Citation: Ana Meireles, Ana L. Gonçalves, Inês B. Gomes, Lúcia Chaves Simões, Manuel Simões. Methods to study microbial adhesion on abiotic surfaces[J]. AIMS Bioengineering, 2015, 2(4): 297-309. doi: 10.3934/bioeng.2015.4.297
[1] | Cos P, Tote K, Horemans T, et al. (2010) Biofilms: an extra hurdle for effective antimicrobial therapy. Curr Pharm Design 16: 2279-2295. doi: 10.2174/138161210791792868 |
[2] | Costerton JW, Lewandowski Z, Caldwell DE, et al. (1995) Microbial biofilms. Ann Rev Microbiol 49: 711-745. doi: 10.1146/annurev.mi.49.100195.003431 |
[3] | Simões M (2011) Antimicrobial strategies effective against infectious bacterial biofilms. Curr Med Chem 18: 2129-2145. doi: 10.2174/092986711795656216 |
[4] | Stoodley P, Sauer K, Davies D, et al. (2002) Biofilms as complex differentiated communities. Ann Rev Microbiol 56: 187-209. doi: 10.1146/annurev.micro.56.012302.160705 |
[5] | Percival SL, Malic S, Cruz H, et al. (2011) Introduction to biofilms, Biofilms and Veterinary Medicine: Springer, 41-68. |
[6] | Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8. |
[7] | Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18: 1049-1056. doi: 10.1016/j.pnsc.2008.04.001 |
[8] | Shi X, Zhu X (2009) Biofilm formation and food safety in food industries. Trends Food Sci Technol 20: 407-413. doi: 10.1016/j.tifs.2009.01.054 |
[9] | Morikawa M (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng 101: 1-8. doi: 10.1263/jbb.101.1 |
[10] | Qureshi N, Annous BA, Ezeji TC, et al. (2005) Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Fact 4: 24. doi: 10.1186/1475-2859-4-24 |
[11] | Seghezzo L, Zeeman G, van Lier JB, et al. (1998) A review: the anaerobic treatment of sewage in UASB and EGSB reactors. Bioresour Technol 65: 175-190. doi: 10.1016/S0960-8524(98)00046-7 |
[12] | Bland R, Chen H, Jewell W, et al. (1982) Continuous high rate production of ethanol by Zymomonas mobilis in an attached film expanded bed fermentor. Biotechnol Lett 4: 323-328. doi: 10.1007/BF00132834 |
[13] | Todhanakasem T, Sangsutthiseree A, Areerat K, et al. (2014) Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. New Biotechnol 31: 451-459. doi: 10.1016/j.nbt.2014.06.002 |
[14] | Qureshi N, Maddox I (1987) Continuous solvent production from whey permeate using cells of Clostridium acetobutylicum immobilized by adsorption onto bonechar. Enzyme Microb Technol 9: 668-671. doi: 10.1016/0141-0229(87)90125-6 |
[15] | Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14: 512-518. doi: 10.1016/j.tim.2006.10.003 |
[16] | Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15: 167-193. doi: 10.1128/CMR.15.2.167-193.2002 |
[17] | Characklis WG, Marshall KC (1990) Biofilms, New York: John Wiley & Sons. |
[18] | Simões M, Bennett RN, Rosa EA (2009) Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat Prod Rep 26: 746-757. doi: 10.1039/b821648g |
[19] | Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15: 155-166. doi: 10.1128/CMR.15.2.155-166.2002 |
[20] | Simões LC, Simões M (2013) Biofilms in drinking water: problems and solutions. RSC Adv 3: 2520-2533. doi: 10.1039/C2RA22243D |
[21] | An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43: 338-348. |
[22] | de Schryver P, Crab R, Defoirdt T, et al. (2008) The basics of bio-flocs technology: the added value for aquaculture. Aquaculture 277: 125-137. doi: 10.1016/j.aquaculture.2008.02.019 |
[23] | Kokare C, Chakraborty S, Khopade A, et al. (2009) Biofilm: Importance and applications. Indian J Biotechnol 8: 159-168. |
[24] | Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182: 2675-2679. doi: 10.1128/JB.182.10.2675-2679.2000 |
[25] | Sobeck DC, Higgins MJ (2002) Examination of three theories for mechanisms of cation-induced bioflocculation. Water Res 36: 527-538. doi: 10.1016/S0043-1354(01)00254-8 |
[26] | Hermansson M (1999) The DLVO theory in microbial adhesion. Colloids Surf B: Biointerfaces 14: 105-119. doi: 10.1016/S0927-7765(99)00029-6 |
[27] | Simões LC, Simões M, Vieira MJ (2010) Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria. Antonie van Leeuwenhoek 98: 317-329. doi: 10.1007/s10482-010-9444-2 |
[28] | Bhaskar P, Bhosle NB (2005) Microbial extracellular polymeric substances in marine biogeochemical processes. Curr Sci 88: 45-53. |
[29] | van Oss C (1995) Hydrophobicity of biosurfaces—origin, quantitative determination and interaction energies. Colloids Surf B: Biointerfaces 5: 91-110. doi: 10.1016/0927-7765(95)01217-7 |
[30] | van Oss C, Chaudhury M, Good R (1987) Monopolar surfaces. Adv Colloid Interf Sci 28: 35-64. doi: 10.1016/0001-8686(87)80008-8 |
[31] | van Oss C, Ju L, Chaudhury M et al. (1989) Estimation of the polar parameters of the surface tension of liquids by contact angle measurements on gels. J Colloid Interf Sci 128: 313-319. doi: 10.1016/0021-9797(89)90345-7 |
[32] | van Oss CJ, Good RJ, Chaudhury MK (1988) Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 4: 884-891. doi: 10.1021/la00082a018 |
[33] | Ozkan A, Berberoglu H (2013) Cell to substratum and cell to cell interactions of microalgae. Colloids Surf B: Biointerfaces 112: 302-309. doi: 10.1016/j.colsurfb.2013.08.007 |
[34] | van Oss CJ (2003) Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. J Mol Recognit 16: 177-190. doi: 10.1002/jmr.618 |
[35] | Janczuk B, Chibowski E, Bruque J et al. (1993) On the consistency of surface free energy components as calculated from contact angles of different liquids: an application to the cholesterol surface. J Colloid Interface Sci 159: 421-428. doi: 10.1006/jcis.1993.1342 |
[36] | Busscher HJ, van der Mei HC (2006) Microbial adhesion in flow displacement systems. Clin Microbiol Rev 19: 127-141. doi: 10.1128/CMR.19.1.127-141.2006 |
[37] | Peeters E, Nelis HJ, Coenye T (2008) Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Meth 72: 157-165. doi: 10.1016/j.mimet.2007.11.010 |
[38] | Stepanović S, Vuković D, Hola V, et al. (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Acta Pathol Microbiol Immunol Scand 115: 891-899. doi: 10.1111/j.1600-0463.2007.apm_630.x |
[39] | Pavarina AC, Dovigo LN, Sanitá PV, et al. (2011) Dynamic models for in vitro biofilm formation, In: Bailey WC (ed), Biofilms: Formation, Development and Properties: Nova Science Publishers, Inc. |
[40] | Kumar S, Wittmann C, Heinzle E (2004) Review: minibioreactors. Biotechnol Lett 26: 1-10. doi: 10.1023/B:BILE.0000009469.69116.03 |
[41] | Vesterlund S, Paltta J, Karp M, et al. (2005) Measurement of bacterial adhesion—in vitro evaluation of different methods. J Microbiol Meth 60: 225-233. doi: 10.1016/j.mimet.2004.09.013 |
[42] | Merritt K, An YH (2000) Factors influencing bacterial adhesion, In: An YH, Friedman RJ (eds), Handbook of Bacterial Adhesion: Principles, Methods, and Applications, Totowa, New Jersey: Humana Press, 53-72. |
[43] | Fux CA, Shirtliff M, Stoodley P, et al. (2005) Can laboratory reference strains mirror “real-world” pathogenesis? Trends Microbiol 13: 58-63. doi: 10.1016/j.tim.2004.11.001 |
[44] | Frioni A, Natalizi T, Tendini M, et al. (2010) Biotimer assay for counting bacterial biofilm. Biophys Bioeng Lett 3. |
[45] | An YH, Friedman RJ (1997) Laboratory methods for studies of bacterial adhesion. J Microbiol Methods 30: 141-152. doi: 10.1016/S0167-7012(97)00058-4 |
[46] | Christensen GD, Simpson WA, Anglen JO, et al. (2000) Methods for evaluating attached bacteria and biofilms, In: An YH, Friedman RJ (eds), Handbook of Bacterial Adhesion: Principles, Methods, and Applications, Totowa, New Jersey: Humana Press, 213-233. |
[47] | Martin KL, An YH (2000) Basic equipment and microbiological techniques for studying bacterial adhesion, In: An YH, Friedman RJ (eds), Handbook of Bacterial Adhesion: Principles, Methods, and Applications, Totowa, New Jersey: Humana Press, 103-120. |
[48] | Müller DJ, Dufrêne YF (2011) Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol 21: 461-469. doi: 10.1016/j.tcb.2011.04.008 |
[49] | Pantanella F, Berlutti F, Passeri D, et al. (2011) Quantitative evaluation of bacteria adherent and in biofilm on single-wall carbon nanotube-coated surfaces. Interdiscip Perspect Infect Dis 2011. |
[50] | Merritt K, Gaind A, Anderson JM (1998) Detection of bacterial adherence on biomedical polymers. J Biomed Mater Res 39: 415-422. |
[51] | Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 60: 641-696. |
[52] | Honraet K, Goetghebeur E, Nelis HJ (2005) Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J Microbiol Meth 63: 287-295. doi: 10.1016/j.mimet.2005.03.014 |
[53] | Stepanović S, Vuković D, Dakić I, et al. (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Meth 40: 175-179. doi: 10.1016/S0167-7012(00)00122-6 |
[54] | Pantanella F, Valenti P, Natalizi T, et al. (2013) Analytical techniques to study microbial biofilm on abiotic surfaces: pros and cons of the main techniques currently in use. Ann Ig 25: 31-42. |
[55] | Robrish SA, Kemp CW, Bowen WH (1978) Use of extractable adenosine triphosphate to estimate the viable cell mass in dental plaque samples obtained from monkeys. Appl Environ Microbiol 35: 743-749. |
[56] | Harber MJ, Mackenzie R, Asscher AW (1983) A rapid bioluminescence method for quantifying bacterial adhesion to polystyrene. J Gen Microbiol 129: 621-632. |
[57] | Dostálek P, Brányik T (2003) Prospects for rapid bioluminescent detection methods in the food industry—a review. Czech J Food Sci 23: 85-92. |
[58] | Xi J, Chen JY, Garcia MP, et al. (2013) Quartz crystal microbalance in cell biology studies. J Biochips Tissue Chips S5: 1-9. |
[59] | Pereira A, Mendes J, Melo LF (2009) Monitoring cleaning-in-place of shampoo films using nanovibration technology. Sensor Actuat B: Chem 136: 376-382. doi: 10.1016/j.snb.2008.11.043 |
[60] | Pereira A, Mendes J, Melo LF (2008) Using nanovibrations to monitor biofouling. Biotechnol Bioeng 99: 1407-1415. doi: 10.1002/bit.21696 |
[61] | Englebienne P, Hoonacker AV, Verhas M (2003) Surface plasmon resonance: principles, methods and applications in biomedical sciences. J Spectrosc 17: 255-273. doi: 10.1155/2003/372913 |
[62] | Fletcher M (1988) Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium-substratum separation distance. J Bacteriol 170: 2027-2030. |