Citation: Chun He, James C.L. Chow. Gold nanoparticle DNA damage in radiotherapy: A Monte Carlo study[J]. AIMS Bioengineering, 2016, 3(3): 352-361. doi: 10.3934/bioeng.2016.3.352
[1] |
Baskar R, Lee KA, Yeo R, et al. (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9: 193–199. doi: 10.7150/ijms.3635
![]() |
[2] |
Lomax ME, Folkes LK, O’Neill P (2013) Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol 25: 578–585. doi: 10.1016/j.clon.2013.06.007
![]() |
[3] |
Hosoya N, Miyagawa K (2014) Targeting DNA damage response in cancer therapy. Cancer Sci 105: 370–388. doi: 10.1111/cas.12366
![]() |
[4] |
Bentzen SM (2006) Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer 6: 702–713. doi: 10.1038/nrc1950
![]() |
[5] | Linam J, Yang LX (2015) Recent developments in radiosensitization. Anticancer Res 35: 2479–2485. |
[6] |
Luo Y, Leverson JD (2005) New opportunities in chemosensitization and radiosensitization: modulating the DNA-damage response. Expert Rev Anticancer Ther 5: 333–342. doi: 10.1586/14737140.5.2.333
![]() |
[7] | Chow JCL (2016) Photon and electron interactions with gold nanoparticles: a Monte Carlo study on gold nanoparticle-enhanced radiotherapy, In: Grumezescu AM (Ed.), Nanobiomaterials in medical imaging: application of nanobiomaterials, Elsevier, Amsterdam, 45–70. |
[8] |
Taupin F, Flaender M, Delorme R, et al. (2015) Gadolinium nanoparticles and contrast agent as radiation sensitizers. Phys Med Biol 60: 4449–4464. doi: 10.1088/0031-9155/60/11/4449
![]() |
[9] | Cooper DR, Bekah D, Nadeau JL (2014) Gold nanoparticles and their alternatives for radiation therapy enhancement. Front Chem 2: 86. |
[10] | Chow JCL (2015) Characteristics of secondary electrons from irradiated gold nanoparticle in radiotherapy, In: Aliofkhazraei M (Ed.) Handbook of nanoparticle, Springer, Switzerland, 1–19. |
[11] | Schuemann J, Berbeco R, Chithrani DB, et al. (2015) Roadmap to clinical use of gold nanoparticles for radiation sensitization. Int J Radiat Oncol Biol Phys 64: 189–205. |
[12] |
Shah M, Badwalk VD, Dakshinamurthy R (2014) Biological applications of gold nanoparticles. J Nanosci Nanotechnol 14: 344–362. doi: 10.1166/jnn.2014.8900
![]() |
[13] | Dorsey JF, Sun L, Joh DY, et al. (2013) Gold nanoparticles in radiation research: Potential applications for imaging and radiosensitization. Transl Cancer Res 2: 280–291. |
[14] |
Jeremic B, Aguerri AR, Filipovic N (2013) Radiosensitization by gold nanoparticles. Clin Trasl Oncol 15: 593–601. doi: 10.1007/s12094-013-1003-7
![]() |
[15] | Kawtra D, Venugopal A, Anant S (2013) Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res 2: 330–342. |
[16] |
Thambi T, Park JH (2014) Recent advances in shell-sheddable nanoparticles for cancer therapy. J Biomed Nanotechnol 10: 1841–1862. doi: 10.1166/jbn.2014.1977
![]() |
[17] |
Li J, Li JJ, Zhang J (2016) Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale 8: 7992–8007. doi: 10.1039/C5NR08808A
![]() |
[18] |
Regulla DF, Hieber LB, Seidenbusch M (1998) Physical and biological interface dose effects in tissue due to x-ray-induced release of secondary radiation from metallic gold surfaces. Radiat Res 150: 92–100. doi: 10.2307/3579649
![]() |
[19] |
Herold D, Das I, Stobbe C, et al. (2000) Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int J Radiat Biol 76: 1357–1364. doi: 10.1080/09553000050151637
![]() |
[20] |
Hainfeld JF, Slakin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49: N309–315. doi: 10.1088/0031-9155/49/18/N03
![]() |
[21] |
Hainfeld JF, Dilmanian FA, Zhong Z, et al. (2010) Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol 55: 3045–3059. doi: 10.1088/0031-9155/55/11/004
![]() |
[22] |
Cho SH (2005) Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys Med Bio 50: N163–173. doi: 10.1088/0031-9155/50/15/N01
![]() |
[23] |
Leung M, Chow JCL, Chithrani BD (2011) Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med Phys 38: 624–631. doi: 10.1118/1.3539623
![]() |
[24] |
Chow JCL, Leung M, Fahey S (2012) Monte Carlo simulation on low-energy electrons from gold nanoparticle in radiotherapy. J Phys Conf Ser 341: 012012. doi: 10.1088/1742-6596/341/1/012012
![]() |
[25] |
Chow JCL, Leung M, Jaffray DA (2012) Monte Carlo simulation on gold nanoparticle irradiated by electron beams. Phys Med Biol 57: 3323–3331. doi: 10.1088/0031-9155/57/11/3323
![]() |
[26] |
Chauvie S, Francis Z, Guatelli S (2006) Monte Carlo simulation of interactions of radiation with biological systems at the cellular and DNA levels: The Geant4-DNA project. Rad Res 166: 652–689. doi: 10.1667/RR0683.1
![]() |
[27] |
Incerti S, Baldacchino G, Bernal M, et al. (2010) The Geant4-DNA. Int J Model Simul Sci Comput 1: 157–178. doi: 10.1142/S1793962310000122
![]() |
[28] |
Chauvie S, Francis Z, Guatelli S, et al. (2007) Geant4 physics processes for microdosimetry simulation: design foundation and implementation of the first set of models. IEEE Trans Nucl Sci 54: 2619–2628. doi: 10.1109/TNS.2007.910425
![]() |
[29] |
Agostinelli S, Allison J, Amako K, et al. (2003) Geant4–a simulation toolkit. Nucl Instrum Meth A 506: 250–303. doi: 10.1016/S0168-9002(03)01368-8
![]() |
[30] |
Karamitros M, Incerti S, Champion C (2012) The Geant4-DNA project. Rad Onc 102: S191–192. doi: 10.1016/S0167-8140(12)70325-0
![]() |
[31] |
Zopes D, Stein B, Mathur S, et al. (2013) Improved stability of “naked” gold nanoparticles enabled in situ coating with mono and multivalent thiol PEG ligands. Langmuir 29: 11217–11226. doi: 10.1021/la4012058
![]() |
[32] |
Pettibone JM, Osborn WA, Rykaczewski K, et al. (2013) Surface mediated assembly of small metastable gold nanoclusters. Nanoscale 5: 6558–6566. doi: 10.1039/c3nr01708g
![]() |
[33] |
Labala S, Mandapalli PK, Kurumaddali A, et al. (2015) Layer-by-layer polymer coated gold nanoparticles for topical delivery of imatinib mesylate to treat melanoma. Mol Pharm 12: 878–888. doi: 10.1021/mp5007163
![]() |
[34] |
Deng Y, Saucier-Sawyer JK, Holmes CJ, et al. (2014) The effect of hyperbranched polyglycerol coatings on drug delivery using degradable polymer nanoparticles. Biomaterials 35: 6595–6602. doi: 10.1016/j.biomaterials.2014.04.038
![]() |
[35] | Leung M, Chow JCL, Chithrani D, et al. (2011) Comparison of the physical characteristics of secondary electrons and dose enhancement from x-ray irradiation of gold nanoparticles using Monte Carlo simulation. Med Phys 38: 3645. |
[36] |
Neshatian M, Chung S, Yohan D, et al. (2015) Uptake of gold nanoparticles in breathless (hypoxic) cancer cells. J Biomed Nanotechnol 11: 1162–1172. doi: 10.1166/jbn.2015.2067
![]() |
[37] |
Chithrani D (2010) Intracellular uptake, transport, and processing of gold nanoparticles. Mol Membr Biol 27: 299–311. doi: 10.3109/09687688.2010.507787
![]() |
[38] |
Yao X, Huang C, Chen X, et al. (2015) Chemical radiosensitivity of DNA induced by gold nanoparticles. J Biomed Nanotechnol 11: 478–485. doi: 10.1166/jbn.2015.1922
![]() |
[39] |
Krema H, Herrmann E, Albert-Green A, et al. (2013) Orthovoltage radiotherapy in the management of medical canthal basal cell carcinoma. Br J Ophthalmol 97: 730–734. doi: 10.1136/bjophthalmol-2012-302991
![]() |
[40] |
Esposito E, Anninga B, Harris S, et al. (2015) Intraoperative radiotherapy in early breast cancer. Br J Surg 102: 599–610. doi: 10.1002/bjs.9781
![]() |
[41] |
Butterworth KT, McMahon SJ, Currell FJ, et al. (2012) Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale 4: 4830–4838. doi: 10.1039/c2nr31227a
![]() |
[42] | Sultana NN, Pradhan AK, Montenegro M (2012) A new nanobiotechnological method for cancer treatment using x-ray spectroscopy of nanoparticles, In: Eom K (Ed.) Simulations in Nanobiotechnology, CRC Press, Boca Raton, 306–329. |