Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Hamiltonian conserved Crank-Nicolson schemes for a semi-linear wave equation based on the exponential scalar auxiliary variables approach

  • Received: 17 April 2024 Revised: 29 June 2024 Accepted: 08 July 2024 Published: 15 July 2024
  • The keys to constructing numerical schemes for nonlinear partial differential equations are accuracy, handling of the nonlinear terms, and physical properties (energy dissipation or conservation). In this paper, we employ the exponential scalar auxiliary variable (E-SAV) method to solve a semi-linear wave equation. By defining two different variables and combining the Crank−Nicolson scheme, two semi-discrete schemes are proposed, both of which are second-order and maintain Hamiltonian conservation. Two numerical experiments are presented to verify the reliability of the theory.

    Citation: Huanhuan Li, Lei Kang, Meng Li, Xianbing Luo, Shuwen Xiang. Hamiltonian conserved Crank-Nicolson schemes for a semi-linear wave equation based on the exponential scalar auxiliary variables approach[J]. Electronic Research Archive, 2024, 32(7): 4433-4453. doi: 10.3934/era.2024200

    Related Papers:

    [1] Xiaoming Su, Jiahui Wang, Adiya Bao . Stability analysis and chaos control in a discrete predator-prey system with Allee effect, fear effect, and refuge. AIMS Mathematics, 2024, 9(5): 13462-13491. doi: 10.3934/math.2024656
    [2] Kottakkaran Sooppy Nisar, G Ranjith Kumar, K Ramesh . The study on the complex nature of a predator-prey model with fractional-order derivatives incorporating refuge and nonlinear prey harvesting. AIMS Mathematics, 2024, 9(5): 13492-13507. doi: 10.3934/math.2024657
    [3] Nehad Ali Shah, Iftikhar Ahmed, Kanayo K. Asogwa, Azhar Ali Zafar, Wajaree Weera, Ali Akgül . Numerical study of a nonlinear fractional chaotic Chua's circuit. AIMS Mathematics, 2023, 8(1): 1636-1655. doi: 10.3934/math.2023083
    [4] A. Q. Khan, Ibraheem M. Alsulami . Complicate dynamical analysis of a discrete predator-prey model with a prey refuge. AIMS Mathematics, 2023, 8(7): 15035-15057. doi: 10.3934/math.2023768
    [5] Xiao-Long Gao, Hao-Lu Zhang, Xiao-Yu Li . Research on pattern dynamics of a class of predator-prey model with interval biological coefficients for capture. AIMS Mathematics, 2024, 9(7): 18506-18527. doi: 10.3934/math.2024901
    [6] Weili Kong, Yuanfu Shao . The effects of fear and delay on a predator-prey model with Crowley-Martin functional response and stage structure for predator. AIMS Mathematics, 2023, 8(12): 29260-29289. doi: 10.3934/math.20231498
    [7] Asharani J. Rangappa, Chandrali Baishya, Reny George, Sina Etemad, Zaher Mundher Yaseen . On the existence, stability and chaos analysis of a novel 4D atmospheric dynamical system in the context of the Caputo fractional derivatives. AIMS Mathematics, 2024, 9(10): 28560-28588. doi: 10.3934/math.20241386
    [8] Yao Shi, Zhenyu Wang . Bifurcation analysis and chaos control of a discrete fractional-order Leslie-Gower model with fear factor. AIMS Mathematics, 2024, 9(11): 30298-30319. doi: 10.3934/math.20241462
    [9] Guilin Tang, Ning Li . Chaotic behavior and controlling chaos in a fast-slow plankton-fish model. AIMS Mathematics, 2024, 9(6): 14376-14404. doi: 10.3934/math.2024699
    [10] Xuyang Cao, Qinglong Wang, Jie Liu . Hopf bifurcation in a predator-prey model under fuzzy parameters involving prey refuge and fear effects. AIMS Mathematics, 2024, 9(9): 23945-23970. doi: 10.3934/math.20241164
  • The keys to constructing numerical schemes for nonlinear partial differential equations are accuracy, handling of the nonlinear terms, and physical properties (energy dissipation or conservation). In this paper, we employ the exponential scalar auxiliary variable (E-SAV) method to solve a semi-linear wave equation. By defining two different variables and combining the Crank−Nicolson scheme, two semi-discrete schemes are proposed, both of which are second-order and maintain Hamiltonian conservation. Two numerical experiments are presented to verify the reliability of the theory.



    Throughout the paper, we work over an algebraically closed field k of characteristic zero. Let C be a nonsingular projective curve of genus g0, and L be a very ample line bundle on C. The complete linear system |L| embeds C into a projective space Pr:=P(H0(C,L)). For an integer k0, the k-th secant variety

    Σk=Σk(C,L)Pr

    of C in Pr is the Zariski closure of the union of (k+1)-secant k-planes to C.

    Assume that degL2g+2k+1. Then the k-th secant variety Σk can be defined by using the secant sheaf Ek+1,L and the secant bundle Bk(L) as follows. Denote by Cm the m-th symmetric product of C. Let

    σk+1:Ck×CCk+1

    be the morphism sending (ξ,x) to ξ+x, and p:Ck×CC the projection to C. The secant sheaf Ek+1,L on Ck+1 associated to L is defined by

    Ek+1,L:=σk+1,pL,

    which is a locally free sheaf of rank k+1. Notice that the fiber of Ek+1,L over ξCk+1 can be identified with H0(ξ,L|ξ). The secant bundle of k-planes over Ck+1 is

    Bk(L):=P(Ek+1,L)

    equipped with the natural projection πk:Bk(L)Ck+1. We say that a line bundle L on a variety X separates m+1 points if the natural restriction map H0(X,L)H0(ξ,L|ξ) is surjective for any effective zero-cycle ξX with length(ξ)=m+1. Notice that a line bundle L is globally generated if and only if L separates 1 point, and L is very ample if and only if L separates 2 points. Since degL2g+k, it follows from Riemann–Roch that L separates k+1 points. Then the tautological bundle OBk(L)(1) is globally generated. We have natural identifications

    H0(Bk(L),OBk(L)(1))=H0(Ck+1,Ek+1,)=H0(C,L),

    and therefore, the complete linear system |OBk(L)(1)| induces a morphism

    βk:Bk(L)Pr=P(H0(C,L)).

    The k-th secant variety Σk=Σk(C,L) of C in Pr can be defined to be the image βk(Bk(L)). Bertram proved that βk:Bk(L)Σk is a resolution of singularities (see [1,Section 1]).

    It is clear that there are natural inclusions

    C=Σ0Σ1Σk1ΣkPr.

    The preimage of Σk1 under the morphism βk is actually a divisor on Bk(L). Thus there exits a natural morphism from Bk(L) to the blowup of Σk along Σk1. Vermeire proved that B1(L) is indeed the blowup of Σ1 along Σ0=C ([3,Theorem 3.9]). In the recent work [2], we showed that Bk(L) is the normalization of the blowup of Σk along Σk1 ([2,Proposition 5.13]), and raised the problem asking whether Bk(L) is indeed the blowup itself ([2,Problem 6.1]). The purpose of this paper is to give an affirmative answer to this problem by proving the following:

    Theorem 1.1. Let C be a nonsingular projective curve of genus g, and L be a line bundle on C. If degL2g+2k+1 for an integer k1, then the morphism βk:Bk(L)Σk(C,L) is the blowup of Σk(C,L) along Σk1(C,L).

    To prove the theorem, we utilize several line bundles defined on symmetric products of the curve. Let us recall the definitions here and refer the reader to [2] for further details. Let

    Ck+1=C××Ck+1times

    be the (k+1)-fold ordinary product of the curve C, and pi:Ck+1C be the projection to the i-th component. The symmetric group Sk+1 acts on p1Lpk+1L in a natural way: a permutation μSk sends a local section s1sk+1 to sμ(1)sμ(k+1). Then p1Lpk+1L is invariant under the action of Sk+1, so it descends to a line bundle Tk+1(L) on the symmetric product Ck+1 via the quotient map q:Ck+1Ck+1. We have qTk+1(L)=p1Lpk+1L. Define a divisor δk+1 on Ck+1 such that the associated line bundle OCk+1(δk+1)=det(σk+1,(OCk×C)). Let

    Ak+1,L:=Tk+1(L)(2δk+1)

    be a line bundle on Ck+1. When k=0, we use the convention that T1(L)=E1,L=L and δ1=0.

    The main ingredient in the proof of Theorem 1.1 is to study the positivity of the line bundle Ak+1,L. Some partial results and their geometric consequences have been discussed in [2,Lemma 5.12 and Proposition 5.13]. Along this direction, we establish the following proposition to give a full picture in a general result describing the positivity of the line bundle Ak+1,L. This may be of independent interest.

    Proposition 1.2. Let C be a nonsingular projective curve of genus g, and L be a line bundle on C. If degL2g+2k+ for integers k,0, then the line bundle Ak+1,L on Ck+1 separates +1 points.

    In particular, if degL2g+2k, then Ak+1,L is globally generated, and if degL2g+2k+1, then Ak+1,L is very ample.

    In this section, we prove Theorem 1.1. We begin with showing Proposition 1.2.

    Proof of Proposition 1.2. We proceed by induction on k and . If k=0, then A1,L=L and degL2g+. It immediately follows from Riemann–Roch that L separates +1 points. If =0, then degL2g+2k. By [2,Lemma 5.12], Ak+1,L separates 1 point.

    Assume that k1 and 1. Let z be a length +1 zero-dimensional subscheme of Ck+1. We aim to show that the natural restriction map

    rz,k+1,L:H0(Ck+1,Ak+1,L)H0(z,Ak+1,L|z)

    is surjective. We can choose a point pC such that Xp contains a point in the support of z, where Xp is the divisor on Ck+1 defined by the image of the morphism CkCk+1 sending ξ to ξ+p. Let y:=zXp be the scheme-theoretic intersection, and Ix:=(Iz:IXp), which defines a subscheme x of z in Ck+1, where Iz and IXp are ideal sheaves of z and Xp in Ck+1, respectively. We have the following commutative diagram

    rz,k+1,L:H0(Ck+1,Ak+1,L)H0(z,Ak+1,L|z)

    where all rows and columns are short exact sequences. By tensoring with Ak+1,L and taking the global sections of last two rows, we obtain the commutative diagram with exact sequences

    rz,k+1,L:H0(Ck+1,Ak+1,L)H0(z,Ak+1,L|z)

    in which we use the fact that H1(Ak+1,L(Xp))=0 (see the proof of [2,Lemma 5.12]). Note that Ak+1,L(Xp)=Ak+1,L(p) and Ak+1,L|XpAk,L(2p), where we identify Xp=Ck.

    Since length(y)length(z)=+1 and degL(2p)2g+2(k1)+, the induction hypothesis on k implies that ry,k,L(2p) is surjective. On the other hand, if x=, which means that z is a subscheme of Xp, then trivially rx,k+1,L(p) is surjective. Otherwise, suppose that x. By the choice of Xp, we know that y is not empty, and therefore, we have length(x)length(z)1=. Now, degL(p)2g+2k+(1), so the induction hypothesis on implies that L(p) separates points. In particular, rx,k+1,L(p) is surjective. Hence rz,k+1,L is surjective as desired.

    Lemma 2.1. Let φ:XY be a finite surjective morphism between two varieties. If φ1(q) is scheme theoretically a reduced point for each closed point qY, then φ is an isomorphism.

    Proof. Note that φ is proper, injective, and unramifield. Then it is indeed a classical result that φ is an isomorphism. Here we give a short proof for reader's convenience. The problem is local. We may assume that X=SpecB and Y=SpecA for some rings A,B. We may regard A as a subring of B. For any qY, let p:=φ1(q)X. It is enough to show that the localizations A:=Amq and B:=Bmp are isomorphic. Let mq,mp be the maximal ideals of the local rings A,B, respectively. The assumption says that mqB=mp. We have

    B/AAA/mq=B/(mqB+A)=B/(mp+A)=0.

    By Nakayama lemma, we obtain B/A=0.

    We keep using the notations used in the introduction. Recall that C is a nonsingular projective curve of genus g0, and L is a very ample line bundle on C. Consider ξkCk and xC, and let ξ:=ξk+xCk+1. The divisor ξk spans a k-secant (k1)-plane P(H0(ξk,L|ξk)) to C in P(H0(C,L)), and it is naturally embedded in the (k+1)-secant k-plane P(H0(ξ,L|ξ)) spanned by ξ. This observation naturally induces a morphism

    αk,1:Bk1(L)×CBk(L).

    To see it in details, we refer to [1,p.432,line –5]. We define the relative secant variety Z=Zk1 of (k1)-planes in Bk(L) to be the image of the morphism αk,1. The relative secant variety Z is a divisor in the secant bundle Bk(L), and it is the preimage of (k1)-th secant variety Σk1 under the morphism βk. It plays the role of transferring the codimension two situation (Σk,Σk1) into the codimension one situation (Bk(L),Z). We collect several properties of Z.

    Proposition 2.2. ([2,Proposition 3.15,Theorem 5.2,and Proposition 5.13]) Recall the situation described in the diagram

    αk,1:Bk1(L)×CBk(L).

    Let H be the pull back of a hyperplane divisor of Pr by βk, and let IΣk1|Σk be the ideal sheaf on Σk defining the subvariety Σk1. Then one has

    1. OBk(L)((k+1)HZ)=πkAk+1,L.

    2. Riβk,OBk(L)(Z)={IΣk1|Σkifi=00ifi>0.

    3. IΣk1|ΣkOBk(L)=OBk(L)(Z).

    As a direct consequence of the above proposition, we have an identification

    H0(Ck+1,Ak+1,L)=H0(Σk,IΣk1|Σk(k+1)).

    We are now ready to give the proof of Theorem 1.1.

    Proof of Theorem 1.1. Let

    b:˜Σk:=BlΣk1ΣkΣk

    be the blowup of Σk along Σk1 with exceptional divisor E. As IΣk1|ΣkOBk(L)=OBk(L)(Z) (see Proposition 2.2), there exists a morphism α from Bk(L) to the blowup ˜Σk fitting into the following commutative diagram

    b:˜Σk:=BlΣk1ΣkΣk

    We shall show that α is an isomorphism.

    Write V:=H0(Σk,IΣk1|Σk(k+1)). As proved in [2,Theorem 5.2], IΣk1|Σk(k+1) is globally generated by V. This particularly implies that on the blowup ˜Σk one has a surjective morphism VO˜ΣkbOΣk(k+1)(E), which induces a morphism

    γ:˜ΣkP(V).

    On the other hand, one has an identification V=H0(Ck+1,Ak+1,L) by Proposition 2.2. Recall from Proposition 1.2 that Ak+1,L is very ample. So the complete linear system |V|=|Ak+1,L| on Ck+1 induces an embedding

    ψ:Ck+1P(V).

    Also note that α(bOΣk(k+1)(E))=βkOΣk(k+1)(Z)=πkAk+1,L by Proposition 2.2. Hence we obtain the following commutative diagram

    ψ:Ck+1P(V).

    Take an arbitrary closed point x˜Σk, and consider its image x:=b(x) on Σk. There is a nonnegative integer mk such that xΣmΣm1Σk. In addition, the point x uniquely determines a degree m+1 divisor ξm+1,x on C in such a way that ξm+1,x=ΛC, where Λ is a unique (m+1)-secant m-plane to C with xΛ (see [2,Definition 3.12]). By [2,Proposition 3.13], β1k(x)Ckm and πk(β1k(x))=ξm+1,x+CkmCk+1. Consider also x:=γ(x) which lies in the image of ψ. As ψ is an embedding, we may think x as a point of Ck+1. Now, through forming fiber products, we see scheme-theoretically

    α1(x)π1k(x)β1k(x).

    However, the restriction of the morphism πk on β1k(x) gives an embedding of Ckm into Ck+1. This suggests that π1k(x)β1k(x) is indeed a single reduced point, and so is α1(x). Finally by Lemma 2.1, α is an isomorphism as desired.



    [1] V. E. Zakharov, Exact solutions to the problem of the parametric interaction of three-dimensional wave packets, Sov. Phys. Dokl., 21 (1976).
    [2] A. D. D. Craik, J. A. Adam, Evolution in space and time of resonant wave triads-Ⅰ. The'pump-wave approximation', Proc. R. Soc. Lond. A. Math. Phys. Sci., 363 (1978), 243–255. https://doi.org/10.1098/rspa.1978.0166 doi: 10.1098/rspa.1978.0166
    [3] I. Ahmed, A. R. Seadawy, D. Lu, Mixed lump-solitons, periodic lump and breather soliton solutions for (2+ 1)-dimensional extended Kadomtsev-Petviashvili dynamical equation, Int. J. Mod. Phys. B, 33 (2019), 1950019. https://doi.org/10.1142/S021797921950019X doi: 10.1142/S021797921950019X
    [4] Y. L. Ma, B. Q. Li, Interactions between soliton and rogue wave for a (2+1)-dimensional generalized breaking soliton system: hidden rogue wave and hidden soliton, Comput. Math. Appl., 78 (2019), 827–839. https://doi.org/10.1016/j.camwa.2019.03.002 doi: 10.1016/j.camwa.2019.03.002
    [5] A. Yusuf, T. A. Sulaiman, M. Inc, M. Bayram, Breather wave, lump-periodic solutions and some other interaction phenomena to the Caudrey-Dodd-Gibbon equation, Eur. Phys. J. Plus, 135 (2020), 1–8. https://doi.org/10.1140/epjp/s13360-020-00566-7 doi: 10.1140/epjp/s13360-020-00566-7
    [6] K. Hosseini, M. Samavat, M. Mirzazadeh, S. Salahshour, D. Baleanu, A new (4+1)-dimensional burgers equation: its backlund transformation and real and complex N-Kink solitons, Int. J. Appl. Comput. Math., 8 (2022), 172. https://doi.org/10.1007/s40819-022-01359-5 doi: 10.1007/s40819-022-01359-5
    [7] B. Q. Li, Y. L. Ma, Multiple-lump waves for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation arising from incompressible fluid, Comput. Math. Appl., 76 (2018), 204–214. https://doi.org/10.1016/j.camwa.2018.04.015 doi: 10.1016/j.camwa.2018.04.015
    [8] W. X. Ma, Riemann-Hilbert problems and soliton solutions of type (-λ,λ) reduced nonlocal integrable mKdV hierarchies, Mathematics, 10 (2022), 870. https://doi.org/10.3390/math10060870 doi: 10.3390/math10060870
    [9] Z. Zhao, L. He, M-lump, high-order breather solutions and interaction dynamics of a generalized (2+1)-dimensional nonlinear wave equation, Nonlinear Dyn., 100 (2020), 2753–2765. https://doi.org/10.1007/s11071-020-05611-9 doi: 10.1007/s11071-020-05611-9
    [10] J. G. Liu, M. S. Osman, Nonlinear dynamics for different nonautonomous wave structures solutions of a 3D variable-coefficient generalized shallow water wave equation, Chin. J. Phys., 77 (2022), 1618–1624. https://doi.org/10.1016/j.cjph.2021.10.026 doi: 10.1016/j.cjph.2021.10.026
    [11] U. Younas, T. A. Sulaiman, J. Ren, A. Yusuf, Lump interaction phenomena to the nonlinear ill-posed Boussinesq dynamical wave equation, J. Geom. Phys., 178 (2022), 104586. https://doi.org/10.1016/j.geomphys.2022.104586 doi: 10.1016/j.geomphys.2022.104586
    [12] H. F. Ismael, H. Bulut, M. S. Osman, The N-soliton, fusion, rational and breather solutions of two extensions of the (2+1)-dimensional Bogoyavlenskii-Schieff equation, Nonlinear Dyn., 107 (2022), 3791–3803. https://doi.org/10.1007/s11071-021-07154-z doi: 10.1007/s11071-021-07154-z
    [13] S. Saifullah, S. Ahmad, M. A. Alyami, M. Inc, Analysis of interaction of lump solutions with kink-soliton solutions of the generalized perturbed KdV equation using Hirota bilinear approach, Phys. Lett. A, 454 (2022), 128503. https://doi.org/10.1016/j.physleta.2022.128503 doi: 10.1016/j.physleta.2022.128503
    [14] Q. J. Feng, G. Q. Zhang, Lump solution, lump-stripe solution, rogue wave solution and periodic solution of the (2+1)-dimensional Fokas system, Nonlinear Dyn., 112 (2024), 4775–4792. https://doi.org/10.1007/s11071-023-09243-7 doi: 10.1007/s11071-023-09243-7
    [15] A. Degasperis, S. Lombardo, M. Sommacal, Integrability and linear stability of nonlinear waves, J. Nonlinear Sci., 28 (2018), 1251–1291. https://doi.org/10.1007/s00332-018-9450-5 doi: 10.1007/s00332-018-9450-5
    [16] M. J. Ablowitz, Integrability and nonlinear waves, Emerging Front. Nonlinear Sci., 32 (2020), 161–184. https://doi.org/10.1007/978-3-030-44992-6_7 doi: 10.1007/978-3-030-44992-6_7
    [17] M. He, P. Sun, Energy-preserving finite element methods for a class of nonlinear wave equations, Appl. Numer. Math., 157 (2020), 446–469. https://doi.org/10.1016/j.apnum.2020.06.016 doi: 10.1016/j.apnum.2020.06.016
    [18] M. He, J. Tian, P. Sun, Z. Zhang, An energy-conserving finite element method for nonlinear fourth-order wave equations, Appl. Numer. Math., 183 (2023), 333–354. https://doi.org/10.1016/j.apnum.2022.09.011 doi: 10.1016/j.apnum.2022.09.011
    [19] Y. Shi, X. Yang, Pointwise error estimate of conservative difference scheme for supergeneralized viscous Burgers equation, Electron. Res. Arch., 32 (2024), 1471–1497. https://doi.org/10.3934/era.2024068 doi: 10.3934/era.2024068
    [20] D. Furihata, Finite-difference schemes for nonlinear wave equation that inherit energy conservation property, J. Comput. Appl. Math., 134 (2001), 37–57. https://doi.org/10.1016/S0377-0427(00)00527-6 doi: 10.1016/S0377-0427(00)00527-6
    [21] Y. Liao, L. B. Liu, L. Ye, T. Liu, Uniform convergence analysis of the BDF2 scheme on Bakhvalov-type meshes for a singularly perturbed Volterra integro-differential equation, Appl. Math. Lett., 145 (2023), 108755. https://doi.org/10.1016/j.aml.2023.108755 doi: 10.1016/j.aml.2023.108755
    [22] Z. Zhou, H. Zhang, X. Yang, CN ADI fast algorithm on non-uniform meshes for the three-dimensional nonlocal evolution equation with multi-memory kernels in viscoelastic dynamics, Appl. Math. Comput., 474 (2024), 128680. https://doi.org/10.1016/j.amc.2024.128680 doi: 10.1016/j.amc.2024.128680
    [23] Y. O. Tijani A. R. Appadu, Unconditionally positive NSFD and classical finite difference schemes for biofilm formation on medical implant using Allen-Cahn equation, Demonstratio Math., 55 (2022), 40–60. https://doi.org/10.1515/dema-2022-0006 doi: 10.1515/dema-2022-0006
    [24] H. Zhang, X. Yang, Y. Liu, Y Liu, An extrapolated CN-WSGD OSC method for a nonlinear time fractional reaction-diffusion equation, Appl. Numer. Math., 157 (2020), 619–633. https://doi.org/10.1016/j.apnum.2020.07.017 doi: 10.1016/j.apnum.2020.07.017
    [25] X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80. https://doi.org/10.1007/s10915-024-02511-7 doi: 10.1007/s10915-024-02511-7
    [26] S. F. Bradford, B. F. Sanders, Finite-volume models for unidirectional, nonlinear, dispersive waves, J. Waterw. Port. Coast., 128 (2002), 173–182. https://doi.org/10.1061/(ASCE)0733-950X(2002)128:4(173) doi: 10.1061/(ASCE)0733-950X(2002)128:4(173)
    [27] X. Yang, Z. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. https://doi.org/10.1016/j.aml.2023.108972 doi: 10.1016/j.aml.2023.108972
    [28] J. Shen, T. Tang, L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer Science Business Media, 2011.
    [29] M. Dehghan, A. Taleei, Numerical solution of nonlinear Schrödinger equation by using time-space-pseudo-spectral method, Numer. Meth. Part. Differ. Equations: Int. J., 26 (2010), 979–992. https://doi.org/10.1002/num.20468 doi: 10.1002/num.20468
    [30] T. Lu, W. Cai, A Fourier spectral-discontinuous Galerkin method for time-dependent 3-D Schrödinger-Poisson equations with discontinuous potentials, J. Comput. Appl. Math., 220 (2008), 588–614. https://doi.org/10.1016/j.cam.2007.09.025 doi: 10.1016/j.cam.2007.09.025
    [31] Y. Shi, X. Yang, A time two-grid difference method for nonlinear generalized viscous Burgers equation, J. Math. Chem., 62 (2024), 1323–1356. https://doi.org/10.1007/s10910-024-01592-x doi: 10.1007/s10910-024-01592-x
    [32] M. Yao, Z. Weng, A numerical method based on operator splitting collocation scheme for nonlinear Schrödinger equation, Math. Comput. Appl., 29 (2024), 6. https://doi.org/10.3390/mca29010006 doi: 10.3390/mca29010006
    [33] K. J. Ansari, M. Izadi, S. Noeiaghdam, Enhancing the accuracy and efficiency of two uniformly convergent numerical solvers for singularly perturbed parabolic convection- diffusion-reaction problems with two small parameters, Demonstratio Math., 57 (2024), 20230144. https://doi.org/10.1515/dema-2023-0144 doi: 10.1515/dema-2023-0144
    [34] Z. Guan, C. Wang, S. M. Wise, A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation, Numer. Math., 128 (2014), 377–406. https://doi.org/10.1007/s00211-014-0608-2 doi: 10.1007/s00211-014-0608-2
    [35] Z. Guan, J. S. Lowengrub, C. Wang, S. M. Wise, Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations, J. Comput. Phys., 277 (2014), 48–71. https://doi.org/10.1016/j.jcp.2014.08.001 doi: 10.1016/j.jcp.2014.08.001
    [36] J. Shen, C. Wang, X. Wang, S. M. Wise, Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), 105–125. https://doi.org/10.1137/110822839 doi: 10.1137/110822839
    [37] X. Feng, T. Tang, J. Yang, Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models, East Asian J. Appl. Math., 3 (2013), 59–80. https://doi.org/10.4208/eajam.200113.220213a doi: 10.4208/eajam.200113.220213a
    [38] J. Shen, X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., 28 (2010), 1669–1691. https://doi.org/10.3934/dcds.2010.28.1669 doi: 10.3934/dcds.2010.28.1669
    [39] L. Ju, X. Li, Z. Qiao, H. Zhang, Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection, Math. Comput., 87 (2018), 1859-1885. https://doi.org/10.1090/mcom/3262 doi: 10.1090/mcom/3262
    [40] L. Ju, J. Zhang, Q. Du, Fast and accurate algorithms for simulating coarsening dynamics of Cahn-Hilliard equations, Comput. Mater. Sci., 108 (2015), 272–282. https://doi.org/10.1016/j.commatsci.2015.04.046 doi: 10.1016/j.commatsci.2015.04.046
    [41] J. Zhao, Q. Wang, X. Yang, Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach, Int. J. Numer. Meth. Eng., 110 (2017), 279–300. https://doi.org/10.1002/nme.5372 doi: 10.1002/nme.5372
    [42] J. Shen, J. Xu, Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows, SIAM J. Numer. Anal., 56 (2018), 2895–2912. https://doi.org/10.1137/17M1159968 doi: 10.1137/17M1159968
    [43] J. Shen, J. Xu, J. Yang, A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev., 61 (2019), 474–506. https://doi.org/10.1137/17M1150153 doi: 10.1137/17M1150153
    [44] Z. Liu, X. Li, The exponential scalar auxiliary variable (E-SAV) approach for phase field models and its explicit computing, SIAM J. Sci. Comput., 42 (2020), B630–B655. https://doi.org/10.1137/19M1305914 doi: 10.1137/19M1305914
    [45] F. Huang, J. Shen, Z. Yang, A highly efficient and accurate new scalar auxiliary variable approach for gradient flows, SIAM J. Sci. Comput., 42 (2020), A2514–A2536. https://doi.org/10.1137/19M1298627 doi: 10.1137/19M1298627
    [46] Z. Liu, X. Li, A highly efficient and accurate exponential semi-implicit scalar auxiliary variable (ESI-SAV) approach for dissipative system, J. Comput. Phys., 447 (2021), 110703. https://doi.org/10.1016/j.jcp.2021.110703 doi: 10.1016/j.jcp.2021.110703
    [47] C. Jiang, W. Cai, Y. Wang, A linearly implicit and local energy-preserving scheme for the sine-Gordon equation based on the invariant energy quadratization approach, J. Sci. Comput., 80 (2019), 1629–1655. https://doi.org/10.1007/s10915-019-01001-5 doi: 10.1007/s10915-019-01001-5
    [48] D. Li, W. Sun, Linearly implicit and high-order energy-conserving schemes for nonlinear wave equations, J. Sci. Comput., 83 (2020), 1–17. https://doi.org/10.1007/s10915-020-01245-6 doi: 10.1007/s10915-020-01245-6
    [49] N. Wang, M. Li, C. Huang, Unconditional energy dissipation and error estimates of the SAV Fourier Spectral Method for nonlinear fractional generalized wave equation, J. Sci. Comput., 88 (2021), 19. https://doi.org/10.1007/s10915-021-01534-8 doi: 10.1007/s10915-021-01534-8
    [50] F. Yu, M. Chen, Error analysis of the Crank-Nicolson SAV method for the Allen-Cahn equation on variable grids, Appl. Math. Lett., 125 (2022), 107768. https://doi.org/10.1016/j.aml.2021.107768 doi: 10.1016/j.aml.2021.107768
    [51] L. Ju, X. Li, Z. Qiao, Stabilized exponential-SAV schemes preserving energy dissipation law and maximum bound principle for the Allen-Cahn type equations, J. Sci. Comput., 92 (2022), 66. https://doi.org/10.1007/s10915-022-01921-9 doi: 10.1007/s10915-022-01921-9
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(903) PDF downloads(49) Cited by(0)

Figures and Tables

Figures(1)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog