Citation: Ruming Li, Brian Fristensky, Guixue Wang. Sequence data analysis and preprocessing for oligo probe design in microbial genomes[J]. AIMS Bioengineering, 2017, 4(1): 28-45. doi: 10.3934/bioeng.2017.1.28
[1] | Kane MD, Jatkoe TA, Stumpf CR, et al. (2000) Assessment of the sensitivity and specificity of oligonucleotide (50 mer) microarrays. Nucleic Acids Res 28: 4552–4557. doi: 10.1093/nar/28.22.4552 |
[2] | Rahmann S (2002) Rapid large-scale oligonucleotide selection for microarrays. In Proc IEEE Comput Soc Bioinform Conf 1: 54–63. |
[3] | Russell R (2003) Designing microarray oligonucleotide probes. Brief Bioinform 4: 361–367. doi: 10.1093/bib/4.4.361 |
[4] | Reymond N, Charle H, Duret L, et al. (2004) ROSO: optimizing oligonucleotide probes for microarrays. Bioinformatics 20: 271–273. doi: 10.1093/bioinformatics/btg401 |
[5] | He Z, Wu L, Fields MW, et al. (2005) Use of microarrays with different probe sizes for monitoring gene expression. Appl Environ Microbiol 71: 5154–5162. doi: 10.1128/AEM.71.9.5154-5162.2005 |
[6] | Li X, He Z, Zhou J (2005) Selection of optimal oligonucleotide probes for microarrays using multiple criteria, global alignment and parameter estimation. Nucleic Acids Res 33: 6114–6123. |
[7] | Li F and Stormo GD (2001) Selection of optimal DNA oligos for gene expression arrays. Bioinformatics 17: 1067–1076. |
[8] | Nielsen HB, Knudsen S (2002) Avoiding cross hybridization by choosing nonredundant targets on cDNA arrays. Bioinformatics 18: 321–322. doi: 10.1093/bioinformatics/18.2.321 |
[9] | Krause A, Krautner M, Meier H (2003) Accurate method for fast design of diagnostic oligonucleotide probe sets for DNA microarrays. IPDPS: 1–9. |
[10] | Letowski J, Brousseau R, Masson L (2004) Designing better probes: effect of probe size, mismatch position and number on hybridization in DNA oligonucleotide microarrays. J Microbiol Meth 57: 269–278. |
[11] | Nordberg EK (2005) YODA: selecting signature oligonucleotides. Bioinformatics 21: 1365-1370. |
[12] | Jourdren L, Duclos A, Brion C, et al. (2010) Teolenn: an efficient and customizable workflow to design high-quality probes for microarray experiments. Nucleic Acids Res 38: e117. doi: 10.1093/nar/gkq110 |
[13] | Rouillard JM, Herbert CJ, Zuker M (2002) OligoArray: genome-scale oligonucleotide design for microarrays. Bioinformatics 18: 486–487. doi: 10.1093/bioinformatics/18.3.486 |
[14] | Sung W, Lee W (2003) Fast and accurate probe selection algorithm for large genomes. In Proc IEEE Comput Soc Bioinform Conf 2: 65–74. |
[15] | Hyyrö H, Juhola M, Vihinen M (2005) Genome-wide selection of unique and valid oligonucleotides. Nucl Acids Res 33: e115. |
[16] | Markowitz VM, Chen IA, Palaniappan K, et al. (2010) The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res 38: D382–D390. |
[17] | Oh S, Yoder-Himes DR, Tiedje J, et al. (2010) Evaluating the performance of oligonucleotide microarrays for bacterial strains with increasing genetic divergence from the reference strain. Appl Environ Microbiol 76: 2980–2988. doi: 10.1128/AEM.02826-09 |
[18] | Hug LA, Salehi M, Nuin P, et al. (2011) Design and verification of a pangenome microarray oligonucleotide probe set for dehalococcoides spp. Appl Environ Microbiol 77: 5361–5369. |
[19] | Markowitz VM, Mavromatis K, Ivanova NN, et al. (2009) IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25: 2271–2278. doi: 10.1093/bioinformatics/btp393 |
[20] | Davidsen T, Beck E, Ganapathy A, et al. (2010) The comprehensive microbial resource. Nucl Acids Res 38: D340–D345. |
[21] | Rimour S, Hill D, Militon C, et al. (2005) GoArrays: highly dynamic and efficient microarray probe design. Bioinformatics 21: 1094–1103. |
[22] | Rouillard JM, Gulari E (2009) OligoArrayDb: pangenomic oligonucleotide microarray probe sets database. Nucleic Acids Res 37: D938–D941. doi: 10.1093/nar/gkn761 |
[23] | Hyatt D, Chen GL, LoCascio PF, et al. (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119. doi: 10.1186/1471-2105-11-119 |
[24] | Wu C, Carta R, Zhang L (2005) Sequence dependence of cross-hybridization on short oligo microarrays. Nucleic Acids Res 33: e84. doi: 10.1093/nar/gni082 |
[25] | Hu G, Llinás M, Li J, et al. (2007) Selection of long oligonucleotides for gene expression microarrays using weighted rank-sum strategy. BMC Bioinformatics 8: 350. doi: 10.1186/1471-2105-8-350 |
[26] | Flikka K, Yadetie F, Laegreid A (2004) XHM: A system for detection of potential cross hybridizations in DNA microarrays. BMC Bioinformatics 5: 117. doi: 10.1186/1471-2105-5-117 |
[27] | SantaLucia J J (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci USA 95: 1460–1465. |
[28] | Binder H, Preibisch S, Kirsten T (2005) Base pair interactions and hybridization isotherms of matched and mismatched oligonucleotide probes on microarrays. Langmuir 21: 9287–9302. |
[29] | Binder H, Kirsten T, Loeffler Met, et al. (2004) Sensitivity of microarray oligonucleotide probes: variability and effect of base composition. J Phys Chem B 108: 18003–18014. |
[30] | Liebich J, Schadt CW, Chong SC, et al. (2006) Improvement of oligonucleotide probe design criteria for functional gene microarrays in environmental applications. Appl Environ Microbiol 72: 1688–1691. |