() |
[41] |
Kaparaju P, Felby C (2010) Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover. Bioresource Technol 101: 3175-3181. doi: 10.1016/j.biortech.2009.12.008
![]() |
[42] |
Corredor DY, Salazar JM, Hohn KL, et al. (2009) Evaluation and Characterization of Forage Sorghum as Feedstock for Fermentable Sugar Production. Appl Biochem Biotechnol 158: 164-179. doi: 10.1007/s12010-008-8340-y
![]() |
[43] |
Stewart D, Wilson HM, Hendra PJ, et al. (1995) Fourier-Transform Infrared and Raman-Spectroscopic Study of Biochemical and Chemical Treatments of Oak Wood (Quercus-Rubra) and Barley (Hordeum-Vulgare) Straw. J Agric Food Chem 43: 2219-2225. doi: 10.1021/jf00056a047
![]() |
[44] |
Kumar R, Mago G, Balan V, et al. (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresource Technol 100: 3948-3962. doi: 10.1016/j.biortech.2009.01.075
![]() |
[45] |
Sun JX, Sun XF, Sun RC, et al. (2003) Inhomogeneities in the chemical structure of sugarcane bagasse lignin. J Agric Food Chem 51: 6719-6725. doi: 10.1021/jf034633j
![]() |
[46] |
Guo GL, Hsu DC, Chen WH, et al. (2009) Characterization of enzymatic saccharification for acid-pretreated lignocellulosic materials with different lignin composition. Enzyme Microb Technol 45: 80-87. doi: 10.1016/j.enzmictec.2009.05.012
![]() |
[47] | Mizi Fan DD, Biao Huang (2012) Fourier Transform Infrared Spectroscopy for Natural Fibres In: Salih DS, editor. Fourier Transform - Materials Analysis: InTech, 45-52. |
[48] |
Li CL, Knierim B, Manisseri C, et al. (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technol 101: 4900-4906. doi: 10.1016/j.biortech.2009.10.066
![]() |
[49] |
Boonmanumsin P, Treeboobpha S, Jeamjumnunja K, et al. (2012) Release of monomeric sugars from Miscanthus sinensis by microwave-assisted ammonia and phosphoric acid treatments. Bioresource Technol 103: 425-431. doi: 10.1016/j.biortech.2011.09.136
![]() |
[50] |
Ju YH, Huynh LH, Kasim NS, et al. (2011) Analysis of soluble and insoluble fractions of alkali and subcritical water treated sugarcane bagasse. Carbohyd Polym 83: 591-599. doi: 10.1016/j.carbpol.2010.08.022
![]() |
[51] | Li HJ, Lu JR, Mo JC (2012) Physiochemical lignocellulose modification by the formosan subterranean termite Coptotermes Formosanus Shiraki (Isoptera: Rhinotermitidae) and its potential uses in the production of biofuels. Bioresources 7: 675-685. |
[52] |
Titirici M-M, Antonietti M, Baccile N (2008) Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chemistry 10: 1204-1212. doi: 10.1039/b807009a
![]() |
[53] |
Lima MA, Lavorente GB, da Silva HKP, et al. (2013) Effects of pretreatment on morphology, chemical composition and enzymatic digestibility of eucalyptus bark: a potentially valuable source of fermentable sugars for biofuel production - part 1. Biotechnol Biofuels 6: 75. doi: 10.1186/1754-6834-6-75
![]() |
[54] |
Heiss-Blanquet S, Zheng D, Ferreira NL, et al. (2011) Effect of pretreatment and enzymatic hydrolysis of wheat straw on cell wall composition, hydrophobicity and cellulase adsorption. Bioresource Technol 102: 5938-5946. doi: 10.1016/j.biortech.2011.03.011
![]() |
[55] | Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technol 74: 25-33. |