
Using the binary operation "↰" on a GE-algebra X given by ↰(x,y)=(y∗x)∗x and the GE-endomorphism Ω:X→X, the notion of Ω(l,r)-endomorphic (resp., Ω(r,l)-endomorphic) GE-derivation is introduced, and several properties are investigated. Also, examples that illustrate these are provided. Conditions under which Ω(l,r)-endomorphic GE-derivations or Ω(l,r)-endomorphic GE-derivations to satisfy certain equalities and inequalities are studied. We explored the conditions under which f becomes order preserving when f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation on X. The f-kernel and Ω-kernel of f formed by the Ω(r,l)-endomorphic GE-derivation or Ω(l,r)-endomorphic GE-derivation turns out to be GE-subalgebras. It is observed that the Ω-kernel of f is a GE-filter of X. The condition under which the f-kernel of f formed by the Ω(r,l)-endomorphic GE-derivation or Ω(l,r)-endomorphic GE-derivation becomes a GE-filter is explored.
Citation: Young Bae Jun, Ravikumar Bandaru, Amal S. Alali. Endomorphic GE-derivations[J]. AIMS Mathematics, 2025, 10(1): 1792-1813. doi: 10.3934/math.2025082
[1] | Debao Yan . Existence results of fractional differential equations with nonlocal double-integral boundary conditions. Mathematical Biosciences and Engineering, 2023, 20(3): 4437-4454. doi: 10.3934/mbe.2023206 |
[2] | Abdon Atangana, Jyoti Mishra . Analysis of nonlinear ordinary differential equations with the generalized Mittag-Leffler kernel. Mathematical Biosciences and Engineering, 2023, 20(11): 19763-19780. doi: 10.3934/mbe.2023875 |
[3] | Allaberen Ashyralyev, Evren Hincal, Bilgen Kaymakamzade . Crank-Nicholson difference scheme for the system of nonlinear parabolic equations observing epidemic models with general nonlinear incidence rate. Mathematical Biosciences and Engineering, 2021, 18(6): 8883-8904. doi: 10.3934/mbe.2021438 |
[4] | Sebastian Builes, Jhoana P. Romero-Leiton, Leon A. Valencia . Deterministic, stochastic and fractional mathematical approaches applied to AMR. Mathematical Biosciences and Engineering, 2025, 22(2): 389-414. doi: 10.3934/mbe.2025015 |
[5] | Hardik Joshi, Brajesh Kumar Jha, Mehmet Yavuz . Modelling and analysis of fractional-order vaccination model for control of COVID-19 outbreak using real data. Mathematical Biosciences and Engineering, 2023, 20(1): 213-240. doi: 10.3934/mbe.2023010 |
[6] | Barbara Łupińska, Ewa Schmeidel . Analysis of some Katugampola fractional differential equations with fractional boundary conditions. Mathematical Biosciences and Engineering, 2021, 18(6): 7269-7279. doi: 10.3934/mbe.2021359 |
[7] | Jian Huang, Zhongdi Cen, Aimin Xu . An efficient numerical method for a time-fractional telegraph equation. Mathematical Biosciences and Engineering, 2022, 19(5): 4672-4689. doi: 10.3934/mbe.2022217 |
[8] | Yingying Xu, Chunhe Song, Chu Wang . Few-shot bearing fault detection based on multi-dimensional convolution and attention mechanism. Mathematical Biosciences and Engineering, 2024, 21(4): 4886-4907. doi: 10.3934/mbe.2024216 |
[9] | H. M. Srivastava, Khaled M. Saad, J. F. Gómez-Aguilar, Abdulrhman A. Almadiy . Some new mathematical models of the fractional-order system of human immune against IAV infection. Mathematical Biosciences and Engineering, 2020, 17(5): 4942-4969. doi: 10.3934/mbe.2020268 |
[10] | Guodong Li, Ying Zhang, Yajuan Guan, Wenjie Li . Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse. Mathematical Biosciences and Engineering, 2023, 20(4): 7020-7041. doi: 10.3934/mbe.2023303 |
Using the binary operation "↰" on a GE-algebra X given by ↰(x,y)=(y∗x)∗x and the GE-endomorphism Ω:X→X, the notion of Ω(l,r)-endomorphic (resp., Ω(r,l)-endomorphic) GE-derivation is introduced, and several properties are investigated. Also, examples that illustrate these are provided. Conditions under which Ω(l,r)-endomorphic GE-derivations or Ω(l,r)-endomorphic GE-derivations to satisfy certain equalities and inequalities are studied. We explored the conditions under which f becomes order preserving when f is an Ω(l,r)-endomorphic GE-derivation or an Ω(r,l)-endomorphic GE-derivation on X. The f-kernel and Ω-kernel of f formed by the Ω(r,l)-endomorphic GE-derivation or Ω(l,r)-endomorphic GE-derivation turns out to be GE-subalgebras. It is observed that the Ω-kernel of f is a GE-filter of X. The condition under which the f-kernel of f formed by the Ω(r,l)-endomorphic GE-derivation or Ω(l,r)-endomorphic GE-derivation becomes a GE-filter is explored.
Fractional calculus is a main branch of mathematics that can be considered as the generalisation of integration and differentiation to arbitrary orders. This hypothesis begins with the assumptions of L. Euler (1730) and G. W. Leibniz (1695). Fractional differential equations (FDEs) have lately gained attention and publicity due to their realistic and accurate computations [1,2,3,4,5,6,7]. There are various types of fractional derivatives, including Riemann–Liouville, Caputo, Grü nwald–Letnikov, Weyl, Marchaud, and Atangana. This topic's history can be found in [8,9,10,11]. Undoubtedly, fractional calculus applies to mathematical models of different phenomena, sometimes more effectively than ordinary calculus [12,13]. As a result, it can illustrate a wide range of dynamical and engineering models with greater precision. Applications have been developed and investigated in a variety of scientific and engineering fields over the last few decades, including bioengineering [14], mechanics [15], optics [16], physics [17], mathematical biology, electrical power systems [18,19,20] and signal processing [21,22,23].
One of the definitions of fractional derivatives is Caputo-Fabrizo, which adds a new dimension in the study of FDEs. The new derivative's feature is that it has a nonsingular kernel, which is made from a combination of an ordinary derivative with an exponential function, but it has the same supplementary motivating properties with various scales as in the Riemann-Liouville fractional derivatives and Caputo. The Caputo-Fabrizio fractional derivative has been used to solve real-world problems in numerous areas of mathematical modelling for example, numerical solutions for groundwater pollution, the movement of waves on the surface of shallow water modelling [24], RLC circuit modelling [25], and heat transfer modelling [26,27] were discussed.
Rach (1987), Bellomo and Sarafyan (1987) first compared the Adomian Decomposition method (ADM) [28,29,30,31,32] to the Picard method on a variety of examples. These methods have many benefits: they effectively work with various types of linear and nonlinear equations and also provide an analytic solution for all of these equations with no linearization or discretization. These methods are more realistic compared with other numerical methods as each technique is used to solve a specific type of equations, on the other hand ADM and Picard are useful for many types of equations. In the numerical examples provided, we compare ADM and Picard solutions of multidimentional fractional order equations with Caputo-Fabrizio.
The fractional derivative of Caputo-Fabrizio for the function x(t) is defined as [33]
CFDα0x(t)=B(α)1−α∫t0dds(x(s)) e−α1−α(t−s)ds, | (1.1) |
and its corresponding fractional integral is
CFIαx(t)=1−αB(α)x(t)+αB(α)∫t0x (s)ds, 0<α<1, | (1.2) |
where x(t) be continuous and differentiable on [0, T]. Also, in the above definition, the function B(α)>0 is a normalized function which satisfy the condition B(0)=B(1)=0. The relation between the Caputo–Fabrizio fractional derivate and its corresponding integral is given by
(CFIα0)(CFDα0f(t))=f(t)−f(a). | (1.3) |
In this section, we will introduce a multidimentional FDE subject to the initial condition. Let α∈(0,1], 0<α1<α2<...,αm<1, and m is integer real number,
CFDx=f(t,x,CFDα1x,CFDα2x,...,CFDαmx,) ,x(0)=c0, | (2.1) |
where x=x(t),t∈J=[0,T],T∈R+,x∈C(J).
To facilitate the equation and make it easy for the calculation, we let x(t)=c0+X(t) so Eq (2.1) can be witten as
CFDαX=f(t,c0+X,CFDα1X,CFDα2X,...,CFDαmX), X(0)=0. | (2.2) |
the algorithm depends on converting the initial condition from a constant c0 to 0.
Let CFDαX=y(t) then X=CFIαy, so we have
CFDαiX= CFIα−αi CFDαX= CFIα−αiy, i=1,2,...,m. | (2.3) |
Substituting in Eq (2.2) we obtain
y=f(t,c0+ CFIαy, CFIα−α1y,..., CFIα−αmy). | (2.4) |
Assume f satisfies Lipschtiz condition with Lipschtiz constant L given by,
|f(t,y0,y1,...,ym)|−|f(t,z0,z1,...,zm)|≤Lm∑i=0|yi−zi|, | (2.5) |
which implies
|f(t,c0+CFIαy,CFIα−α1y,..,CFIα−αmy)−f(t,c0+CFIαz,CFIα−α1z,..,CFIα−αmz)|≤Lm∑i=0| CFIα−αiy− CFIα−αiz|. | (2.6) |
The solution algorithm of Eq (2.4) using ADM is,
y0(t)=a(t)yn+1(t)=An(t), j⩾0. | (2.7) |
where a(t) pocesses all free terms in Eq (2.4) and An are the Adomian polynomials of the nonlinear term which takes the form [34]
An=f(Sn)−n−1∑i=0Ai, | (2.8) |
where f(Sn)=∑ni=0Ai. Later, this accelerated formula of Adomian polynomial will be used in convergence analysis and error estimation. The solution of Eq (2.4) can be written in the form,
y(t)=∞∑i=0yi(t). | (2.9) |
lastly, the solution of the Eq (2.4) takes the form
x(t)=c0+X(t)=c0+ CFIαy(t). | (2.10) |
At which we convert the parameter to the initial form y to x in Eq (2.10), so we have the solution of the original Eq (2.1).
Define a mapping F:E→E where E=(C[J],‖ is a Banach space of all continuous functions on J with the norm \left\Vert x\right\Vert = \underset{t\epsilon J}{\text{ }\max\limits } \; x\left(t\right) .
Theorem 3.1. Equation (2.4) has a unique solution whenever 0 < \phi < 1 where \phi = L\left(\sum_{i = 0}^{m}\frac{\left[ \left(\alpha-\alpha _{i}\right) \left(T-1\right) \right] +1}{B\left(\alpha -\alpha_{i}\right) }\right) .
Proof. First, we define the mapping F:E\rightarrow E as
\begin{equation*} Fy = f(t,c_{0}+\text{ }^{CF}I^{\alpha }y,\text{ }^{CF}I^{\alpha -\alpha _{1}}y,...,\text{ }^{CF}I^{\alpha -\alpha _{m}}y). \end{equation*} |
Let y and z\in E are two different solutions of Eq (2.4). Then
\begin{equation*} Fy-Fz = f(t,c_{0}+^{CF}I^{\alpha }y,^{CF}I^{\alpha -\alpha _{1}}y,..,^{CF}I^{\alpha -\alpha _{m}}y)-f(t,c_{0}+^{CF}I^{\alpha }z,^{CF}I^{\alpha -\alpha _{1}}z,...,^{CF}I^{\alpha -\alpha _{m}}z) \end{equation*} |
which implies that
\begin{eqnarray*} \left\vert Fy-Fz\right\vert & = &\left\vert f(t,c_{0}+\text{ }^{CF}I^{\alpha }y,\text{ }^{CF}I^{\alpha -\alpha _{1}}y,...,\text{ }^{CF}I^{\alpha -\alpha _{m}}y)\right. \\ &&-\left. f(t,c_{0}+\text{ }^{CF}I^{\alpha }z,\text{ }^{CF}I^{\alpha -\alpha _{1}}z,...,\text{ }^{CF}I^{\alpha -\alpha _{m}}z)\right\vert \\ &\leq &L\sum\limits_{i = 0}^{m}\left\vert \text{ }^{CF}I^{\alpha -\alpha _{i}}y-\text{ }^{CF}I^{\alpha -\alpha _{i}}z\right\vert \\ &\leq &L\sum\limits_{i = 0}^{m}\left\vert \frac{1-\left( \alpha -\alpha _{i}\right) }{ B\left( \alpha -\alpha _{i}\right) }\left( y-z\right) +\frac{\alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }\int_{0}^{t}\left( y-z\right) ds\right\vert \\ \left\Vert Fy-Fz\right\Vert &\leq &L\sum\limits_{i = 0}^{m}\frac{1-\left( \alpha -\alpha _{i}\right) }{B\left( \alpha -\alpha _{i}\right) }\underset{ t\epsilon J}{\max }\left\vert y-z\right\vert +\frac{\alpha -\alpha _{i}}{ B\left( \alpha -\alpha _{i}\right) }\underset{t\epsilon J}{\max }\left\vert y-z\right\vert \int_{0}^{t}ds \\ &\leq &L\sum\limits_{i = 0}^{m}\frac{1-\left( \alpha -\alpha _{i}\right) }{B\left( \alpha -\alpha _{i}\right) }\left\Vert y-z\right\Vert +\frac{\alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }\left\Vert y-z\right\Vert T \\ &\leq &L\left\Vert y-z\right\Vert \left( \sum\limits_{i = 0}^{m}\frac{1-\left( \alpha -\alpha _{i}\right) }{B\left( \alpha -\alpha _{i}\right) }+\frac{\alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }T\right) \\ &\leq &L\left\Vert y-z\right\Vert \left( \sum\limits_{i = 0}^{m}\frac{\left[ \left( \alpha -\alpha _{i}\right) \left( T-1\right) \right] +1}{B\left( \alpha -\alpha _{i}\right) }\right) \\ &\leq &\phi \left\Vert y-z\right\Vert . \end{eqnarray*} |
under the condition 0 < \phi < 1, the mapping F is contraction and hence there exists a unique solution y\in C\left[ J\right] for the problem Eq (2.4) and this completes the proof.
Theorem 3.2. The series solution of the problem Eq (2.4)converges if \left\vert y_{1}\left(t\right) \right\vert < c and c isfinite.
Proof. Define a sequence \left\{ S_{p}\right\} such that S_{p} = \sum_{i = 0}^{p}y_{i}\left(t\right) is the sequence of partial sums from the series solution \sum_{i = 0}^{\infty }y_{i}\left(t\right), we have
\begin{equation*} f(t,c_{0}+\text{ }^{CF}I^{\alpha }y,\text{ }^{CF}I^{\alpha -\alpha _{1}}y,...,\text{ }^{CF}I^{\alpha -\alpha _{m}}y) = \sum\limits_{i = 0}^{\infty }A_{i}, \end{equation*} |
So
\begin{equation*} f(t,c_{0}+\text{ }^{CF}I^{\alpha }S_{p},\text{ }^{CF}I^{\alpha -\alpha _{1}}S_{p},...,\text{ }^{CF}I^{\alpha -\alpha _{m}}S_{p}) = \sum\limits_{i = 0}^{p}A_{i}, \end{equation*} |
From Eq (2.7) we have
\begin{equation*} \sum\limits_{i = 0}^{\infty }y_{i}\left( t\right) = a\left( t\right) +\sum\limits_{i = 0}^{\infty }A_{i-1} \end{equation*} |
let S_{p}, S_{q} be two arbitrary sums with p\geqslant q . Now, we are going to prove that \left\{ S_{p}\right\} is a Caushy sequence in this Banach space. We have
\begin{eqnarray*} S_{p} & = &\sum\limits_{i = 0}^{p}y_{i}\left( t\right) = a\left( t\right) +\sum\limits_{i = 0}^{p}A_{i-1,} \\ S_{q} & = &\sum\limits_{i = 0}^{q}y_{i}\left( t\right) = a\left( t\right) +\sum\limits_{i = 0}^{q}A_{i-1.} \end{eqnarray*} |
\begin{eqnarray*} S_{p}-S_{q} & = &\sum\limits_{i = 0}^{p}A_{i-1}-\sum\limits_{i = 0}^{q}A_{i-1} = \sum\limits_{i = q+1}^{p}A_{i-1} = \sum\limits_{i = q}^{p-1}A_{i-1} \\ & = &f(t,c_{0}+\text{ }^{CF}I^{\alpha }S_{p-1},\text{ }^{CF}I^{\alpha -\alpha _{1}}S_{p-1},...,\text{ }^{CF}I^{\alpha -\alpha _{m}}S_{p-1})- \\ &&f(t,c_{0}+\text{ }^{CF}I^{\alpha }S_{q-1},\text{ }^{CF}I^{\alpha -\alpha _{1}}S_{q-1},...,\text{ }^{CF}I^{\alpha -\alpha _{m}}S_{q-1}) \end{eqnarray*} |
\begin{eqnarray*} \left\vert S_{p}-S_{q}\right\vert & = &\left\vert f(t,c_{0}+\text{ } ^{CF}I^{\alpha }S_{p-1},\text{ }^{CF}I^{\alpha -\alpha _{1}}S_{p-1},..., \text{ }^{CF}I^{\alpha -\alpha _{m}}S_{p-1})-\right. \\ &&\left. f(t,c_{0}+\text{ }^{CF}I^{\alpha }S_{q-1},\text{ }^{CF}I^{\alpha -\alpha _{1}}S_{q-1},...,\text{ }^{CF}I^{\alpha -\alpha _{m}}S_{q-1})\right\vert \\ &\leq &L\sum\limits_{i = 0}^{m}\left\vert \text{ }^{CF}I^{\alpha -\alpha _{i}}S_{p-1}- \text{ }^{CF}I^{\alpha -\alpha _{i}}S_{q-1}\right\vert \\ &\leq &L\sum\limits_{i = 0}^{m}\left\vert \frac{1-\left( \alpha -\alpha _{i}\right) }{ B\left( \alpha -\alpha _{i}\right) }\left( S_{p-1}-S_{q-1}\right) +\frac{ \alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }\int_{0}^{t}\left( S_{p-1}-S_{q-1}\right) ds\right\vert \\ &\leq &L\sum\limits_{i = 0}^{m}\frac{1-\left( \alpha -\alpha _{i}\right) }{B\left( \alpha -\alpha _{i}\right) }\left\vert S_{p-1}-S_{q-1}\right\vert +\frac{ \alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }\int_{0}^{t}\left \vert S_{p-1}-S_{q-1}\right\vert ds \end{eqnarray*} |
\begin{eqnarray*} \left\Vert S_{p}-S_{q}\right\Vert &\leq &L\sum\limits_{i = 0}^{m}\frac{1-\left( \alpha -\alpha _{i}\right) }{B\left( \alpha -\alpha _{i}\right) }\underset{ t\epsilon J}{\max }\left\vert S_{p-1}-S_{q-1}\right\vert +\frac{\alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }\underset{t\epsilon J}{ \max }\left\vert S_{p-1}-S_{q-1}\right\vert \int_{0}^{t}ds \\ &\leq &L\left\Vert S_{p}-S_{q}\right\Vert \sum\limits_{i = 0}^{m}\left( \frac{ 1-\left( \alpha -\alpha _{i}\right) }{B\left( \alpha -\alpha _{i}\right) }+ \frac{\alpha -\alpha _{i}}{B\left( \alpha -\alpha _{i}\right) }T\right) \\ &\leq &L\left\Vert S_{p}-S_{q}\right\Vert \left( \sum\limits_{i = 0}^{m}\frac{\left[ \left( \alpha -\alpha _{i}\right) \left( T-1\right) \right] +1}{B\left( \alpha -\alpha _{i}\right) }\right) \\ &\leq &\phi \left\Vert S_{p}-S_{q}\right\Vert \end{eqnarray*} |
let p = q+1 then,
\begin{equation*} \left\Vert S_{q+1}-S_{q}\right\Vert \leq \phi \left\Vert S_{q}-S_{q-1}\right\Vert \leq \phi ^{2}\left\Vert S_{q-1}-S_{q-2}\right\Vert \leq ...\leq \phi ^{q}\left\Vert S_{1}-S_{0}\right\Vert \end{equation*} |
From the triangle inequality we have
\begin{eqnarray*} \left\Vert S_{p}-S_{q}\right\Vert &\leq &\left\Vert S_{q+1}-S_{q}\right\Vert +\left\Vert S_{q+2}-S_{q+1}\right\Vert +...\left\Vert S_{p}-S_{p-1}\right\Vert \\ &\leq &\left[ \phi ^{q}+\phi ^{q+1}+...+\phi ^{p-1}\right] \left\Vert S_{1}-S_{0}\right\Vert \\ &\leq &\phi ^{q}\left[ 1+\phi +...+\phi ^{p-q+1}\right] \left\Vert S_{1}-S_{0}\right\Vert \\ &\leq &\phi ^{q}\left[ \frac{1-\phi ^{p-q}}{1-\phi }\right] \left\Vert y_{1}\left( t\right) \right\Vert \end{eqnarray*} |
Since 0 < \phi < 1, p\geqslant q then \left(1-\phi ^{p-q}\right) \leq 1 . Consequently
\begin{equation} \left\Vert S_{p}-S_{q}\right\Vert \leq \frac{\phi ^{q}}{1-\phi }\left\Vert y_{1}\left( t\right) \right\Vert \leq \frac{\phi ^{q}}{1-\phi }\underset{ \forall t\epsilon J}{\max }\left\vert y_{1}\left( t\right) \right\vert \end{equation} | (3.1) |
but \left\vert y_{1}\left(t\right) \right\vert < \infty and as q\rightarrow \infty then, \left\Vert S_{p}-S_{q}\right\Vert \rightarrow 0 and hence, \left\{ S_{p}\right\} is a Caushy sequence in this Banach space then the proof is complete.
Theorem 3.3. The maximum absolute truncated error Eq (2.4)is estimated to be \underset{t\epsilon J}{\max }\left\vert y\left(t\right)-\sum_{i = 0}^{q}y_{i}\left(t\right) \right\vert \leq \frac{\phi ^{q}}{1-\phi }\underset{t\epsilon J}{\max }\left\vert y_{1}\left(t\right) \right\vert
Proof. From the convergence theorm inequality (Eq 3.1) we have
\begin{equation*} \left\Vert S_{p}-S_{q}\right\Vert \leq \frac{\phi ^{q}}{1-\phi }\underset{ t\epsilon J}{\max }\left\vert y_{1}\left( t\right) \right\vert \end{equation*} |
but, S_{p} = \sum_{i = 0}^{p}y_{i}\left(t\right) as p\rightarrow \infty then, S_{p}\rightarrow y\left(t\right) so,
\begin{equation*} \left\Vert y\left( t\right) -S_{q}\right\Vert \leq \frac{\phi ^{q}}{1-\phi } \underset{t\epsilon J}{\max }\left\vert y_{1}\left( t\right) \right\vert \end{equation*} |
so, the maximum absolute truncated error in the interval J is,
\begin{equation} \underset{t\epsilon J}{\max }\left\vert y\left( t\right) -\sum\limits_{i = 0}^{q}y_{i}\left( t\right) \right\vert \leq \frac{\phi ^{q}}{1-\phi }\underset{t\epsilon J}{\max }\left\vert y_{1}\left( t\right) \right\vert \end{equation} | (3.2) |
and this completes the proof.
In this part, we introduce several numerical examples with unkown exact solution and we will use inequality (Eq 3.2) to estimate the maximum absolute truncated error.
Example 4.1. Application of linear FDE
\begin{equation} ^{CF}Dx\left( t\right) +2a^{CF}D^{1/2}x\left( t\right) +bx\left( t\right) = 0, { \ \ \ \ \ \ \ }x\left( 0\right) = 1. \end{equation} | (4.1) |
A Basset problem in fluid dynamics is a classical problem which is used to study the unsteady movement of an accelerating particle in a viscous fluid under the action of the gravity [36]
Set
\begin{equation*} X\left( t\right) = x\left( t\right) -1 \end{equation*} |
Equation (4.1) will be
\begin{equation} ^{CF}DX\left( t\right) +2a^{CF}D^{1/2}X\left( t\right) +bX\left( t\right) = 0, { \ \ \ \ \ \ \ }X\left( 0\right) = 0. \end{equation} | (4.2) |
Appling Eq (2.3) to Eq (4.2), and using initial condition, also we take a = 1, b = 1/2,
\begin{equation} y = -\frac{1}{2}-2I^{1/2}y-\frac{1}{2}I\text{ }y \end{equation} | (4.3) |
Appling ADM to Eq (4.3), we find the solution algorithm become
\begin{eqnarray} y_{0}\left( t\right) & = &-\frac{1}{2}, \\ y_{i}\left( t\right) & = &-2\text{ }^{CF}I^{1/2}y_{i-1}-\frac{1}{2}\text{ } ^{CF}I\text{ }y_{i-1},\ \ \ \ \ i\geq 1. \end{eqnarray} | (4.4) |
Appling Picard solution to Eq (4.2), we find the solution algorithm become
\begin{eqnarray} y_{0}\left( t\right) & = &-\frac{1}{2}, \\ y_{i}\left( t\right) & = &-\frac{1}{2}-2\text{ }^{CF}I^{1/2}y_{i-1}-\frac{1}{2} \text{ }^{CF}I\text{ }y_{i-1},\ \ \ \ \ i\geq 1. \end{eqnarray} | (4.5) |
From Eq (4.4), the solution using ADM is given by y\left(t\right) = \underset{q\rightarrow \infty }{Lim}{_{i = 0}^{q} y_{i}} \left(t\right) while from Eq (4.5), the solution using Picard technique is given by y\left(t\right) = \; \underset{i\rightarrow \infty }{ Lim} \; y_{i}\left(t\right) . Lately, the solution of the original problem Eq (4.2), is
\begin{equation*} x\left( t\right) = 1+\text{ }^{CF}I\text{ }y\left( t\right) . \end{equation*} |
One the same processor (q = 20), the time consumed using ADM is 0.037 seconds, while the time consumed using Picard is 7.955 seconds.
Figure 1 gives a comparison between ADM and Picard solution of Ex. 4.1.
Example 4.2. Consider the following nonlinear FDE [35]
\begin{eqnarray} ^{CF}D^{1/2}x & = &\frac{8t^{3/2}}{3\sqrt{\pi }}-\frac{t^{7/4}}{4\Gamma \left( \frac{11}{4}\right) }-\frac{t^{4}}{4}+\frac{1}{8}\text{ }^{CF}D^{1/4}x+\frac{ 1}{4}x^{2},\text{ } \\ x\left( 0\right) & = &0. \end{eqnarray} | (4.6) |
Appling Eq (2.3) to Eq (4.6), and using initial condition,
\begin{equation} y = \frac{8t^{3/2}}{3\sqrt{\pi }}-\frac{t^{7/4}}{4\Gamma \left( \frac{11}{4} \right) }-\frac{t^{4}}{4}+\frac{1}{8}\text{ }^{CF}I^{1/4}y+\frac{1}{4}\left( ^{CF}I^{1/2}y\right) ^{2}. \end{equation} | (4.7) |
Appling ADM to Eq (4.7), we find the solution algorithm will be become
\begin{eqnarray} y_{0}\left( t\right) & = &\frac{8t^{3/2}}{3\sqrt{\pi }}-\frac{t^{7/4}}{4\Gamma \left( \frac{11}{4}\right) }-\frac{t^{4}}{4}, \\ y_{i}\left( t\right) & = &\frac{1}{8}\text{ }^{CF}I^{1/4}y_{i-1}+\frac{1}{4} \left( A_{i-1}\right) ,\ \ \ \ \ i\geq 1. \end{eqnarray} | (4.8) |
at which A _{\text{i}} are Adomian polynomial of the nonliner term \left(^{CF}I^{1/2}y\right) ^{2}.
Appling Picard solution to Eq (4.7), we find the the solution algorithm become
\begin{eqnarray} y_{0}\left( t\right) & = &\frac{8t^{3/2}}{3\sqrt{\pi }}-\frac{t^{7/4}}{4\Gamma \left( \frac{11}{4}\right) }-\frac{t^{4}}{4}, \\ y_{i}\left( t\right) & = &y_{0}\left( t\right) +\frac{1}{8}\text{ } ^{CF}I^{1/4}y_{i-1}+\frac{1}{4}\left( ^{CF}I^{1/2}y_{i-1}\right) ^{2},\ \ \ \ \ i\geq 1. \end{eqnarray} | (4.9) |
From Eq (4.8), the solution using ADM is given by y\left(t\right) = \underset{q\rightarrow \infty }{Lim}{_{i = 0}^{q}y_{i}} \left(t\right) while from Eq (4.9), the solution using Picard technique is given by y\left(t\right) = \underset{i\rightarrow \infty }{Lim} y_{i}\left(t\right) . Finally, the solution of the original problem Eq (4.7), is.
\begin{equation*} x\left( t\right) = \text{ }^{CF}I^{1/2}y. \end{equation*} |
One the same processor (q = 2), the time consumed using ADM is 65.13 seconds, while the time consumed using Picard is 544.787 seconds.
Table 1 showed the maximum absolute truncated error of of ADM solution (using Theorem 3.3) at different values of m (when t = 0:5; N = 2):
q | max. absolute error |
2 | 0.114548 |
5 | 0.099186 |
10 | 0.004363 |
Figure 2 gives a comparison between ADM and Picard solution of Ex. 4.2.
Example 4.3. Consider the following nonlinear FDE [35]
\begin{eqnarray} ^{CF}D^{\alpha }x & = &3t^{2}-\frac{128}{125\pi }t^{5}+\frac{1}{10}\left( ^{CF}D^{1/2}x\right) ^{2}, \\ x\left( 0\right) & = &0. \end{eqnarray} | (4.10) |
Appling Eq (2.3) to Eq (4.10), and using initial condition,
\begin{equation} y = 3t^{2}-\frac{128}{125\pi }t^{5}+\frac{1}{10}\left( ^{CF}I^{1/2}y\right) ^{2} \end{equation} | (4.11) |
Appling ADM to Eq (4.11), we find the solution algorithm become
\begin{eqnarray} y_{0}\left( t\right) & = &3t^{2}-\frac{128}{125\pi }t^{5}, \\ y_{i}\left( t\right) & = &\frac{1}{10}\left( A_{i-1}\right) ,\ \ \ \ \ i\geq 1 \end{eqnarray} | (4.12) |
at which A _{\text{i}} are Adomian polynomial of the nonliner term \left(^{CF}I^{1/2}y\right) ^{2}.
Then appling Picard solution to Eq (4.11), we find the solution algorithm become
\begin{eqnarray} y_{0}\left( t\right) & = &3t^{2}-\frac{128}{125\pi }t^{5}, \\ y_{i}\left( t\right) & = &y_{0}\left( t\right) +\frac{1}{10}\left( ^{CF}I^{1/2}y_{i-1}\right) ^{2},\ \ \ \ \ i\geq 1. \end{eqnarray} | (4.13) |
From Eq (4.12), the solution using ADM is given by y\left(t\right) = \underset{q\rightarrow \infty }{Lim}{_{i = 0}^{q}y_{i}} \left(t\right) while from Eq (4.13), the solution is y\left(t\right) = \underset{i\rightarrow \infty }{Lim}y_{i}\left(t\right) . Finally, the solution of the original problem Eq (4.11), is
\begin{equation*} x\left( t\right) = ^{CF}Iy\left( t\right) . \end{equation*} |
One the same processor (q = 4), the time consumed using ADM is 2.09 seconds, while the time consumed using Picard is 44.725 seconds.
Table 2 showed the maximum absolute truncated error of of ADM solution (using Theorem 3.3) at different values of m (when t = 0:5; N = 4):
q | max. absolute error |
2 | 0.00222433 |
5 | 0.0000326908 |
10 | 2.88273*10 ^{-8} |
Figure 3 gives a comparison between ADM and Picard solution of Ex. 4.3 with \alpha = 1 .
Example 4.4. Consider the following nonlinear FDE [35]
\begin{eqnarray} ^{CF}D^{\alpha }x & = &t^{2}+\frac{1}{2}\text{ }^{CF}D^{\alpha _{1}}x+\frac{1}{ 4}\text{ }^{CF}D^{\alpha _{2}}x+\frac{1}{6}\text{ }^{CF}D^{\alpha 3}x+\frac{1 }{8}x^{4}, \\ x\left( 0\right) & = &0. \end{eqnarray} | (4.14) |
Appling Eq (2.3) to Eq (4.10), and using initial condition,
\begin{equation} y = t^{2}+\frac{1}{2}\left( ^{CF}I^{\alpha -\alpha _{1}}y\right) +\frac{1}{4} \left( ^{CF}I^{\alpha -\alpha _{2}}y\right) +\frac{1}{6}\left( ^{CF}I^{\alpha -\alpha 3}y\right) +\frac{1}{8}\left( ^{CF}I^{\alpha }y\right) ^{4}, \end{equation} | (4.15) |
Appling ADM to Eq (4.15), we find the solution algorithm become
\begin{eqnarray} y_{0}\left( t\right) & = &t^{2}, \\ y_{i}\left( t\right) & = &\frac{1}{2}\left( ^{CF}I^{\alpha -\alpha _{1}}y\right) +\frac{1}{4}\left( ^{CF}I^{\alpha -\alpha _{2}}y\right) +\frac{ 1}{6}\left( ^{CF}I^{\alpha -\alpha 3}y\right) +\frac{1}{8}A_{i-1},{ \ \ }i\geq 1 \end{eqnarray} | (4.16) |
where A _{\text{i}} are Adomian polynomial of the nonliner term \left(^{CF}I^{\alpha }y\right) ^{4}.
Then appling Picard solution to Eq (4.15), we find the solution algorithm become
y_{0}\left( t\right) = t^{2}, \\ y_{i}\left( t\right) = t^{2}+\frac{1}{2}\left( ^{CF}I^{\alpha -\alpha _{1}}y_{i-1}\right) +\frac{1}{4}\left( ^{CF}I^{\alpha -\alpha _{2}}y_{i-1}\right) \\+\frac{1}{6}\left( ^{CF}I^{\alpha -\alpha 3}y_{i-1}\right) +\frac{1}{8}\left( ^{CF}I^{\alpha }y_{i-1}\right) ^{4}\ \ \ \ \ i\geq 1. | (4.17) |
From Eq (4.16), the solution using ADM is given by y\left(t\right) = \underset{q\rightarrow \infty }{Lim}{_{i = 0}^{q}y_{i}} \left(t\right) while from Eq (4.17), the solution using Picard technique is y\left(t\right) = \underset{i\rightarrow \infty }{Lim} y_{i}\left(t\right) . Finally, the solution of the original problem Eq (4.14), is
\begin{equation*} x\left( t\right) = ^{CF}I^{\alpha }y\left( t\right) . \end{equation*} |
One the same processor (q = 3), the time consumed using ADM is 0.437 seconds, while the time consumed using Picard is (16.816) seconds. Figure 4 shows a comparison between ADM and Picard solution of Ex. 4.4 at \; \alpha = 0.7, \; \alpha _{1} = 0.1, \alpha _{2} = 0.3, \alpha _{3} = 0.5.
The Caputo-Fabrizo fractional deivative has a nonsingular kernel, and consequently, this definition is appropriate in solving nonlinear multidimensional FDE [37,38]. Since the selected numerical problems have an unkown exact solution, the formula (3.2) can be used to estimate the maximum absolute truncated error. By comparing the time taken on the same processor (i7-2670QM), it was found that the time consumed by ADM is much smaller compared with the Picard technique. Furthermore Picard gives a more accurate solution than ADM at the same interval with the same number of terms.
The authors declare there is no conflict of interest.
[1] |
R. K. Bandaru, A. Borumand Saeid, Y. B. Jun, On GE-algebras, Bull. Sect. Log., 50 (2021), 81–96. https://doi.org/10.18778/0138-0680.2020.20 doi: 10.18778/0138-0680.2020.20
![]() |
[2] | R. K. Bandaru, A. Borumand Saeid, Y. B. Jun, Belligerent GE-filter in GE-algebras, J. Indones. Math. Soc., 28 (2022), 31–43. |
[3] |
S. Celani, A note on homomorphisms of Hilbert algebras, Int. J. Math. Math. Sci., 29 (2002), 55–61. https://doi.org/10.1155/S0161171202011134 doi: 10.1155/S0161171202011134
![]() |
[4] |
S. Celani, Hilbert algebras with supremum, Algebra Univers., 67 (2012), 237–255 https://doi.org/10.1007/s00012-012-0178-z doi: 10.1007/s00012-012-0178-z
![]() |
[5] | A. Diego, Sur les algebres de Hilbert, 1966. https://doi.org/10.1017/S0008439500028885 |
[6] | W. A. Dudek, On ideals in Hilbert algebras, Acta Univ. Palacki. Olomuc, Fac. Rerum Nat. Math., 38 (1999), 31–34. |
[7] |
C. Jana, T. Senapati, M. Pal, Derivation, f-derivation and generalized derivation of KUS-algebras, Cogent Math., 2 (2015), 1064602. https://doi.org/10.1080/23311835.2015.1064602 doi: 10.1080/23311835.2015.1064602
![]() |
[8] | Y. B. Jun, R. K. Bandaru, GE-derivations, Algebraic Struct. Appl., 9 (2022), 11–35. |
[9] | Y. B. Jun, R. K. Bandaru, GE-filter expansions in GE-algebras, Jordan J. Math. Stat., 15 (2022), 1153–1171. |
[10] | K. H. Kim, S. M. Lee, On derivations of BE-algebras, Honam Math. J., 36 (2014), 167–178. |
[11] |
A. Rezaei, R. K. Bandaru, A. Borumand Saeid, Y. B. Jun, Prominent GE-filters and GE-morphisms in GE-algebras, Afr. Mat., 32 (2021), 1121–1136. https://doi.org/10.1007/s13370-021-00886-6 doi: 10.1007/s13370-021-00886-6
![]() |
1. | Eman A. A. Ziada, Salwa El-Morsy, Osama Moaaz, Sameh S. Askar, Ahmad M. Alshamrani, Monica Botros, Solution of the SIR epidemic model of arbitrary orders containing Caputo-Fabrizio, Atangana-Baleanu and Caputo derivatives, 2024, 9, 2473-6988, 18324, 10.3934/math.2024894 | |
2. | H. Salah, M. Anis, C. Cesarano, S. S. Askar, A. M. Alshamrani, E. M. Elabbasy, Fourth-order differential equations with neutral delay: Investigation of monotonic and oscillatory features, 2024, 9, 2473-6988, 34224, 10.3934/math.20241630 | |
3. | Said R. Grace, Gokula N. Chhatria, S. Kaleeswari, Yousef Alnafisah, Osama Moaaz, Forced-Perturbed Fractional Differential Equations of Higher Order: Asymptotic Properties of Non-Oscillatory Solutions, 2024, 9, 2504-3110, 6, 10.3390/fractalfract9010006 | |
4. | A.E. Matouk, Monica Botros, Hidden chaotic attractors and self-excited chaotic attractors in a novel circuit system via Grünwald–Letnikov, Caputo-Fabrizio and Atangana-Baleanu fractional operators, 2025, 116, 11100168, 525, 10.1016/j.aej.2024.12.064 | |
5. | Zahra Barati, Maryam Keshavarzi, Samaneh Mosaferi, Anatomical and micromorphological study of Phalaris (Poaceae) species in Iran, 2025, 68, 1588-4082, 9, 10.14232/abs.2024.1.9-15 |
q | max. absolute error |
2 | 0.114548 |
5 | 0.099186 |
10 | 0.004363 |
q | max. absolute error |
2 | 0.00222433 |
5 | 0.0000326908 |
10 | 2.88273*10 ^{-8} |