
In recent years, several policies have increasingly considered smart technologies as a potential solution to overcome territorial marginality in rural areas, where digitalization and smart innovation could help local communities address challenges such as depopulation and socio-economic deprivation. At the European scale, the Smart Village Action was launched in 2017 to address the so-called "circle of decline", showing to what extent rural smartness has been recently gaining momentum in transnational cohesion policies. This work aims to critically explore the Smart Village paradigm as a recently-emerged policy framework in rural, cohesion and/or recovery policies, investigating if and how it is variously (re)interpreted in policies and operationally applied in projects. From a methodological point of view, a qualitative policy document analysis (QPDA) and software-based content analysis were carried out on UE official documents, offering new theoretical insights and operational recommendations for understanding the concept of smartness beyond urban-centered perspectives.
Citation: Valentina E. Albanese, Teresa Graziano. Disentangling rural smartness in European policies: a critical overview of the Smart Village concept[J]. AIMS Geosciences, 2024, 10(4): 882-906. doi: 10.3934/geosci.2024041
[1] | Ahmed Ghezal, Mohamed Balegh, Imane Zemmouri . Solutions and local stability of the Jacobsthal system of difference equations. AIMS Mathematics, 2024, 9(2): 3576-3591. doi: 10.3934/math.2024175 |
[2] | Hashem Althagafi, Ahmed Ghezal . Solving a system of nonlinear difference equations with bilinear dynamics. AIMS Mathematics, 2024, 9(12): 34067-34089. doi: 10.3934/math.20241624 |
[3] | M. T. Alharthi . Correction: On the solutions of some systems of rational difference equations. AIMS Mathematics, 2025, 10(2): 2277-2278. doi: 10.3934/math.2025105 |
[4] | M. T. Alharthi . On the solutions of some systems of rational difference equations. AIMS Mathematics, 2024, 9(11): 30320-30347. doi: 10.3934/math.20241463 |
[5] | Eunjung Lee, Dojin Kim . Stability analysis of the implicit finite difference schemes for nonlinear Schrödinger equation. AIMS Mathematics, 2022, 7(9): 16349-16365. doi: 10.3934/math.2022893 |
[6] | Shulan Kong, Chengbin Wang, Yawen Sun . A recursive filter for a class of two-dimensional nonlinear stochastic systems. AIMS Mathematics, 2025, 10(1): 1741-1756. doi: 10.3934/math.2025079 |
[7] | Yeyang Jiang, Zhihua Liao, Di Qiu . The existence of entire solutions of some systems of the Fermat type differential-difference equations. AIMS Mathematics, 2022, 7(10): 17685-17698. doi: 10.3934/math.2022974 |
[8] | Abdulghani R. Alharbi . Traveling-wave and numerical solutions to nonlinear evolution equations via modern computational techniques. AIMS Mathematics, 2024, 9(1): 1323-1345. doi: 10.3934/math.2024065 |
[9] | Ibraheem M. Alsulami, E. M. Elsayed . On a class of nonlinear rational systems of difference equations. AIMS Mathematics, 2023, 8(7): 15466-15485. doi: 10.3934/math.2023789 |
[10] | Nan Li, Jiachuan Geng, Lianzhong Yang . Some results on transcendental entire solutions to certain nonlinear differential-difference equations. AIMS Mathematics, 2021, 6(8): 8107-8126. doi: 10.3934/math.2021470 |
In recent years, several policies have increasingly considered smart technologies as a potential solution to overcome territorial marginality in rural areas, where digitalization and smart innovation could help local communities address challenges such as depopulation and socio-economic deprivation. At the European scale, the Smart Village Action was launched in 2017 to address the so-called "circle of decline", showing to what extent rural smartness has been recently gaining momentum in transnational cohesion policies. This work aims to critically explore the Smart Village paradigm as a recently-emerged policy framework in rural, cohesion and/or recovery policies, investigating if and how it is variously (re)interpreted in policies and operationally applied in projects. From a methodological point of view, a qualitative policy document analysis (QPDA) and software-based content analysis were carried out on UE official documents, offering new theoretical insights and operational recommendations for understanding the concept of smartness beyond urban-centered perspectives.
This paper is devoted to study the expressions forms of the solutions and periodic nature of the following third-order rational systems of difference equations
xn+1=yn−1znzn±xn−2,yn+1=zn−1xnxn±yn−2, zn+1=xn−1ynyn±zn−2, |
with initial conditions are non-zero real numbers.
In the recent years, there has been great concern in studying the systems of difference equations. One of the most important reasons for this is a exigency for some mechanization which can be used in discussing equations emerge in mathematical models characterizing real life situations in economic, genetics, probability theory, psychology, population biology and so on.
Difference equations display naturally as discrete peer and as numerical solutions of differential equations having more applications in ecology, biology, physics, economy, and so forth. For all that the difference equations are quite simple in expressions, it is frequently difficult to realize completely the dynamics of their solutions see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19] and the related references therein.
There are some papers dealed with the difference equations systems, for example, The periodic nature of the solutions of the nonlinear difference equations system
An+1=1Cn,Bn+1=BnAn−1Bn−1,Cn+1=1An−1, |
has been studied by Cinar in [7].
Almatrafi [3] determined the analytical solutions of the following systems of rational recursive equations
xn+1=xn−1yn−3yn−1(±1±xn−1yn−3),yn+1=yn−1xn−3xn−1(±1±yn−1xn−3). |
In [20], Khaliq and Shoaib studied the local and global asymptotic behavior of non-negative equilibrium points of a three-dimensional system of two order rational difference equations
xn+1=xn−1ε+xn−1yn−1zn−1,yn+1=yn−1ζ+xn−1yn−1zn−1, zn+1=zn−1η+xn−1yn−1zn−1. |
In [9], Elabbasy et al. obtained the form of the solutions of some cases of the following system of difference equations
xn+1=a1+a2yna3zn+a4xn−1zn, yn+1=b1zn−1+b2znb3xnyn+b4xnyn−1,zn+1=c1zn−1+c2znc3xn−1yn−1+c4xn−1yn+c5xnyn. |
In [12], Elsayed et al. have got the solutions of the systems of rational higher order difference equations
An+1=1An−pBn−p,Bn+1=An−pBn−pAn−qBn−q, |
and
An+1=1An−pBn−pCn−p,Bn+1=An−pBn−pCn−pAn−qBn−qCn−q,Cn+1=An−qBn−qCn−qAn−rBn−rCn−r. |
Kurbanli [25,26] investigated the behavior of the solutions of the following systems
An+1=An−1An−1Bn−1,Bn+1=Bn−1Bn−1An−1, Cn+1=1CnBn,An+1=An−1An−1Bn−1,Bn+1=Bn−1Bn−1An−1, Cn+1=Cn−1Cn−1Bn−1. |
In [32], Yalçınkaya has obtained the conditions for the global asymptotically stable of the system
An+1=BnAn−1+aBn+An−1,Bn+1=AnBn−1+aAn+Bn−1. |
Zhang et al. [39] investigated the persistence, boundedness and the global asymptotically stable of the solutions of the following system
Rn=A+1Qn−p, Qn=A+Qn−1Rn−rQn−s. |
Similar to difference equations and systems were studied see [21,22,23,24,27,28,29,30,31,32,33,34,35,36,37,38].
In this section, we obtain the expressions form of the solutions of the following three dimension system of difference equations
xn+1=yn−1znzn+xn−2,yn+1=zn−1xnxn+yn−2, zn+1=xn−1ynyn+zn−2, | (1) |
where n∈N0 and the initial conditions are non-zero real numbers.
Theorem 1. We assume that {xn,yn,zn} are solutions of system (1).Then
x6n−2=ak3nn−1∏i=0(a+(6i)k)(a+(6i+2)k)(a+(6i+4)k),x6n−1=bf3nn−1∏i=0(g+(6i+1)f)(g+(6i+3)f)(g+(6i+5)f),x6n=c3n+1n−1∏i=0(d+(6i+2)c)(d+(6i+4)c)(d+(6i+6)c),x6n+1=ek3n+1(a+k)n−1∏i=0(a+(6i+3)k)(a+(6i+5)k)(a+(6i+7)k), |
x6n+2=f3n+2(g+2f)n−1∏i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f),x6n+3=hc3n+2(d+c)(d+3c)n−1∏i=0(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c), |
y6n−2=dc3nn−1∏i=0(d+(6i)c)(d+(6i+2)c)(d+(6i+4)c),y6n−1=ek3nn−1∏i=0(a+(6i+1)k)(a+(6i+3)k)(a+(6i+5)k),y6n=f3n+1n−1∏i=0(g+(6i+2)f)(g+(6i+4)f)(g+(6i+6)f),y6n+1=hc3n+1(d+c)n−1∏i=0(d+(6i+3)c)(d+(6i+5)c)(d+(6i+7)c),y6n+2=k3n+2(a+2k)n−1∏i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k),y6n+3=bf3n+2(g+f)(g+3f)n−1∏i=0(g+(6i+5)f)(g+(6i+7)f)(g+(6i+9)f), |
and
z6n−2=gf3nn−1∏i=0(g+(6i)f)(g+(6i+2)f)(g+(6i+4)f),z6n−1=hc3nn−1∏i=0(d+(6i+1)c)(d+(6i+3)c)(d+(6i+5)c),z6n=k3n+1n−1∏i=0(a+(6i+2)k)(a+(6i+4)k)(a+(6i+6)k),z6n+1=bf3n+1(g+f)n−1∏i=0(g+(6i+3)f)(g+(6i+5)f)(g+(6i+7)f), |
z6n+2=c3n+2(d+2c)n−1∏i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c),z6n+3=ek3n+2(a+k)(a+3k)n−1∏i=0(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k), |
where x−2=a, x−1=b, x0=c, y−2=d, y−1=e, y0=f, z−2=g, z−1=h and z0=k.
Proof. For n=0 the result holds. Now assume that n>1 and that our assumption holds for n−1, that is,
x6n−8=ak3n−3n−2∏i=0(a+(6i)k)(a+(6i+2)k)(a+(6i+4)k),x6n−7=bf3n−3n−2∏i=0(g+(6i+1)f)(g+(6i+3)f)(g+(6i+5)f),x6n−6=c3n−2n−2∏i=0(d+(6i+2)c)(d+(6i+4)c)(d+(6i+6)c),x6n−5=ek3n−2(a+k)n−2∏i=0(a+(6i+3)k)(a+(6i+5)k)(a+(6i+7)k),x6n−4=f3n−1(g+2f)n−2∏i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f),x6n−3=hc3n−1(d+c)(d+3c)n−2∏i=0(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c), |
y6n−8=dc3n−3n−2∏i=0(d+(6i)c)(d+(6i+2)c)(d+(6i+4)c),y6n−7=ek3n−3n−2∏i=0(a+(6i+1)k)(a+(6i+3)k)(a+(6i+5)k),y6n−6=f3n−2n−2∏i=0(g+(6i+2)f)(g+(6i+4)f)(g+(6i+6)f), |
y6n−5=hc3n−2(d+c)n−2∏i=0(d+(6i+3)c)(d+(6i+5)c)(d+(6i+7)c),y6n−4=k3n−1(a+2k)n−2∏i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k),y6n−3=bf3n−1(g+f)(g+3f)n−2∏i=0(g+(6i+5)f)(g+(6i+7)f)(g+(6i+9)f), |
and
z6n−8=gf3n−3n−2∏i=0(g+(6i)f)(g+(6i+2)f)(g+(6i+4)f),z6n−7=hc3n−3n−2∏i=0(d+(6i+1)c)(d+(6i+3)c)(d+(6i+5)c),z6n−6=k3n−2n−2∏i=0(a+(6i+2)k)(a+(6i+4)k)(a+(6i+6)k),z6n−5=bf3n−2(g+f)n−2∏i=0(g+(6i+3)f)(g+(6i+5)f)(g+(6i+7)f),z6n−4=c3n−1(d+2c)n−2∏i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c),z6n−3=ek3n−1(a+k)(a+3k)n−2∏i=0(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k). |
It follows from Eq (1) that
x6n−2=y6n−4z6n−3z6n−3+x6n−5=(k3n−1(a+2k)n−2∏i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k) )(ek3n−1(a+k)(a+3k)n−2∏i=0(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k) )(ek3n−1(a+k)(a+3k)n−2∏i=0(a+(6i+5)k)(a+(6i+7)k)(a+(6i+9)k) )+(ek3n−2(a+k)n−2∏i=0(a+(6i+3)k)(a+(6i+5)k)(a+(6i+7)k) )=(k3n(a+2k)n−2∏i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k))(a+3k)n−2∏i=0(a+(6i+9)k)[(k(a+3k)n−2∏i=0(a+(6i+9)k))+(1n−2∏i=0(a+(6i+3)k))]=(k3n(a+2k)n−2∏i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k))[k+((a+3k)n−2∏i=0(a+(6i+9)k)n−2∏i=0(a+(6i+3)k))]=(k3n(a+2k)n−2∏i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k))[k+(a+(6n−3)k)]=ak3na(a+2k)(a+(6n−2)k)n−2∏i=0(a+(6i+4)k)(a+(6i+6)k)(a+(6i+8)k). |
Then we see that
x6n−2=k3nn−1∏i=0(a+(6i)k)(a+(6i+2)k)(a+(6i+4)k). |
Also, we see from Eq (1) that
y6n−2=z6n−4x6n−3x6n−3+y6n−5=(c3n−1(d+2c)n−2∏i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c) )(hc3n−1(d+c)(d+3c)n−2∏i=0(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c) )(hc3n−1(d+c)(d+3c)n−2∏i=0(d+(6i+5)c)(d+(6i+7)c)(d+(6i+9)c) )+(hc3n−2(d+c)n−2∏i=0(d+(6i+3)c)(d+(6i+5)c)(d+(6i+7)c) )=(c3n(d+2c)n−2∏i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c))(d+3c)n−2∏i=0(d+(6i+9)c)[(c(d+3c)n−2∏i=0(d+(6i+9)c))+(1n−2∏i=0(d+(6i+3)c))]=(c3n(d+2c)n−2∏i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c))[c+d+(6n−3)c]=c3n[d+(6n−2)c](d+2c)n−2∏i=0(d+(6i+4)c)(d+(6i+6)c)(d+(6i+8)c). |
Then
y6n−2=dc3nn−1∏i=0(d+(6i)c)(d+(6i+2)c)(d+(6i+4)c). |
Finally from Eq (1), we see that
z6n−2=x6n−4y6n−3y6n−3+z6n−5=(f3n−1(g+2f)n−2∏i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f) )(bf3n−1(g+f)(g+3f)n−2∏i=0(g+(6i+5)f)(g+(6i+7)f)(g+(6i+9)f) )(bf3n−1(g+f)(g+3f)n−2∏i=0(g+(6i+5)f)(g+(6i+7)f)(g+(6i+9)f) )+(bf3n−2(g+f)n−2∏i=0(g+(6i+3)f)(g+(6i+5)f)(g+(6i+7)f) )=(f3n(g+2f)n−2∏i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f))(g+3f)n−2∏i=0(g+(6i+9)f)[(f(g+3f)n−2∏i=0(g+(6i+9)f))+(1n−2∏i=0(g+(6i+3)f))]=(f3n(g+2f)n−2∏i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f))[f+((g+3f)n−2∏i=0(g+(6i+9)f)n−2∏i=0(g+(6i+3)f))]=(f3n(g+2f)n−2∏i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f))[f+(g+(6n−3)f)]=f3n(g+(6n−2)f)(g+2f)n−2∏i=0(g+(6i+4)f)(g+(6i+6)f)(g+(6i+8)f). |
Thus
z3n−2=gf3nn−1∏i=0(g+(6i)f)(g+(6i+2)f)(g+(6i+4)f). |
By similar way, one can show the other relations. This completes the proof.
Lemma 1. Let {xn,yn,zn} be a positive solution of system (1), then all solution of (1) is bounded and approaching to zero.
Proof. It follows from Eq (1) that
xn+1=yn−1znzn+xn−2≤yn−1, yn+1=zn−1xnxn+yn−2≤zn−1,zn+1=xn−1ynyn+zn−2≤xn−1, |
we see that
xn+4≤yn+2, yn+2≤zn, zn≤xn−2, ⇒ xn+4<xn−2,yn+4≤zn+2, zn+2≤xn, xn≤yn−2, ⇒ yn+4<yn−2,zn+4≤xn+2, xn+2≤yn, yn≤zn−2, ⇒ zn+4<zn−2, |
Then all subsequences of {xn,yn,zn} (i.e., for {xn} are {x6n−2}, {x6n−1}, {x6n}, {x6n+1}, {x6n+2}, {x6n+3} are decreasing and at that time are bounded from above by K,L and M since K=max{x−2,x−1,x0,x1,x2,x3}, L=max{y−2,y−1,y0,y1,y2,y3} and M=max{z−2,z−1,z0,z1,z2,z3}.
Example 1. We assume an interesting numerical example for the system (1) with x−2=−.22,x−1=−.4, x0=.12,y−2=−.62, y−1=4, y0=.3,z−2=.4,z−1=.53 andz0=−2. (See Figure 1).
In this section, we get the solution's form of the following system of difference equations
xn+1=yn−1znzn+xn−2,yn+1=zn−1xnxn+yn−2, zn+1=xn−1ynyn−zn−2, | (2) |
where n∈N0 and the initial values are non-zero real numbers with x−2≠±z0,≠−2z0, z−2≠y0,≠2y0,≠3y0 and y−2≠2x0,≠±x0.
Theorem 2. Assume that {xn,yn,zn} are solutions of (2). Then for n=0,1,2,...,
x6n−2=(−1)nk3na2n−1(a+2k)n, x6n−1=(−1)nbf3n(f−g)2n(3f−g)n, x6n=(−1)nc3n+1d2n(2c−d)n,x6n+1=ek3n+1(a−k)n(a+k)2n+1, x6n+2=(−1)nf3n+2gn(2f−g)2n+1, x6n+3=(−1)nhc3n+2(c−d)2n+1(c+d)n+1, |
y6n−2=(−1)nc3nd2n−1(2c−d)n, y6n−1=ek3n(a−k)n(a+k)2n, y6n=(−1)nf3n+1gn(2f−g)2n,y6n+1=(−1)nhc3n+1(c−d)2n(c+d)n+1, y6n+2=(−1)nk3n+2a2n(a+2k)n+1, y6n+3=(−1)nbf3n+2(f−g)2n+1(3f−g)n+1, |
and
z6n−2=(−1)nf3ngn−1(2f−g)2n, z6n−1=(−1)nhc3n(c−d)2n(c+d)n, z6n=(−1)nk3n+1a2n(a+2k)n,z6n+1=(−1)nbf3n+1(f−g)2n+1(3f−g)n, z6n+2=(−1)n+1c3n+2d2n+1(2c−d)n, z6n+3=−ek3n+2(a−k)n(a+k)2n+2, |
where x−2=a, x−1=b, x0=c, y−2=d, y−1=e, y0=f, z−2=g, z−1=h and z0=k.
Proof. The result is true for n=0. Now suppose that n>0 and that our claim verified for n−1. That is,
x6n−8=(−1)n−1k3n−3a2n−3(a+2k)n−1, x6n−7=(−1)n−1bf3n−3(f−g)2n−2(3f−g)n−1, x6n−6=(−1)n−1c3n−2d2n−2(2c−d)n−1,x6n−5=ek3n−2(a−k)n−1(a+k)2n−1, x6n−4=(−1)n−1f3n−1gn−1(2f−g)2n−1, x6n−3=(−1)n−1hc3n−1(c−d)2n−1(c+d)n, |
y6n−8=(−1)n−1c3n−3d2n−3(2c−d)n−1, y6n−7=ek3n−3(a−k)n−1(a+k)2n−2, y6n−6=(−1)n−1f3n−2gn−1(2f−g)2n−2,y6n−5=(−1)n−1hc3n−2(c−d)2n−2(c+d)n, y6n−4=(−1)n−1k3n−1a2n−2(a+2k)n, y6n−3=(−1)n−1bf3n−1(f−g)2n−1(3f−g)n, |
and
z6n−8=(−1)n−1f3n−3gn−2(2f−g)2n−2, z6n−7=(−1)n−1hc3n−3(c−d)2n−2(c+d)n−1, z6n−6=(−1)n−1k3n−2a2n−2(a+2k)n−1,z6n−5=(−1)n−1bf3n−2(f−g)2n−1(3f−g)n−1, z6n−4=(−1)nc3n−1d2n−1(2c−d)n−1, z6n−3=−ek3n−1(a−k)n−1(a+k)2n. |
Now from Eq (2), it follows that
x6n−2=y6n−4z6n−3z6n−3+x6n−5=((−1)n−1k3n−1a2n−2(a+2k)n)(−ek3n−1(a−k)n−1(a+k)2n)(−ek3n−1(a−k)n−1(a+k)2n)+(ek3n−2(a−k)n−1(a+k)2n−1)=((−1)nk3na2n−2(a+2k)n)(−k+a+k)=(−1)nk3na2n−1(a+2k)n,y6n−2=z6n−4x6n−3x6n−3+y6n−5=((−1)nc3n−1d2n−1(2c−d)n−1)((−1)n−1hc3n−1(c−d)2n−1(c+d)n)((−1)n−1hc3n−1(c−d)2n−1(c+d)n)+((−1)n−1hc3n−2(c−d)2n−2(c+d)n)=((−1)nc3nd2n−1(2c−d)n−1)c+c−d=(−1)nc3nd2n−1(2c−d)n,z6n−2=x6n−4y6n−3y6n−3−z6n−5=((−1)n−1f3n−1gn−1(2f−g)2n−1)((−1)n−1bf3n−1(f−g)2n−1(3f−g)n)((−1)n−1bf3n−1(f−g)2n−1(3f−g)n)−((−1)n−1bf3n−2(f−g)2n−1(3f−g)n−1)=((−1)n−1f3ngn−1(2f−g)2n−1)(f−3f+g)=(−1)nf3ngn−1(2f−g)2n. |
Also, we see from Eq (2) that
x6n−1=y6n−3z6n−2z6n−2+x6n−4=((−1)n−1bf3n−1(f−g)2n−1(3f−g)n)((−1)nf3ngn−1(2f−g)2n)((−1)nf3ngn−1(2f−g)2n)+((−1)n−1f3n−1gn−1(2f−g)2n−1)=((−1)nbf3n(f−g)2n−1(3f−g)n)(−f+2f−g)=(−1)nbf3n(f−g)2n(3f−g)n,y6n−1=z6n−3x6n−2x6n−2+y6n−4=(−ek3n−1(a−k)n−1(a+k)2n)((−1)nk3na2n−1(a+2k)n)((−1)nk3na2n−1(a+2k)n)+((−1)n−1k3n−1a2n−2(a+2k)n)=(ek3n(a−k)n−1(a+k)2n)−k+a=ek3n(a−k)n(a+k)2n,z6n−1=x6n−3y6n−2y6n−2−z6n−4=((−1)n−1hc3n−1(c−d)2n−1(c+d)n)((−1)nc3nd2n−1(2c−d)n)((−1)nc3nd2n−1(2c−d)n)−((−1)nc3n−1d2n−1(2c−d)n−1)=((−1)n−1hc3n(c−d)2n−1(c+d)n)c−(2c−d)=(−1)nhc3n(c−d)2n(c+d)n. |
Also, we can prove the other relations.
Example 2. See below Figure 2 for system (2) with the initial conditions x−2=11,x−1=5, x0=13,y−2=6, y−1=7, y0=3,z−2=14, z−1=9 andz0=2.
Here, we obtain the form of solutions of the system
xn+1=yn−1znzn+xn−2,yn+1=zn−1xnxn−yn−2, zn+1=xn−1ynyn+zn−2, | (3) |
where n∈N0 and the initial values are non-zero real numbers with x−2≠±z0,≠2z0, z−2≠±y0,≠−2y0 and y−2≠x0,≠2x0,≠3x0.
Theorem 3. If {xn,yn,zn} are solutions of system (3) where x−2=a, x−1=b, x0=c, y−2=d, y−1=e, y0=f, z−2=g, z−1=h and z0=k. Then for n=0,1,2,...,
x6n−2=k3na2n−1(a−2k)n, x6n−1=(−1)nbf3n(f−g)n(f+g)2n, x6n=(−1)nc3n+1dn(d−2c)2n,x6n+1=(−1)nek3n+1(a−k)2n(a+k)n+1, x6n+2=(−1)nf3n+2g2n(2f+g)n+1, x6n+3=(−1)nhc3n+2(c−d)2n+1(3c−d)n+1, |
y6n−2=(−1)nc3ndn−1(d−2c)2n, y6n−1=(−1)nek3n(a−k)2n(a+k)n, y6n=(−1)nf3n+1g2n(2f+g)n,y6n+1=(−1)nhc3n+1(c−d)2n+1(3c−d)n, y6n+2=−k3n+2a2n+1(a−2k)n, y6n+3=(−1)nbf3n+2(f−g)n(f+g)2n+2, |
and
z6n−2=(−1)nf3ng2n−1(2f+g)n, z6n−1=(−1)nhc3n(c−d)2n(3c−d)n, z6n=k3n+1a2n(a−2k)n,z6n+1=(−1)nbf3n+1(f−g)n(f+g)2n+1, z6n+2=(−1)nc3n+2dn(2c−d)2n+1, z6n+3=(−1)n+1ek3n+2(a−k)2n+1(a+k)n+1. |
Proof. As the proof of Theorem 2 and so will be left to the reader.
Example 3. We put the initials x−2=8,x−1=15, x0=13,y−2=6,y−1=7, y0=3,z−2=14,z−1=19 andz0=2, for the system (3), see Figure 3.
The following systems can be treated similarly.
In this section, we deal with the solutions of the following system
xn+1=yn−1znzn−xn−2,yn+1=zn−1xnxn+yn−2, zn+1=xn−1ynyn+zn−2, | (4) |
where n∈N0 and the initial values are non-zero real with x−2≠z0,≠2z0,≠3z0, z−2≠±y0,≠2y0 and y−2≠±x0,≠−2x0.
Theorem 4. The solutions of system (4) are given by
x6n−2=(−1)nk3nan−1(a−2k)2n, x6n−1=(−1)nbf3n(f−g)2n(f+g)n, x6n=(−1)nc3n+1d2n(d+2c)n,x6n+1=−ek3n+1(a−k)2n+1(a−3k)n, x6n+2=(−1)n+1f3n+2g2n+1(2f−g)n, x6n+3=(−1)n+1hc3n+2(c−d)n(c+d)2n+2, |
y6n−2=(−1)nc3nd2n−1(d+2c)n, y6n−1=ek3n(a−k)2n(a−3k)n, y6n=(−1)nf3n+1g2n(2f−g)n,y6n+1=(−1)nhc3n+1(c+d)2n+1(c−d)n, y6n+2=−k3n+2an(a−2k)2n+1, y6n+3=(−1)nbf3n+2(f−g)2n+1(f+g)n+1, |
and
z6n−2=(−1)nf3ng2n−1(2f−g)n, z6n−1=(−1)nhc3n(c+d)2n(c−d)n, z6n=(−1)nk3n+1an(a−2k)2n,z6n+1=(−1)nbf3n+1(f−g)2n(f+g)n+1, z6n+2=(−1)nc3n+2d2n(2c+d)n+1, z6n+3=ek3n+2(a−k)2n+1(a−3k)n+1, |
where x−2=a, x−1=b, x0=c, y−2=d, y−1=e, y0=f, z−2=g, z−1=h and z0=k.
Example 4. Figure 4 shows the behavior of the solution of system (4) with x−2=18,x−1=−15, x0=3,y−2=6, y−1=.7, y0=−3, z−2=4,z−1=−9 andz0=5.
In this section, we obtain the solutions of the difference system
xn+1=yn−1znzn−xn−2,yn+1=zn−1xnxn−yn−2, zn+1=xn−1ynyn−zn−2, | (5) |
where the initials are arbitrary non-zero real numbers with x−2≠z0, z−2≠y0 and y−2≠x0.
Theorem 5. If {xn,yn,zn} are solutions of system (5) where x−2=a, x−1=b, x0=c, y−2=d, y−1=e, y0=f, z−2=g, z−1=h and z0=k. Then
x6n−2=k3na3n−1, x6n−1=bf3n(f−g)3n, x6n=c3n+1d3n,x6n+1=ek3n+1(k−a)3n+1, x6n+2=f3n+2g3n+1, x6n+3=hc3n+2(c−d)3n+2, |
y6n−2=c3nd3n−1, y6n−1=ek3n(k−a)3n, y6n=f3n+1g3n,y6n+1=hc3n+1(c−d)3n+1, y6n+2=k3n+2a3n+1, y6n+3=bf3n+2(f−g)3n+2, |
and
z6n−2=f3ng3n−1, z6n−1=hc3n(c−d)3n, z6n=k3n+1a3n,z6n+1=bf3n+1(f−g)3n+1, z6n+2=c3n+2d3n+1, z6n+3=ek3n+2(k−a)3n+2. |
Example 5. Figure 5 shows the dynamics of the solution of system (5) with x−2=18,x−1=−15,x0=3,y−2=6,y−1=.7, y0=−3,z−2=4,z−1=−9 andz0=5.
This paper discussed the expression's form and boundedness of some systems of rational third order difference equations. In Section 2, we studied the qualitative behavior of system xn+1=yn−1znzn+xn−2,yn+1=zn−1xnxn+yn−2, zn+1=xn−1ynyn+zn−2, first we have got the form of the solutions of this system, studied the boundedness and gave numerical example and drew it by using Matlab. In Section 3, we have got the solution's of the system xn+1=yn−1znzn+xn−2,yn+1=zn−1xnxn+yn−2, zn+1=xn−1ynyn−zn−2, and take a numerical example. In Sections 4–6, we obtained the solution of the following systems respectively, xn+1=yn−1znzn+xn−2,yn+1=zn−1xnxn−yn−2, zn+1=xn−1ynyn+zn−2, xn+1=yn−1znzn−xn−2,yn+1=zn−1xnxn+yn−2, zn+1=xn−1ynyn+zn−2, and xn+1=yn−1znzn−xn−2,yn+1=zn−1xnxn−yn−2, zn+1=xn−1ynyn−zn−2. Also, in each case we take a numerical example to illustrates the results.
This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (G: 233–130–1441). The authors, therefore, acknowledge with thanks DSR for technical and financial support.
All authors declare no conflicts of interest in this paper.
[1] |
Kitchin R (2014) The real time city? Big data and smart urbanism. GeoJournal 79: 1–14. https://doi.org/10.1007/s10708-013-9516-8 doi: 10.1007/s10708-013-9516-8
![]() |
[2] |
Graziano T (2021) Smart Technologies, Back-to-the-Village Rhetoric, and Tactical Urbanism: Post-COVID Planning Scenarios in Italy. Int J E-Planning Res 10: 14. https://doi.org/10.4018/IJEPR.20210401.oa7 doi: 10.4018/IJEPR.20210401.oa7
![]() |
[3] |
Zavratnik V, Kos A, Stojmenova Duh E (2018) Smart Villages: Comprehensive Review of Initiatives and Practices. Sustainability 10: 2559. https://doi.org/10.3390/su10072559 doi: 10.3390/su10072559
![]() |
[4] |
Naldi L, Nilsson P, Westlund H, et al. (2015) What is smart rural development? J Rural Stud 40: 90–101. https://doi.org/10.1016/j.jrurstud.2015.06.006 doi: 10.1016/j.jrurstud.2015.06.006
![]() |
[5] |
McCann P, Ortega-Argilés R (2015) Smart Specialization, Regional Growth and Applications to European Union Cohesion Policy. Reg Stud 49: 1291–1302. https://doi.org/10.1080/00343404.2013.799769 doi: 10.1080/00343404.2013.799769
![]() |
[6] | Stebbins R (2001) Exploratory Research in the Social Sciences. Thousand Oaks, CA: Sage. https://doi.org/10.4135/9781412984249 |
[7] | Krippendorff K (2012) Content Analysis: An Introduction to Its Methodology (3rd ed.). Thousand Oaks, CA: Sage Publications. |
[8] | Prior L (2004) Doing things with documents. in Silverman D. Qualitative research: theory, method and practice. Sage: London, 76–94. |
[9] | Zhang Y, Wildemuth B M (2005) Qualitative Analysis of Content by Human Brain Mapping 30: 2197–2206. |
[10] |
Allwinkle S, Cruickshank P (2011) Creating smarter cities: An overview. J Urban Technol 18: 1–16. https://doi.org/10.1080/10630732.2011.601103 doi: 10.1080/10630732.2011.601103
![]() |
[11] |
de Falco S, Angelidou M, Addie JPD (2019) From the "smart city" to the "smart metropolis"? Building resilience in the urban periphery. Eur Urban Reg Stud 26: 205–223. https://doi.org/10.1177/0969776418783813 doi: 10.1177/0969776418783813
![]() |
[12] | Anthopoulos LG, Vakali A (2013) Urban planning and smart cities: Interrelations and reciprocities. The Future Internet Assembly. Berlin: Springer. https://doi.org/10.1007/978-3-642-30241-1_16 |
[13] | Dutton WH, Blumler JG, Kraemer KL (1987) Wired Cities: Shaping Future Communication. New York: Macmillan. |
[14] |
Graham S, Marvin S (1999) Planning cybercities: Integrating telecommunications into urban planning. Town Plann Rev 70: 89–114. https://doi.org/10.3828/tpr.70.1.w34454x3475g2858 doi: 10.3828/tpr.70.1.w34454x3475g2858
![]() |
[15] | Ishida T, Isbister K (2000) Digital Cities: Technologies, Experiences, and Future Perspectives. London: Springer. https://doi.org/10.1007/3-540-46422-0 |
[16] | Komninos N (2002) Intelligent Cities: Innovation, Knowledge Systems and Digital Spaces. New York: Routledge. |
[17] |
Vanolo A (2014) Smartmentality: The smart city as disciplinary strategy. Urban Stud 51: 881–896. https://doi.org/10.1177/0042098013494427 doi: 10.1177/0042098013494427
![]() |
[18] | Ratti C, Townsend A (2011) The Social Nexus. The Best Way to Harness a City's Potential for Creativity and Innovation is to Jack People into the Network and Get out of the Way. New York: Scientific American. http://www.jstor.org/stable/26002766 |
[19] | Certomà F, Martellozzo F, Iapaolo F (2024) Digital Technologies for Sustainable Futures: Promises and Pitfalls. Routledge: London. https://doi.org/10.4324/9781003441311 |
[20] |
Holland RG (2015) Critical interventions into the corporate smart city. Cambridge J Reg Econ Soc 8: 61–77. https://doi.org/10.1093/cjres/rsu011 doi: 10.1093/cjres/rsu011
![]() |
[21] | Elwood S, Goodchild MF, Sui D (2013) Prospects for VGI research and the emerging fourth paradigm. Crowdsourcing Geographic Knowledge. Netherlands: Springer. https://doi.org/10.1007/978-94-007-4587-2_20 |
[22] | Albanese V, Graziano T (2020) Place, cyberplace e le nuove geografie della comunicazione. Bologna: Bononia University Press. |
[23] | Newby H (1984) Rural communities and new technology. In: Paper Presented to the Arkleton Trust Seminar, Tarland, Aberdeenshire. |
[24] |
Visvizi A, Miltiadis DL (2018) It's Not a Fad: Smart Cities and Smart Villages Research in European and Global Contexts. Sustainability 10: 2727. https://doi.org/10.3390/su10082727 doi: 10.3390/su10082727
![]() |
[25] |
Cowie P, Townsend L, Salemink K (2020) Smart rural futures: will rural areas be left behind in the 4th industrial revolution? J Rural Stud 79: 169–176. https://doi.org/10.1016/j.jrurstud.2020.08.042 doi: 10.1016/j.jrurstud.2020.08.042
![]() |
[26] |
Bilbao-Osorio B, Rodríguez-Pose A (2004) From R & D to innovation and economic growth in the EU. Growth Change 35: 434e455. https://doi.org/10.1111/j.1468-2257.2004.00256.x doi: 10.1111/j.1468-2257.2004.00256.x
![]() |
[27] | Schwab K (2017) The 4th Industrial Revolution. London: Penguin Books. |
[28] |
Fraser A (2022) 'You can't eat data'?: Moving beyond the misconfigured innovations of smart farming. J Rural Stud 91: 200–207. https://doi.org/10.1016/j.jrurstud.2021.06.010 doi: 10.1016/j.jrurstud.2021.06.010
![]() |
[29] |
Malecki EJ (2003) Digital development in rural areas: potentials and pitfalls. J Rural Stud 19: 201–214. https://doi.org/10.1016/S0743-0167(02)00068-2 doi: 10.1016/S0743-0167(02)00068-2
![]() |
[30] | Bonomi A, Masiero R. (2014) Dalla smart city alla smart land. Marsilio: Venezia. |
[31] | Graziano T (2021) Smart Territory. Flussi, reti e attori digitali per le aree marginali, Franco Angeli: Milano. |
[32] |
García-Ayllon Veintimilla S, Miralles García JL (2015) New strategies to improve governance in territorial management: evolving from smart cities to smart territories. Procedia Eng 118: 3–11. https://doi.org/doi: 10.1016/j.proeng.2015.08.396 doi: 10.1016/j.proeng.2015.08.396
![]() |
[33] |
Urso G (2021) Metropolisation and the challenge of rural-urban dichotomies. Urban Geogr 42: 37–57. https://doi.org/10.1080/02723638.2020.1760536 doi: 10.1080/02723638.2020.1760536
![]() |
[34] | Soja E, Kanai M (2007) The urbanization of the world. In Burdett R, Sudjic D (eds.), The Endless City. Phaidon, 54–69. |
[35] |
Hlaváček P, Kopáček M, Kopáčková L, et al. (2023) Barriers for and standpoints of key actors in the implementation of smart village projects as a tool for the development of rural areas. J Rural Stud 103:103098. https://doi.org/10.1016/j.jrurstud.2023.103098 doi: 10.1016/j.jrurstud.2023.103098
![]() |
[36] |
Gallardo R (2020) Bringing communities into the digital age. State Local Govern Rev 51: 233–241. https://doi.org/10.1177/0160323X20926696. doi: 10.1177/0160323X20926696
![]() |
[37] | Slee B (2020) Smart villages and the European green deal: making the connections. Available from: https://enrd.ec.europa.eu/publications/smart-villages-and-european-green-deal-making-connections_en. (Accessed 10 December 2022). |
[38] |
Philip L, Williams F (2019) Healthy ageing in smart villages? Observations from the field. Eur Countrys 11: 616–633. https://doi.org/10.2478/euco-2019-0034 doi: 10.2478/euco-2019-0034
![]() |
[39] |
Liu L, Ross H, Ariyawardana A (2023) Building rural resilience through agri-food value chains and community interactions: a vegetable case study in wuhan, China. J Rural Stud 101: 103047. https://doi.org/10.1016/j.jrurstud.2023.103047 doi: 10.1016/j.jrurstud.2023.103047
![]() |
[40] | Barca F (2009) Towards a place-based social agenda for the EU. Report working paper. |
[41] |
Barca F, McCann P, Rodríguez‐Pose A (2012) The case for regional development intervention: Place‐based versus place‐neutral approaches. J Reg Sci 52: 134–152. https://doi.org/10.1111/j.1467-9787.2011.00756.x doi: 10.1111/j.1467-9787.2011.00756.x
![]() |
[42] | Bacchi C (2009) Analysing Policy: What's the Problem Represented to Be? Pearson Australia: Sydney. |
![]() |
![]() |
1. | Khalil S. Al-Basyouni, Elsayed M. Elsayed, On Some Solvable Systems of Some Rational Difference Equations of Third Order, 2023, 11, 2227-7390, 1047, 10.3390/math11041047 | |
2. | Ibraheem M. Alsulami, E. M. Elsayed, On a class of nonlinear rational systems of difference equations, 2023, 8, 2473-6988, 15466, 10.3934/math.2023789 | |
3. | E.M. Elsayed, B.S. Alofi, The periodic nature and expression on solutions of some rational systems of difference equations, 2023, 74, 11100168, 269, 10.1016/j.aej.2023.05.026 | |
4. | Hashem Althagafi, Dynamics of difference systems: a mathematical study with applications to neural systems, 2025, 10, 2473-6988, 2869, 10.3934/math.2025134 |