Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Nontrivial solutions for a Hadamard fractional integral boundary value problem

  • In this paper, we studied a Hadamard-type fractional Riemann-Stieltjes integral boundary value problem. The existence of nontrivial solutions was obtained by using the fixed-point method when the nonlinearities can be superlinear, suberlinear, and have asymptotic linear growth. Our results improved and generalized some results of the existing literature.

    Citation: Keyu Zhang, Qian Sun, Jiafa Xu. Nontrivial solutions for a Hadamard fractional integral boundary value problem[J]. Electronic Research Archive, 2024, 32(3): 2120-2136. doi: 10.3934/era.2024096

    Related Papers:

    [1] Jinheng Liu, Kemei Zhang, Xue-Jun Xie . The existence of solutions of Hadamard fractional differential equations with integral and discrete boundary conditions on infinite interval. Electronic Research Archive, 2024, 32(4): 2286-2309. doi: 10.3934/era.2024104
    [2] David Barilla, Martin Bohner, Giuseppe Caristi, Shapour Heidarkhani, Shahin Moradi . Existence results for a discrete fractional boundary value problem. Electronic Research Archive, 2025, 33(3): 1541-1565. doi: 10.3934/era.2025073
    [3] Liyan Wang, Jihong Shen, Kun Chi, Bin Ge . On a class of double phase problem with nonlinear boundary conditions. Electronic Research Archive, 2023, 31(1): 386-400. doi: 10.3934/era.2023019
    [4] Qingcong Song, Xinan Hao . Positive solutions for fractional iterative functional differential equation with a convection term. Electronic Research Archive, 2023, 31(4): 1863-1875. doi: 10.3934/era.2023096
    [5] Yutong Chen, Jiabao Su . Resonant problems for non-local elliptic operators with unbounded nonlinearites. Electronic Research Archive, 2023, 31(9): 5716-5731. doi: 10.3934/era.2023290
    [6] Yijun Chen, Yaning Xie . A kernel-free boundary integral method for reaction-diffusion equations. Electronic Research Archive, 2025, 33(2): 556-581. doi: 10.3934/era.2025026
    [7] Yihui Xu, Benoumran Telli, Mohammed Said Souid, Sina Etemad, Jiafa Xu, Shahram Rezapour . Stability on a boundary problem with RL-Fractional derivative in the sense of Atangana-Baleanu of variable-order. Electronic Research Archive, 2024, 32(1): 134-159. doi: 10.3934/era.2024007
    [8] Eman A. A. Ziada, Hind Hashem, Asma Al-Jaser, Osama Moaaz, Monica Botros . Numerical and analytical approach to the Chandrasekhar quadratic functional integral equation using Picard and Adomian decomposition methods. Electronic Research Archive, 2024, 32(11): 5943-5965. doi: 10.3934/era.2024275
    [9] Mufit San, Seyma Ramazan . A study for a higher order Riemann-Liouville fractional differential equation with weakly singularity. Electronic Research Archive, 2024, 32(5): 3092-3112. doi: 10.3934/era.2024141
    [10] Ahmed Alsaedi, Madeaha Alghanmi, Bashir Ahmad, Boshra Alharbi . Uniqueness results for a mixed $ p $-Laplacian boundary value problem involving fractional derivatives and integrals with respect to a power function. Electronic Research Archive, 2023, 31(1): 367-385. doi: 10.3934/era.2023018
  • In this paper, we studied a Hadamard-type fractional Riemann-Stieltjes integral boundary value problem. The existence of nontrivial solutions was obtained by using the fixed-point method when the nonlinearities can be superlinear, suberlinear, and have asymptotic linear growth. Our results improved and generalized some results of the existing literature.



    In this work, we are devoted to studying the existence of nontrivial solutions for the Hadamard-type fractional Riemann-Stieltjes integral boundary value problem

    {Dβz(x)=f(x,z(x)),x(1,e),z(1)=δz(1)=0,δz(e)=e1g(x,z(x))dη(x)x, (1.1)

    where Dβ is the Hadamard-type fractional derivative with β(2,3], δz(x)=xdzdx, and the functions f,g,η satisfy the following conditions:

    (H1) f,gC([1,e]×R,R).

    (H2) There exist γi,σiC([1,e],R+) and MiC(R,R+)(i=1,2) such that

    f(x,z)γ1(x)γ2(x)M1(z),g(x,z)σ1(x)σ2(x)M2(z), x[1,e],zR.

    (H3) lim|z|+Mi(z)|z|=0, i=1,2.

    (H4) η is a nondecreasing function in [1,e] with η(1)=0.

    As an important branch of mathematical analysis, fractional calculus can more accurately describe some dynamic processes with memory and heredity characteristics. In view of outstanding advantages of fractional calculus, it has attracted the great attention of many researchers and developed rapidly; we refer the reader to [1,2,3,4,5,6,7,8,9,10]. Moreover, we note that originating from the work of Hadamard in 1892, Hadamard fractional calculus is now successfully applied to describe ultra-slow phenomena in the objective world, such as fracture of materials, creep of rocks, etc. Therefore, it is of great significance to study Hadamard-type fractional problems, see [11,12,13,14,15,16,17,18,19] and the references therein. For example, in [11], the authors used the Guo-Krasnosel'skii fixed point theorem to study the existence and nonexistence of positive solutions for the system of Hadamard fractional differential equations

    {Dα1φp1(Dβ1x(s))=μf1(s,x(s),y(s)),s(1,e),Dα2φp2(Dβ2y(s))=vf2(s,x(s),y(s)),s(1,e),δx(1)=δ2x(1)==δn12x(1)=0, Dγ0x(e)=q2i=1θi1hi(s)Dηiy(s)dHi(s)s,δy(1)=δ2y(1)==δn22y(1)=0, Dη0y(e)=q1j=1ϑj1kj(s)Dγjx(s)dKj(s)s,Dβ1x(1)=Dβ1x(e)=δ(φp1(Dβ1x(1)))=0, Dβ2y(1)=Dβ2y(e)=δ(φp2(Dβ2y(1)))=0,

    where fi(i=1,2) are nonnegative continuous functions on [1,e]×R+×R+ and satisfy some (pi1)superlinear and (pi1)suberlinear growth conditions.

    In [12], the authors studied the following system of Hadamard fractional differential equations with multipoint Hadamard fractional derivative boundary conditions

    {Dpu(t)+w1(t)f(t,v(t),Dq1v(t))=0,n1<pn,t(1,+),Dqv(t)+w2(t)g(t,u(t),Dp1u(t))=0,m1<qm,t(1,+),u(1)=u(1)==u(n2)(1)=0,Dp1u()=k1i=1aiDr1u(ni),v(1)=v(1)==v(m2)(1)=0,Dq1v()=k2j=1bjDr2v(mj),

    where Dϑ are Hadamard-type fractional derivatives of order ϑ{p,q,r1,r2},r1[0,p1],r2[0,q1]. Using the monotone iterative method, they obtained the existence of monotone positive solutions for their considered problems. In [13], the authors used the fixed-point techniques to study the existence and uniqueness results for the following Riemann-Stieltjes integral boundary value problem involving a Hadamard-type fractional differential equation

    {Dνy(x)=f(x,y(x),Dνy(x)),t[1,T],y(1)=0, T1y(x)dZ(x)=μΓ(δ)η1(lnηx)δ1y(x)dxx,η(1,T),

    where f([1,T]×R×RR) satisfies the Lipschitz condition.

    Inspired by the aforesaid works, we use the fixed-point methods to study the nontrivial solutions for the Hadamard-type fractional Riemann-Stieltjes integral boundary value problem (1.1). We consider the two-folds: When the nonlinearities f,g are superlinear and suberlinear, we use some conditions concerning the spectral radius of a new linear operator to obtain our existence theorems. When the nonlinearities f,g are asymptotic linear, we use a fixed-point theorem to obtain a nontrivial solution.

    We first briefly provide the definition of the Hadamard-type fractional derivative, which can be founded in [11,14,15].

    Definition 2.1. Let g:[1,)R, then the Hadamard-type fractional q-order derivative is defined as

    Dqg(x)=1Γ(nq)(xddx)nx1(lnxlny)nq1g(y)dyy,n1<q<n,

    where n=[q]+1,[q] means the integer part of q, and ln()=loge().

    Now, we calculate the Green's function for (1.1).

    Lemma 2.2. Let h,V be functions on [1,e], then

    {Dβz(x)=h(x),x(1,e),z(1)=δz(1)=0,δz(e)=e1V(x)dη(x)x

    has a solution

    z(x)=e1Gβ(x,y)h(y)dyy+(lnx)β1β1e1V(x)dη(x)x,

    where

    Gβ(x,y)=1Γ(β){(lnx)β1(1lny)β2(lnxlny)β1,1yxe,(lnx)β1(1lny)β2,1xye.

    Proof. We first consider the problem

    {Dβz(x)=h(x),x(1,e),z(1)=δz(1)=δz(e)=0. (2.1)

    By the methods of [15], we can obtain

    z(x)=c1(lnx)β1+c2(lnx)β2+c3(lnx)β31Γ(β)x1(lnxlny)β1h(y)dyy,

    where ciR,i=1,2,3. The condition z(1)=δz(1)=0 implies that c2=c3=0. Furthermore, from δz(e)=0, we find

    z(e)=c11Γ(β)e1(1lns)β2h(s)dss=0,

    then

    z(x)=1Γ(β)e1(lnx)β1(1lny)β2h(y)dyy1Γ(β)x1(lnxlny)β1h(y)dyy=e1Gβ(x,y)h(y)dyy. (2.2)

    Next, we consider the problem

    {Dβz(x)=0,x(1,e),z(1)=δz(1)=0,δz(e)=e1V(x)dη(x)x, (2.3)

    which yields that

    z(x)=˜c1(lnx)β1+˜c2(lnx)β2+˜c3(lnx)β3,

    where ˜ciR, i=1,2,3. Similarly, ˜c2=˜c3=0. Consequently, we get

    δz(e)=(β1)˜c1=e1V(x)dη(x)x,

    and

    z(x)=(lnx)β1β1e1V(x)dη(x)x. (2.4)

    Combining (2.1)–(2.4), we can obtain the conclusion of this lemma. This completes the proof.

    Lemma 2.3 (see [1]). The function Gβ satisfies the following properties:

    (I1) Gβ(x,y)0 for x,y[1,e];

    (I2) (lnx)β1Gβ(e,y)Gβ(x,y)Gβ(e,y) for x,y[1,e].

    Let E:=C[1,e],z:=maxx[1,e]|z(x)|,P:={zE:z(x)0,x[1,e]}, then (E,) is a real Banach space and P a cone on E. By Lemma 2.2, we can define an operator as follows:

    (Tz)(x)=e1Gβ(x,y)f(y,z(y))dyy+(lnx)β1β1e1g(x,z(x))dη(x)x, x[1,e], zE.

    Moreover, it is easy to find that if there is a zE{0} such that Tz=z, then this z is a nontrivial solution for (1.1). Hence, we only need to study the existence of nontrivial fixed points of T. For ξi>0(i=1,2), let Lξ1,ξ2:EE be defined as

    (Lξ1,ξ2z)(x)=ξ1e1Gβ(x,y)z(y)dyy+ξ2(lnx)β1β1e1z(x)dη(x)x,x[1,e],zE. (2.5)

    We then see that Lξ1,ξ2 is a linear operator, and we also obtain the following lemma.

    Lemma 2.4. Let P0={zE:z(x)(lnx)β1z,x[1,e]}, then Lξ1,ξ2(P)P0.

    This can be easily obtained from Lemma 2.3 (I2), so we don't need to offer its proof.

    Lemma 2.5. r(Lξ1,ξ2)>0, where r(Lξ1,ξ2) stands for the spectral radius of Lξ1,ξ2.

    Proof. Let (Lξ1z)(x)=ξ1e1Gβ(x,y)z(y)dyy,x[1,e],zE, then for all nN+, we have

    (Lnξ1z)(x)=ξn1e1e1nGβ(x,y1)Gβ(y1,y2)Gβ(yn1,yn)z(yn)dy1y1dy2y2dynyn.

    By Lemma 2.3 (I2), we have

    Lnξ1maxx[1,e](Lnξ11)(x)ξn1maxx[1,e](lnx)β1[e1(lny)β1Gβ(e,y)dyy]n1e1Gβ(e,y)dyy,

    where 1(x)1,x[1,e]. Consequently, the Gelfand's theorem implies that

    r(Lξ1)=lim infnnLnξ1ξ1e1(logy)β1Gβ(e,y)dyy=ξ1Γ(β1)Γ(2β1)>0 for ξ1>0.

    Note that r(Lξ1,ξ2)r(Lξ1)>0. This completes the proof.

    Lemma 2.5 and the Krein-Rutman theorem [20] imply that there exists ζξ1,ξ2P{0} such that

    Lξ1,ξ2ζξ1,ξ2=r(Lξ1,ξ2)ζξ1,ξ2. (2.6)

    Moreover, by Lemma 2.4, we have

    ζξ1,ξ2P0. (2.7)

    Lemma 2.6 (see [21]). Let E be a Banach space, WE a bounded open set, and T:WE a continuous compact operator. If there exists z0E{0} such that

    zTzμz0,zW,μ0,

    then the topological degree deg(IT,W,0)=0.

    Lemma 2.7 (see [21]). Let E be a Banach space, WE a bounded open set with 0W, and T:WE a continuous compact operator. If

    Tzμz,zW,μ1,

    then the topological degree deg(IT,W,0)=1.

    Lemma 2.8 (see [22]). Let T:EE be a completely continuous operator, and L:EE a bounded linear operator. Suppose that 1 isn't an eigenvalue of L and

    limzTzLzz=0,

    then there exists zE such that Tz=z.

    Now, we list some assumptions on f and g, which we need in this section.

    (H5) There exist ξ1,ξ2>0 with r(Lξ1,ξ2)1 such that

    lim inf|z|+f(x,z)|z|>ξ1,lim inf|z|+g(x,z)|z|>ξ2, uniformly for x[1,e].

    (H6) There exist ξ3,ξ4>0 with r(Lξ3,ξ4)<1 such that

    lim sup|z|0|f(x,z)||z|<ξ3,lim sup|z|0|g(x,z)||z|<ξ4, uniformly for x[1,e].

    (H7) There exist ξ5,ξ6>0 with r(Lξ5,ξ6)>1 such that

    lim inf|z|0+f(x,z)|z|>ξ5,lim inf|z|0+g(x,z)|z|>ξ6, uniformly for x[1,e].

    (H8) There exist ξ7,ξ8>0 with r(Lξ7,ξ8)<1 such that

    lim sup|z|+|f(x,z)||z|<ξ7,lim sup|z|+|g(x,z)||z|<ξ8, uniformly for x[1,e].

    (H9) f,g(x,0)0,x[1,e], and there exist ξ9,ξ10 with |ξ9|β(β1)Γ(β)+|ξ10|e1dη(t)tβ1<1 such that

    limzf(x,z)z=ξ9, limzg(x,z)z=ξ10, uniformly for x[1,e].

    Theorem 3.1. Let (H1)–(H6) hold, then (1.1) has a nontrivial solution.

    Proof. From (H5), there exist ϵi>0(i=1,2) and Z0>0 such that

    f(x,z)(ξ1+ϵ1)|z|, g(x,z)(ξ2+ϵ2)|z|, for |z|>Z0,x[1,e].

    From (H3), for any εi>0(i=1,2), there exists Z1>Z0 such that

    M1(z)ε1|z|, M2(z)ε2|z|, for |z|>Z1.

    Let M1=max|z|Z1M1(z),M2=max|z|Z1M2(z), then we have

    M1(z)ε1|z|+M1, M2(z)ε2|z|+M2,zR. (3.1)

    Note that by (H2), for |z|>Z1,x[1,e], and we obtain

    f(x,z)(ξ1+ϵ1)|z|γ1(x)γ2(x)M1(z)(ξ1+ϵ1ε1γ2)|z|γ1(x),g(x,z)(ξ2+ϵ2)|z|σ1(x)σ2(x)M2(z)(ξ2+ϵ2ε2σ2)|z|σ1(x).

    Note that f,g(x,z) are bounded on [1,e]×[Z1,Z1], then let Cf=(ξ1+ϵ1ε1γ2)Z1+maxx[1,e],|z|Z0|f(x,z)|, Cg=(ξ2+ϵ2ε2σ2)Z1+maxx[1,e],|z|Z0|g(x,z)|, so we have

    f(x,z)(ξ1+ϵ1ε1γ2)|z|γ1(x)Cf, g(x,z)(ξ2+ϵ2ε2σ2)|z|σ1(x)Cg, zR,x[1,e]. (3.2)

    Note that εi(i=1,2) can be chosen arbitrarily small, and let a sufficiently large R1 satisfy:

    R1>β1βN1+(β1)N2β1ε1γ2βΓ(β)ε2σ2e1dη(x)x,R1>(ϵ1ε1γ2)(N1β+N2)+(ξ1+ϵ1ε1γ2)(N1+N2)(ϵ1ε1γ2)[1ε1γ2β(β1)Γ(β)ε2σ2e1dη(x)xβ1](ξ1+ϵ1ε1γ2)[ε1γ2(β1)Γ(β)+ε2σ2e1dη(x)xβ1],and R1>(ϵ2ε2σ2)(N1β+N2)+(ξ2+ϵ2ε2σ2)(N1+N2)(ϵ2ε2σ2)[1ε1γ2β(β1)Γ(β)ε2σ2e1dη(x)xβ1](ξ2+ϵ2ε2σ2)[ε1γ2(β1)Γ(β)+ε2σ2e1dη(x)xβ1], (3.3)

    where

    N1=γ1+γ2M1+Cf(β1)Γ(β), N2=e1dη(x)xβ1[σ1+σ2M2+Cg].

    In the following, we shall prove

    zTzμζξ1,ξ2, zBR1,μ0, (3.4)

    where ζξ1,ξ2 is defined by (2.6) and BR1 is an open ball: {zE:z<R1}. If the claim (3.4) isn't satisfied, then there exist z1BR1 and μ10 such that

    z1Tz1=μ1ζξ1,ξ2. (3.5)

    Note that μ10. If not, z1 is a fixed point of T and the theorem is proved. In order to prove (3.5), let

    ˜z1(x)=e1Gβ(x,y)[γ1(y)+γ2(y)M1(z1(y))+Cf]dyy+(lnx)β1β1e1[σ1(x)+σ2(x)M2(z1(x))+Cg]dη(x)x,x[1,e]. (3.6)

    By γ1+γ2M1(z1)+CfP and σ1+σ2M2(z1)+CgP, Lemma 2.4 implies that

    ˜z1P0.

    Moreover, we calculate z1+˜z1 as follows:

    z1(x)+˜z1(x)=(Tz1)(x)+˜z1(x)+μ1ζξ1,ξ2(x)=e1Gβ(x,y)[f(y,z1(y))+γ1(y)+γ2(y)M1(z1(y))+Cf]dyy   +(lnx)β1β1e1[g(x,z1(x))+σ1(x)+σ2(x)M2(z1(x))+Cg]dη(x)x+μ1ζξ1,ξ2(x),x[1,e].

    From (H2), (2.7), and Lemma 2.4 we know

    z1+˜z1P0. (3.7)

    By (3.1), (3.3) and (3.6), note that z1=R1, and we have

    ˜z1(x)e1Gβ(x,y)[γ1(y)+γ2(y)(ε1|z1(y)|+M1)+Cf]dyy   +(lnx)β1β1e1[σ1(x)+σ2(x)(ε2|z1(x)|+M2)+Cg]dη(x)xe1Gβ(e,y)[γ1+γ2(ε1z1+M1)+Cf]dyy   +1β1e1[σ1+σ2(ε2z1+M2)+Cg]dη(x)x=γ1+γ2(ε1R1+M1)+Cfβ(β1)Γ(β)+e1dη(x)xβ1[σ1+σ2(ε2R1+M2)+Cg]<R1.

    Note that ˜z1,z1+˜z1P0. From (3.2) and (H2), we have

    (Tz1)(x)+˜z1(x)e1Gβ(x,y)[(ξ1+ϵ1ε1γ2)|z1(y)|γ1(y)Cf+γ1(y)+γ2(y)M1(z1(y))+Cf]dyy   +(lnx)β1β1e1[(ξ2+ϵ2ε2σ2)|z1(x)|σ1(x)Cg+σ1(x)+σ2(x)M2(z1(x))+Cg]dη(x)xe1Gβ(x,y)(ξ1+ϵ1ε1γ2)z1(y)dyy+(lnx)β1β1e1(ξ2+ϵ2ε2σ2)z1(x)dη(x)x=e1Gβ(x,y)(ξ1+ϵ1ε1γ2)[z1(y)+˜z1(y)]dyy+(lnx)β1β1e1(ξ2+ϵ2ε2σ2)[z1(x)+˜z1(x)]dη(x)x   e1Gβ(x,y)(ξ1+ϵ1ε1γ2)˜z1(y)dyy(lnx)β1β1e1(ξ2+ϵ2ε2σ2)˜z1(x)dη(x)xξ1e1Gβ(x,y)[z1(y)+˜z1(y)]dyy+ξ2(lnx)β1β1e1[z1(x)+˜z1(x)]dη(x)x (3.8)

    using the fact that

    e1Gβ(x,y)(ϵ1ε1γ2)[z1(y)+˜z1(y)]dyy+(lnx)β1β1e1(ϵ2ε2σ2)[z1(x)+˜z1(x)]dη(x)x   e1Gβ(x,y)(ξ1+ϵ1ε1γ2)˜z1(y)dyy(lnx)β1β1e1(ξ2+ϵ2ε2σ2)˜z1(x)dη(x)x0,x[1,e]. (3.9)

    In what follows, we prove that (3.9) holds. Note that z1=R1, and by (3.7), we have

    z1(x)+˜z1(x)(lnx)β1z1+˜z1(lnx)β1(R1˜z1).

    Consequently, note that Gβ(x,y)(lnx)β1(1logy)β2Γ(β),x,y[1,e], and (3.9) is greater than

    e1Gβ(x,y)(ϵ1ε1γ2)(lny)β1(R1˜z1)dyy+(lnx)β1β1e1(ϵ2ε2σ2)(lnx)β1(R1˜z1)dη(x)x   e1Gβ(x,y)(ξ1+ϵ1ε1γ2)e1(lny)β1(1lnτ)β2Γ(β)[γ1(τ)+γ2(τ)M1(z1(τ))+Cf]dττdyy   e1Gβ(x,y)(ξ1+ϵ1ε1γ2)(lny)β1β1e1[σ1(τ)+σ2(τ)M2(z1(τ))+Cg]dη(τ)τdyy   (lnx)β1(β1)Γ(β)e1(ξ2+ϵ2ε2σ2)e1(lnx)β1(1lny)β2[γ1(y)+γ2(y)M1(z1(y))+Cf]dyydη(x)x   (lnx)β1β1e1(ξ2+ϵ2ε2σ2)(lnx)β1β1e1[σ1(y)+σ2(y)M2(z1(y))+Cg]dη(y)ydη(x)x.

    (3.3) enables us to obtain

    (ϵ1ε1γ2)(R1˜z1)   (ξ1+ϵ1ε1γ2)e1(1lnτ)β2Γ(β)[γ1(τ)+γ2(τ)M1(z1(τ))+Cf]dττ   ξ1+ϵ1ε1γ2β1e1[σ1(τ)+σ2(τ)M2(z1(τ))+Cg]dη(τ)τ(ϵ1ε1γ2)(R1˜z1)   ξ1+ϵ1ε1γ2(β1)Γ(β)[γ1+γ2(ε1R1+M1)+Cf]   ξ1+ϵ1ε1γ2β1e1dη(τ)τ[σ1+σ2(ε2R1+M2)+Cg]0

    and

    (ϵ2ε2σ2)(R1˜z1)   ξ2+ϵ2ε2σ2Γ(β)e1(1lny)β2[γ1(y)+γ2(y)M1(z1(y))+Cf]dyy   ξ2+ϵ2ε2σ2β1e1[σ1(y)+σ2(y)M2(z1(y))+Cg]dη(y)y(ϵ2ε2σ2)(R1˜z1)   ξ2+ϵ2ε2σ2(β1)Γ(β)[γ1+γ2(ε1R1+M1)+Cf]   ξ2+ϵ2ε2σ2β1e1dη(y)y[σ1+σ2(ε2R1+M2)+Cg]0.

    As a result, (3.9) holds, as required. From (3.5) and (3.8), we have

    z1(x)+˜z1(x)=(Tz1)(x)+˜z1(x)+μ1ζξ1,ξ2(x)(Lξ1,ξ2(z1+˜z1))(x)+μ1ζξ1,ξ2(x),x[1,e].

    Define a set W={μ:z1+˜z1μζξ1,ξ2} and μ=supW, then μ1W and μμ1. Hence, note that Lξ1,ξ2:PP, and we have

    z1(x)+˜z1(x)μ1ζξ1,ξ2(x)+(Lξ1,ξ2(z1+˜z1))(x)μ1ζξ1,ξ2(x)+(Lξ1,ξ2μζξ1,ξ2)(x)=μ1ζξ1,ξ2(x)+μr(Lξ1,ξ2)ζξ1,ξ2(x)(μ+μ1)ζξ1,ξ2(x),

    which contradicts the definition of μ. As a result, (3.4) holds, and Lemma 2.6 implies that

    deg(IT,BR1,0)=0. (3.10)

    By (H6), there exists r1(0,R1) such that

    |f(x,z)|ξ3|z|, |g(x,z)|ξ4|z|, for |z|[0,r1],x[1,e]. (3.11)

    In what follows, we prove that

    Tzμz,zBr1,μ1, (3.12)

    where Br1={zE:z<r1}. If (3.12) doesn't hold, and there exist z2Br1,μ21, such that

    Tz2=μ2z2,

    then this, along with (3.11), implies that

    |z2(x)|=1μ2|(Tz2)(x)||e1Gβ(x,y)f(y,z2(y))dyy+(lnx)β1β1e1g(x,z2(x))dη(x)x|e1Gβ(x,y)|f(y,z2(y))|dyy+(lnx)β1β1e1|g(x,z2(x))|dη(x)xξ3e1Gβ(x,y)|z2(y)|dyy+ξ4(lnx)β1β1e1|z2(x)|dη(x)x=(Lξ3,ξ4|z2|)(x),x[1,e].

    Note that r(Lξ3,ξ4)<1. This means that (ILξ3,ξ4)1 exists and

    (ILξ3,ξ4)1=I+Lξ3,ξ4+L2ξ3,ξ4++Lnξ3,ξ4+.

    Consequently, note that (ILξ3,ξ4)1:PP, and we have

    ((ILξ3,ξ4)|z2|)(x)0|z2(x)|(ILξ3,ξ4)10=0,

    which implies that z2(x)0,x[1,e] and contradicts z2Br1. Therefore, Lemma 2.7 implies that

    deg(IT,Br1,0)=1.

    Using this with (3.10), we have

    deg(IT,BR1¯Br1,0)=deg(IT,BR1,0)deg(IT,Br1,0)=1.

    Hence, T has at least one fixed point in BR1¯Br1, i.e., (1.1) has at least one nontrivial solution. This completes the proof.

    Now, we consider the case that our nonlinearities are suberlinear. From [8], we know that E's conjugate space E:={ρ:ρ has bounded variation on [1,e]}. Moreover, the dual cone of P and the bounded linear functional on E are

    P:={ρE:ρ is non-decreasing on [1,e]} and ρ,z=e1z(x)dρ(x),zE,ρE.

    Note that r(Lξ5,ξ6)>1 in (H7), and from the similar method in [23], there exists ψξ5,ξ6P{0} such that

    Lξ5,ξ6ψξ5,ξ6=r(Lξ5,ξ6)ψξ5,ξ6, (3.13)

    where Lξ5,ξ6:EE is the conjugate operator of Lξ5,ξ6, denoted by

    (Lξ5,ξ6ρ)(y):=ξ5y1dτe1Gβ(x,τ)dρ(x)x+ξ6η(y)e1(lnx)β1β1dρ(x)x,ρP.

    Theorem 3.2. Let (H1)–(H4), (H7), and (H8) hold, then (1.1) has a nontrivial solution.

    Proof. From (H7), there exists r2>0 such that

    f(x,z)ξ5|z|, g(x,z)ξ6|z|, for x[1,e],|z|r2. (3.14)

    For this r2, we prove that

    zTzμω0, zBr2,μ0, (3.15)

    where ω0P is a fixed element and Br2={zE:z<r2}. We use an argument by indirection, then there exist z3Br2,μ30 such that

    z3Tz3=μ3ω0.

    Note that by (3.14), we have

    (Tz3)(x)=e1Gβ(x,y)f(y,z3(y))dyy+(lnx)β1β1e1g(x,z3(x))dη(x)x0,z3Br2,x[1,e].

    Hence, μ30,ω0P enable us to find

    z3=Tz3+μ3ω00,

    and

    z3(x)(Tz3)(x)ξ5e1Gβ(x,y)z3(y)dyy+ξ6(lnx)β1β1e1z3(x)dη(x)x.

    Multiplying dψξ5,ξ6(x)x on both sides of the above inequalities and integrating over [1,e], from (3.13), we obtain

    e1z3(x)dψξ5,ξ6(x)xe1dψξ5,ξ6(x)x(ξ5e1Gβ(x,y)z3(y)dyy+ξ6(lnx)β1β1e1z3(x)dη(x)x)=e1z3(y)yd(ξ5y1dτe1Gβ(x,τ)dψξ5,ξ6(x)x+ξ6η(y)e1(lnx)β1β1dψξ5,ξ6(x)x)=e1z3(y)yd(Lξ5,ξ6ψξ5,ξ6)(y)=r(Lξ5,ξ6)e1z3(y)ydψξ5,ξ6(y). (3.16)

    Note that ψξ5,ξ6P{0}, then from the definition of the Riemann-Stieltjes integral, we have

    e1z3(x)dψξ5,ξ6(x)x=limλ0ni=1z3(ξi)ξi[ψξ5,ξ6(xi)ψξ5,ξ6(xi1)]0, (3.17)

    where 0=x0<x1<<xn1<xn<xn+1=1,λ=max1in(xixi1),ξi[xi1,xi],i= 1,2,,n. Therefore, r(Lξ5,ξ6)>1 and (3.16) enable us to obtain

    e1z3(x)dψξ5,ξ6(x)x=0. (3.18)

    Note that for all divisions xi, (3.18) holds, and we only obtain z3(x)0,x[1,e]. Therefore, this contradicts z3Br2 and (3.15) holds. Lemma 2.6 implies that

    deg(IT,Br2,0)=0. (3.19)

    By (H8), there exist d1,d2>0 such that

    |f(x,z)|ξ7|z|+d1, |g(x,z)|ξ8|z|+d2, for |z|R,x[1,e]. (3.20)

    In what follows, we prove that S={zE:Tz=μz,μ1} is a bounded set. If there exist z4S,μ41 such that

    Tz4=μ4z4,

    then (3.20) implies that

    |z4(x)|=1μ4|(Tz4)(x)|e1Gβ(x,y)|f(y,z4(y))|dyy+(lnx)β1β1e1|g(x,z4(x))|dη(x)xe1Gβ(x,y)(ξ7|z4(y)|+d1)dyy+(lnx)β1β1e1(ξ8|z4(x)|+d2)dη(x)x(Lξ7,ξ8|z4|)(x)+d1e1Gβ(e,y)dyy+d2e1dη(x)xβ1, x[1,e].

    Note that r(Lξ7,ξ8)<1. Thus (ILξ7,ξ8)1 exists, and

    (ILξ7,ξ8)1=I+Lξ7,ξ8+L2ξ7,ξ8++Lnξ7,ξ8+.

    Consequently, note that (ILξ7,ξ8)1:PP, and we have

    ((ILξ7,ξ8)|z4|)(x)(d1β(β1)Γ(β)+d2e1dη(x)xβ1)

    and, thus,

    |z4(x)|(ILξ7,ξ8)1(d1β(β1)Γ(β)+d2e1dη(x)xβ1), x[1,e],

    which implies that S is a bounded set, as required. Let R2>supS and R2>r2, then we have

    Tzμz, zBR2,μ1.

    Therefore, Lemma 2.7 implies that

    deg(IT,BR2,0)=1.

    Using this with (3.19), we have

    deg(IT,BR2¯Br2,0)=deg(IT,BR2,0)deg(IT,Br2,0)=1.

    Hence, T has at least one fixed point in BR2¯Br2, i.e., (1.1) has at least one nontrivial solution. This completes the proof.

    Theorem 3.3. Let (H1), (H4), and (H9) hold, then (1.1) has a nontrivial solution.

    Proof. Define a linear operator Lξ9,ξ10:EE as follows:

    (Lξ9,ξ10z)(x)=ξ9e1Gβ(x,y)z(y)dyy+ξ10(lnx)β1β1e1z(x)dη(x)x, x[1,e], zE.

    Now, we prove that 1 isn't an eigenvalue for Lξ9,ξ10. On the contrary, then there exists zE{0} such that

    Lξ9,ξ10z=z. (3.21)

    By Lemma 2.2, we obtain

    {Dβz(x)=ξ9z(x), x(1,e),z(1)=δz(1)=0,δz(e)=ξ10e1z(x)dη(x)x.

    Next, we will consider the following two cases.

    Case 1. ξ29+ξ210=0. By Lemma 2.2, we have

    z(x)=˜d1(lnx)β1+˜d2(lnx)β2+˜d3(lnx)β3,

    where ˜diR, i=1,2,3. Note that β(2,3], the boundary condition z(1)=δz(1)=δz(e)=0 implies that ˜di=0, and z(x)0, x[1,e]. This contradicts zE{0}.

    Case 2. ξ29+ξ2100. From (3.21), we have

    z(x)=ξ9e1Gβ(x,y)z(y)dyy+ξ10(lnx)β1β1e1z(x)dη(x)xz(|ξ9|e1Gβ(e,y)dyy+|ξ10|e1dη(x)xβ1), x[1,e].

    By (H9), we obtain that

    zz(|ξ9|β(β1)Γ(β)+|ξ10|e1dη(x)xβ1)<z.

    This is impossible.

    As a result, we claim that 1 isn't an eigenvalue for Lξ9,ξ10, as required.

    By (H9), for all ε>0, there exists Λ>0 such that

    |f(x,z)ξ9z|ε|z|, |g(x,z)ξ10z|ε|z|, for |z|>Λ, x[1,e].

    Note that when |z|Λ and x[1,e], |f(x,z)ξ9z| and |g(x,z)ξ10z| are bounded. Therefore, there exist ϱi>0(i=1,2) such that

    |f(x,z)ξ9z|ε|z|+ϱ1, |g(x,z)ξ10z|ε|z|+ϱ2, zR, x[1,e]. (3.22)

    Hence, (3.22) enables us to obtain

    TzLξ9,ξ10z=maxx[1,e]|e1Gβ(x,y)[f(y,z(y))ξ9z(y)]dyy+(lnx)β1β1e1[g(x,z(x))ξ10z(x)]dη(x)x|e1Gβ(e,y)|f(y,z(y))ξ9z(y)|dyy+1β1e1|g(x,z(x))ξ10z(x)|dη(x)xεz+ϱ1β(β1)Γ(β)+e1dη(x)xβ1(εz+ϱ2).

    This implies that

    limzTzLξ9,ξ10zzε(1β(β1)Γ(β)+e1dη(x)xβ1).

    Note that from the arbitrariness of ε, we know that

    limzTzLξ9,ξ10zz=0.

    Lemma 2.8 indicates that T has at least one fixed point, and note that T00 by f,g(t,0)0,t[1,e]. Therefore, (1.1) has at least one nontrivial solution. This completes the proof.

    We note that the spectral theory of linear operators can be used to study differential equations, see for example, [2,6,9,10]. In [9], the authors studied the following fractional boundary value problem

    {Dα0+z(t)+q(t)f(t,z(t))=0,0<t<1,n1<αn,z(0)=z(0)==z(n2)(0)=0,z(1)=10z(s)dA(s),

    where α2,Dα0+ is the Riemann-Liouville derivative and fC([0,1]×(0,+),R+). They obtained two existence theorems of positive solutions for their problem when the nonlinearity f satisfies one of the following growth conditions

    sublinear condition: lim supz+supt[0,1]f(t,z)z<λ1, and lim infz0+inft[0,1]f(t,z)z>λ1;

    superlinear condition: lim supz0+supt[0,1]f(t,z)z<λ1, and lim infz+inft[0,1]f(t,z)z>λ1, where λ1=(r(L))1, r(L) is the spectral radius of the linear operator (Lz)(t)=10GWang(t,s)q(s)z(s)ds, GWang is their Green's function.

    Compared with our problem, we don't incorporate the integral boundary conditions into the Green's function, and consider a new linear operator (2.5). Moreover, we obtain several existence theorems of nontrivial solutions under some conditions regarding the spectral radius of the linear operator. On the other hand, our nonlinearities f,g can be sign-changing, in contrast to the nonlinearities in [1,2,3,4,5,6,7,8,9,10], which are assumed to be nonnegative. These imply that our main results generalize and improve the corresponding ones in the works cited above.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research was supported by Talent Introduction Project of Ludong University (Grant No. LY2015004). The authors would like to express their heartfelt gratitude to the editors and reviewers for their constructive comments.

    The authors declare there is no conflict of interest.



    [1] M. El-Shahed, Positive solutions for boundary value problem of nonlinear fractional differential equation, Abstr. Appl. Anal., 2007 (2007), 010368. https://doi.org/10.1155/2007/10368 doi: 10.1155/2007/10368
    [2] Z. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal. Theory Methods Appl., 72 (2010), 916–924. https://doi.org/10.1016/j.na.2009.07.033 doi: 10.1016/j.na.2009.07.033
    [3] F. Haddouchi, Positive solutions of nonlocal fractional boundary value problem involving Riemann-Stieltjes integral condition, J. Appl. Math. Comput., 64 (2020), 487–502. https://doi.org/10.1007/s12190-020-01365-0 doi: 10.1007/s12190-020-01365-0
    [4] M. Khuddush, K. R. Prasad, P. Veeraiah, Infinitely many positive solutions for an iterative system of fractional BVPs with multistrip Riemann-Stieltjes integral boundary conditions, Afr. Mat., 33 (2022), 91. https://doi.org/10.1007/s13370-022-01026-4 doi: 10.1007/s13370-022-01026-4
    [5] L. Liu, D. Min, Y. Wu, Existence and multiplicity of positive solutions for a new class of singular higher-order fractional differential equations with Riemann-Stieltjes integral boundary value conditions, Adv. Differ. Equations, 2020 (2020), 442. https://doi.org/10.1186/s13662-020-02892-7 doi: 10.1186/s13662-020-02892-7
    [6] R. Luca, Existence and multiplicity of positive solutions for a singular Riemann-Liouville fractional differential problem, Filomat, 34 (2020), 3931–3942. https://doi.org/10.2298/FIL2012931L doi: 10.2298/FIL2012931L
    [7] S. Padhi, J. R. Graef, S. Pati, Multiple positive solutions for a boundary value problem with nonlinear nonlocal Riemann-Stieltjes integral boundary conditions, Fract. Calc. Appl. Anal., 21 (2018), 716–745. https://doi.org/10.1515/fca-2018-0038 doi: 10.1515/fca-2018-0038
    [8] W. Wang, J. Ye, J. Xu, D. O'Regan, Positive solutions for a high-order riemann-liouville type fractional integral boundary value problem involving fractional derivatives, Symmetry, 14 (2022), 2320. https://doi.org/10.3390/sym14112320 doi: 10.3390/sym14112320
    [9] Y. Wang, L. Liu, Y. Wu, Positive solutions for a nonlocal fractional differential equation, Nonlinear Anal. Theory Methods Appl., 74 (2011), 3599–3605. https://doi.org/10.1016/j.na.2011.02.043 doi: 10.1016/j.na.2011.02.043
    [10] X. Zhang, L. Wang, Q. Sun, Existence of positive solutions for a class of nonlinear fractional differential equations with integral boundary conditions and a parameter, Appl. Math. Comput., 226 (2014), 708–718. https://doi.org/10.1016/j.amc.2013.10.089 doi: 10.1016/j.amc.2013.10.089
    [11] W. Yang, Positive solutions for a class of nonlinear p-Laplacian Hadamard fractional differential systems with coupled nonlocal Riemann-Stieltjes integral boundary conditions, Filomat, 36 (2022), 6631–6654. https://doi.org/10.2298/FIL2219631Y doi: 10.2298/FIL2219631Y
    [12] F. Y. Deren, T. S. Cerdik, Extremal positive solutions for Hadamard fractional differential systems on an infinite interval, Mediterr. J. Math., 20 (2023), 158. https://doi.org/10.1007/s00009-023-02369-3 doi: 10.1007/s00009-023-02369-3
    [13] M. I. Abbas, M. Fečkan, Investigation of an implicit Hadamard fractional differential equation with Riemann-Stieltjes integral boundary condition, Math. Slovaca, 72 (2022), 925–934. https://doi.org/10.1515/ms-2022-0063 doi: 10.1515/ms-2022-0063
    [14] P. Yang, C. Yang, The new general solution for a class of fractional-order impulsive differential equations involving the Riemann-Liouville type Hadamard fractional derivative, AIMS Math., 8 (2023), 11837–11850. https://doi.org/10.3934/math.2023599 doi: 10.3934/math.2023599
    [15] W. Yang, Positive solutions for singular coupled integral boundary value problems of nonlinear Hadamard fractional differential equations, J. Nonlinear Sci. Appl., 8 (2015), 110–129. https://doi.org/10.22436/jnsa.008.02.04 doi: 10.22436/jnsa.008.02.04
    [16] M. I. Abbas, Existence and uniqueness results for Riemann-Stieltjes integral boundary value problems of nonlinear implicit Hadamard fractional differential equations, Asian-Eur. J. Math., 15 (2022), 2250155. https://doi.org/10.1142/S1793557122501558 doi: 10.1142/S1793557122501558
    [17] I. A. Arik, S. I. Araz, Delay differential equations with fractional differential operators: Existence, uniqueness and applications to chaos, Commun. Anal. Mech., 16 (2024), 169–192. https://doi.org/10.3934/cam.2024008 doi: 10.3934/cam.2024008
    [18] W. Xiao, X. Yang, Z. Zhou, Pointwise-in-time α-robust error estimate of the adi difference scheme for three-dimensional fractional subdiffusion equations with variable coefficients, Commun. Anal. Mech., 16 (2024), 53–70. https://doi.org/10.3934/cam.2024003 doi: 10.3934/cam.2024003
    [19] V. Ambrosio, Concentration phenomena for a fractional relativistic schrödinger equation with critical growth, Adv. Nonlinear Anal., 13 (2024), 20230123. https://doi.org/10.1515/anona-2023-0123 doi: 10.1515/anona-2023-0123
    [20] M. G. Kreĭn, M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl., 1950 (1950), 128. Available from: https://api.semanticscholar.org/CorpusID: 118778929.
    [21] D. J. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Inc., Boston, MA, 1988. https://doi.org/10.1016/C2013-0-10750-7
    [22] P. Zabreiko, M. Krasnoselskii, Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin, 1984. https://doi.org/10.1007/978-3-642-69409-7
    [23] Z. Yang, Existence and nonexistence results for positive solutions of an integral boundary value problem, Nonlinear Anal., 65 (2006), 1489–1511. https://doi.org/10.1016/j.na.2005.10.025 doi: 10.1016/j.na.2005.10.025
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(807) PDF downloads(42) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog