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1. Introduction

In this work, we are devoted to studying the existence of nontrivial solutions for the Hadamard-type
fractional Riemann-Stieltjes integral boundary value problem

= DPr(x) = f(x,2(x), x € (1, e),

e 1.1
2(1) = 52(1) = 0,52(e) = f o(x. 2y 10 (1)
1

’
X

where D is the Hadamard-type fractional derivative with 8 € (2, 3], 6z(x) = x%, and the functions
f, g, n satisfy the following conditions:

(H1) f,g € C([1,e] xR, R).

(H2) There exist y;, 0; € C([1,e],R*) and M; € C(R,R*)(i = 1, 2) such that

J(x,2) 2 =71(0) = 2()M1(2),  g(x,2) 2 —01(x) = 2()M3(2), x € [1,e],z € R.

(H3) limyy o 522 = 0,0 = 1,2,


https://www.aimspress.com/journal/era
https://dx.doi.org/10.3934/era.2024096

2121

(H4) n is a nondecreasing function in [1, e] with (1) = 0.

As an important branch of mathematical analysis, fractional calculus can more accurately describe
some dynamic processes with memory and heredity characteristics. In view of outstanding advantages
of fractional calculus, it has attracted the great attention of many researchers and developed rapidly;
we refer the reader to [1-10]. Moreover, we note that originating from the work of Hadamard in 1892,
Hadamard fractional calculus is now successfully applied to describe ultra-slow phenomena in the
objective world, such as fracture of materials, creep of rocks, etc. Therefore, it is of great significance to
study Hadamard-type fractional problems, see [11-19] and the references therein. For example, in [11],
the authors used the Guo-Krasnosel’skii fixed point theorem to study the existence and nonexistence
of positive solutions for the system of Hadamard fractional differential equations

D" gy, (DPx(s)) = pfils, x(5), ¥(5)). 5 € (1 e),
D™, (DPy(s)) = vi(s, x(5), y(5)). s € (1, e),

q2 0; .
ox(1) = 8%x(1) = - = 6" 2x(1) = 0, D"x(e) = ) f hi(s)Dy(5) TES).
i=1 V1 S
9 3 )
Sy(1) = 6°y(1) = -+ = §"7y(1) = 0, D™y(e) = Z fl kj(s)DWx(s)dK;(s),
j=1

DPix(1) = DP x(e) = 6 (g, (D7 x(1))) = 0, DPy(1) = D”y(e) = 5 (g, (D”¥(1))) = 0,

where f;(i = 1,2) are nonnegative continuous functions on [1,e] X R* X R* and satisfy some (p; —
1)—superlinear and (p; — 1)—suberlinear growth conditions.

In [12], the authors studied the following system of Hadamard fractional differential equations with
multipoint Hadamard fractional derivative boundary conditions

DPu(t) + wi(Of (6.0, DI v(®) = 0,n = 1 < p < n1 € (1, +e0),

Dv(t) + wy(t)g (t, u(t),Dp_]u(t)) =0,m—-1<g<mte(l,+),
ki

() =w(1) = =u" (1) =0, D' 'u(eo) = > aD'u(ny),
i=1
ko

W)=V = =1 =0, D)= Y b0 (my).

J=1

where D? are Hadamard-type fractional derivatives of order & € {p,q,r;,rn},r1 € [0,p = 1],1r, €
[0,g — 1]. Using the monotone iterative method, they obtained the existence of monotone positive
solutions for their considered problems. In [13], the authors used the fixed-point techniques to study the
existence and uniqueness results for the following Riemann-Stieltjes integral boundary value problem
involving a Hadamard-type fractional differential equation

D’y(x) = f (x, y(x), D"y(x)) , 1 € [1,T],

T n -1
_ _ KM n dx
y(1) =0, f1 YZ(0) = Fos fl (1n ) YO € (1LT),

X
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where f € ([1,T] Xx R X R — R) satisfies the Lipschitz condition.

Inspired by the aforesaid works, we use the fixed-point methods to study the nontrivial solutions for
the Hadamard-type fractional Riemann-Stieltjes integral boundary value problem (1.1). We consider
the two-folds: When the nonlinearities f, g are superlinear and suberlinear, we use some conditions
concerning the spectral radius of a new linear operator to obtain our existence theorems. When the
nonlinearities f, g are asymptotic linear, we use a fixed-point theorem to obtain a nontrivial solution.

2. Preliminaries

We first briefly provide the definition of the Hadamard-type fractional derivative, which can be
founded in [11, 14, 15].
Definition 2.1. Let g : [1, 0c0) — R, then the Hadamard-type fractional g-order derivative is defined

as

da\" d
(x—) f (Inx - lny)"_q_lg(y)—y,n -1<g<n,
dx) J; y

1
Dig(x) = -0

where n = [g] + 1, [¢g] means the integer part of ¢, and In(-) = log,(-).
Now, we calculate the Green’s function for (1.1).
Lemma 2.2. Let &, V be functions on [1, ¢], then

— DPz(x) = h(x), x € (1, ),

Z(l) = 6Z(1) = O, 5z(e) — f V( )dﬂ(x)

has a solution

¢ d
() = f Gy(x, y)h(y)— ( x)ﬂ f V(x) ”(’“)

where

I [(Inx'1=Inyf?2-(Unx-InyF !, 1<y<x<e,
Gp(x,y) =

L) |(nxf~'(1 - Inyy2, l<x<y<e.

Proof. We first consider the problem

{_ DBZ(X) = h(x),x € (1,e), 2.1

z2(1) = 6z(1) = 6z(e) =

By the methods of [15], we can obtain

2(x) = c;(n )P + c;(InxP? + c3(In x)P° — — f x(lnx —In y)ﬁ-‘h(y)d—y,
ry) y

where ¢; € R,i = 1,2,3. The condition z(1) = 6z(1) = 0 implies that ¢, = ¢3 = 0. Furthermore, from
0z(e) = 0, we find

z2(e) = ¢ — @ f (1 -1In s)ﬁ-zh(s)d—: =0
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then
1 ¢ d 1 * d
20) = — f (Inxf~'(1 = InyP2h() 2 - — f (Inx — Inyy~'h(») 2
e d N
- f G, ()=,
1 y
Next, we consider the problem
- DPz(x) =0,x e (1,e),
d 2.3)
2(1) = 62(1) = 0, 62(e) = f Vx) ”(x)
which yields that
z(x) = (In )P + G(In x)P? + G(Inx)yP3,
where ¢c; € R, i = 1,2, 3. Similarly, ¢; = ¢3 = 0. Consequently, we get
— dn(x
52(e) = (B - 1)z :f VoY,
and | B p
2(x) = (In x) U(X) 2.4)

v
5-1 J, (x)

Combining (2.1)—(2.4), we can obtain the conclusion of this lemma. This completes the proof.

Lemma 2.3 (see [1]). The function Gg satisfies the following properties:

(I1) Gg(x,y) > O for x,y € [1, e];

(12) (An x*'Gsle, y) < G(x,y) < Ggle,y) for x,y € [1, e].

Let E := C[1,el, ||zl := maX,e[1¢ [2(X)], P :={z € E : z(x) > 0,Yx € [1,e]}, then (E, || - ||) is a real
Banach space and P a cone on E. By Lemma 2.2, we can define an operator as follows:

‘ dy (Inxy~' [
(Tz)(X):flGﬁ(x,y)f(y,z(y))yy+(;)i)ﬁ1 flg( ())M x€[l,e]l, z€ E.

Moreover, it is easy to find that if there is a z* € E\{0} such that Tz* = z*, then this z* is a nontrivial
solution for (1.1). Hence, we only need to study the existence of nontrivial fixed points of 7. For
&E>0(@G=1,2),let Ly ¢, : E — E be defined as

),xe [1,e],z € E. (2.5

e d 1 -1 e d
(Lg £,2)(X) = & f Gp(x, M2 + fz( nxy f 2(x) "t
1 y B-1 1

We then see that L ¢, is a linear operator, and we also obtain the following lemma.
Lemma 2.4. Let Py = {z € E : z(x) > (Inx)*7!||z||, x € [1, e]}, then Lg, £, (P) C Py.
This can be easily obtained from Lemma 2.3 (I12), so we don’t need to offer its proof.
Lemma 2.5. r(Lg, ¢,) > 0, where r(Lgc1 &) stands for the spectral radius of L ¢,.

Proof. Let (L, 2)(x) = & [ Gp(x, y)z(y)— x € [1,e],z € E, then for all n € N,, we have

dy1 dy dy,  dy,

yi Yy Yo

(Lg,2)(x) = &} f f Gp(x, y)Gs(y1,¥2) - Gau-1, Yn)2(Yn)
—————

n
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By Lemma 2.3 (I2), we have

- e ~ d n—1 e d
ILZ 1| = max (L2 D(x) > & max (In xf*! [ f (InyY'Gyle, y)—y] f Gyle, )2,
x€[1,e] x€[1,e] 1 y 1 y
where 1(x) = 1, x € [1, e]. Consequently, the Gelfand’s theorem implies that

. ‘ - dy &I'(B-1)
L)) = liminf J[||IL} || > 1 'Gyle,y)— = 0 fi 0.
r(Lg) = liminf J/] flll_flfl(ogy)ﬂ s(e y)y tap_1 > Ofré>
Note that r(L;, z,) > r(Lg) > 0. This completes the proof.

Lemma 2.5 and the Krein-Rutman theorem [20] imply that there exists ¢, ¢, € P\{0} such that

Le 6, 8e 6 = T(Lgy )86, - (2.6)

Moreover, by Lemma 2.4, we have
{er6, € Po. 2.7)

Lemma 2.6 (see [21]). Let E be a Banach space, W c E a bounded open set,and 7 : W — E a
continuous compact operator. If there exists zo € E\{0} such that

z—Tz # uzp,¥z € oW, u > 0,

then the topological degree deg(I — T, W, 0) = 0.
Lemma 2.7 (see [21]). Let E be a Banach space, W c E a bounded open set with 0 € W, and
T : W — E a continuous compact operator. If

Tz +#uz,Vze dW,u > 1,

then the topological degree deg(/ — T, W,0) = 1.
Lemma 2.8 (see [22]). Let T : E — E be a completely continuous operator, and L : E — E a

bounded linear operator. Suppose that 1 isn’t an eigenvalue of L and
ITz— Lzl

=0,
ll2l]—c0 I|zl|

then there exists z** € E such that 77" = z**.
3. Main results

Now, we list some assumptions on f and g, which we need in this section.
(H5) There exist &;,& > 0 with (L, £,) > 1 such that

F8D | e iming 8559
|z|l—>+0c0 |Z| |z|—>+0c0 |Z

> &, uniformly for x € [1, e].

(H6) There exist &3,&4 > 0 with (L, ¢,) < 1 such that
b 1/ (x, 2) lg(x, 2)|

lim su < &, limsup
|z]—0 |Z| |z|—0 |Z

< &4, uniformly for x € [1, e].
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(H7) There exist &5, & > 0 with r(Lg, &) > 1 such that

0D | i 8059

-0+ |z |z|—>0+ |z|

(H8) There exist &7, &5 > 0 with r(Lg, &) < 1 such that
|/ (x, 2)| . lg(x, 2)|
|

> &, uniformly for x € [1, e].

lim sup < &, limsup

< &g, uniformly for x € [1, e].
|z]—+0c0 Z |z|—>+0c0 Z

e dﬂ(f)
(H9) 1, g(x,0) # 0, x € [1, e], and there exist &y, &1 with ksl |§10|f < 1 such that

BB-DI(B)
lim fn2) _ g li g(x 2)
z—> z

= &0, uniformly for € x € [1, e].

z7—00 Z

Theorem 3.1. Let (H1)-(H6) hold, then (1.1) has a nontrivial solution.
Proof. From (H5), there exist ¢ > 0 (i = 1,2) and Z, > 0 such that

(o)

f(x,2) 2 (&1 + e)lzl, g(x,2) 2 (&2 + &)z, for |z] > Zp, x € [1, e].
From (H3), for any &; > 0 (i = 1, 2), there exists Z; > Z, such that
M\ (2) < &1lzl, Ma(2) < &z, for |z| > Z;.
Let M} = maxy <z, M,(z), M5 = max <z, M>(z), then we have
M\(2) < &lzl + M}, Mx(2) < &zl + M5,z € R. (3.1
Note that by (H2), for |z| > Z;, x € [1, e], and we obtain

f(x,2) 2 (& + e)lzl = y1(x) = ()M (2) > (&1 + & — eillyalDlzl = yi(x),
g(x,2) 2 (& + &)zl — 01(x) — 2 (X)M3(2) 2 (& + € — &lloa|Dlz] — o1 (x).

Note that f, g(x,z) are bounded on [1,e] X [-Z;,Z;], then let C; = (&1 + & — &lllyalDZ) +
MaXe(1,e)z1<z | f (X, 2N, Cq = (&2 + & — &||o2|)Z1 + maX ey o) <7, 18(X, 2)|, sO we have

f(x,2) 2 Gi+ea—&allyalDld=y1(0)-Cy, g(x,2) 2 (L+e—&llonlDlzl-01(x)-C,, z€ R, x € [1,e]. (3.2)
Note that &; (i = 1,2) can be chosen arbitrarily small, and let a sufficiently large R, satisfy:
[%N 1+ (@B - DN,

e d 4
B—1-eg —ellol [ 22

R1>

(e — 81||)’2||)( + Nz) + (&1 + € — &llly2D(N1 + N2)

Ri> Iyl lorall i 22 Iy loral i 2]
(61 - 81”’)/2”) [1 - glﬁ(ﬂ DI(B) — & B-1 ] - (é‘:l + € — 51”72”) &1 B-DI(P) + & B—1 - ]
and
N
(€ = &alloal) (3 + Na) + (& + & — &allonal)(Ny + No)
K= Iyl lorall 5 Il loall 52 ]
(62 - 82”0-2”) [1 - 81ﬁ(ﬁ DI@) — & ’311 * ] - (é‘:z +6& — 82”0-2”) gl(ﬁ DIRB) +& ,811 - ]

(3.3)
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where

¢ dn(x)
llyill + ly2llM7 + Cy fl ’
N, = , Ny = ——— + M, + C,].
I G- DIE) 2= ol + llol M5 + C, ]

In the following, we shall prove

7—Tz # :u{-f],&’ zZE aBRl,,Ll > 0, (34)

where ¢ ¢, is defined by (2.6) and Bg, is an open ball: {z € E : ||z|| < R;}. If the claim (3.4) isn’t
satisfied, then there exist z; € dBg, and y; > 0 such that

- TZI = ﬂlgfl,fz' (35)

Note that y; # 0. If not, z; 1s a fixed point of T and the theorem is proved. In order to prove (3.5), let

z1(x) = fe G, My +r2(0)M,; (Z1(Y))+Cf]d—y (1; ?ﬁl 1 [0-1(x)+o-2(x)M2(Zl(x))+Cg]@, x€
By y1 + yaMi(z1) + C¢ € Pand oy + 0,M»(z1) + C, € P, Lemma 2.4 implies that oo
21 € Py.
Moreover, we calculate z; +7; as follows:
21(x) +21(x) = (Tz2)(x) +Z21(%) + p1 e £,(%)
= fe Gp(x, ML, 21(0) + 710 + 72(0)M1(21(v)) + Cf]d—y
1 y
+ ﬂ;i)ﬁl_l 1 [g(x, 21(x)) + 01 (x) + 02(X) M2 (21(x)) + Cgll) + g (), x € [1, e].
From (H2), (2.7), and Lemma 2.4 we know
71 + 21 € Po. (3.7)

By (3.1), (3.3) and (3.6), note that ||z;|| = R, and we have

— ¢ d
2 < f Gale DINO) + 720)ea )+ M) + €12

(ln x)B dn(x)

f [o71(x) + o2(X)(&2l21 ()] + M3) + C]
1

e i d
< f Gae, Yllyill + lly2llellzill + M7) + Cf]7y
1

1 ¢ . (X)
+— f ol + lloall(eslizall + M) + € 219
B-1J,
¢ dn(x)
llyill + [y2ll(e1Ry + M) + C " .
- D+Cr b ol + lloali(eaRy + M3) + C]
BB - DI(B) B—1

< R,.
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Note that 71,7, + 21 € Po. From (3.2) and (H2), we have

(T2)(x) + 7 (x)
¢ d
> f Gp(x, Y& + & — ellly2DIziO) = y1(0) = Cr + 71 () + v2(0)M1(z1(y)) + Cf];y
1
1 -1ore d
" (;’?ﬁl (& + & — exlloalDler ()] = 71(x) = Cy + 01(x) + 2 (D) Mar (1)) + C,] ”;x)
1
¢ 1
f Gy, Y& + € - sl||n||>zl(y)— ( “)B f & + & - elloalhz () ”(x)

(ln x)ﬁ

f Gp(x, y)(&1 + & — &illy2lDlzi(y) + Zl(Y) e f (& + & - alloalDlzi(x) +Z1(x0)]

| —
f Gi(o. y>(§1+e1—el||n||)zl(y)—y—(“f)ﬁl fl & + & - ez () ”ix)

_ 1 L e . d
> £ f Gox ) + TN + &° nxf” f [21(x) + 71 () 1)
1 y B - 1 1 X (3.8)

using the fact that

(X)

1
f Gp(x, y)(€&r — eilly2lDlzi(y) + Zl(y)]— 4 nx)ﬁ f (& — &lloalDlz1(x) +Z1(X)]

e 1 N .
f Gl y><fl+61—sl||yz||)z]<y>—y—(nf)ﬁ1 fl & + & - allollE () U;) Y

>0,x€e[l,e]

In what follows, we prove that (3.9) holds. Note that ||z;|| = R}, and by (3.7), we have
21(x) +Z1(%) = (In iz + 7l = An xRy = [z D).

Consequently, note that Gg(x,y) < M, x,y € [1,e], and (3.9) is greater than

r'e)
e 1 d
fl Gs(x,y) (e — ellyalD(nyy~ R, — |r1||)— (“)B f (& — &sllomlN(In xR, - |ZilN) ”(x)
¢ 1-1 - d d
- fl Gy(x. )& + e —ellyall) f (lnyf‘l# (@) + ROMi @) + CAT

(In y)ﬁ dn(T) dy

- f Gp(x, y)(& + € — 81||72||) f [01(7) + 02 (T)M1(21(7)) + C,]
i

e
_%f(§2+€2 32||azll)f(lnx)ﬁ (1 -Inyy™ 1)+ 2 IM @O + Crl=

B-DI®)
1
(“)ﬁ f <§2+e2—sz||az||)(”)ﬁ f (10) + aMatar ) + CI TR D
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(3.3) enables us to obtain
(€1 = &tlly2lDRy = llz1l)

(1 -In7)? d
- @& +ea—alyl) f d-inof [y1(0) + 72(0) M1 (2:(7)) +Cf]?T
1

IN0&))
dn(t)

& +ea—ealhl [01(7) + 02 (T) M (21 (7)) + C,]

B-1 |
> (€1 — &illy2IDR; — [z11D)
_ &+ e — gyl

[yl + lly2li(e1 Ry + M7) + Cy]

B - D)
_ “d
B &+ 1681_ ‘131”72” 77( )[H Ul + lloall(eaRy + M*) + Cg]
1

>0

and

(& — &lloalD(Ry — [z1l])
_ e d
_er °— szl f (1= 102 100) + M 0) + €1
_&t . 82”“2” f (1) + 20 Moz (39) + Co 210
> (& — &lloaID(Ry — [[z11D)

+ & — &l|o| N
_ara-aldll, iR + M)+ O]

dn(y)

B-DI@)
_ “d
O+ 6; i2||0'2|| 77()’)[”0-1” + lloall(e2Ry + M) + C,]
—~ 1

> 0.
As aresult, (3.9) holds, as required. From (3.5) and (3.8), we have

21(x) +21(x) = (Tz1)(x) +Z21(%) + 14z, 6, (%)
> (Lg, 6, (21 +20))(X) + 1 g, (%), x € [1, e].

Define aset W = {u : 2y + 21 > ule, ) and " = sup W, then iy € W and u* > p;. Hence, note that
L ¢, : P — P, and we have

21(X) + 21(%) = 1l 6,(x) + (Lg, £, (21 +71))(x)
2 ﬂl(ﬁ,é‘z(x) + (Lfl’fzﬂ*gfl,fz)(x) = Ml{fl,fz(x) + ﬂ*r(Lfl,&)g{"l,fQ(x) = (lu>F +:ul){§1,§-'2(-x)’

which contradicts the definition of y*. As a result, (3.4) holds, and Lemma 2.6 implies that
deg(I — T, Bg,,0) = 0. (3.10)
By (H6), there exists r; € (0, R;) such that

1fCx, 2| < &3zl 1g(x, 2)| < ulzl, for |z € [0, 7], x € [, e]. (3.11)

Electronic Research Archive Volume 32, Issue 3, 2120-2136.
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In what follows, we prove that
Tz #uz,z€ 0B, ,u>1, (3.12)

where B,, = {z € E : ||z|| < ri}. If (3.12) doesn’t hold, and there exist z, € dB,,, (» > 1, such that
Tz = ur2o,

then this, along with (3.11), implies that
1
20| = —(T22)()
H2
¢ d 1 -1ore d
G 0200 + “”ﬁ)ﬁ | stz
1
f Gy VIfO, wm— (“)ﬂ f 18x. 2200 (x)

1 d
<& f GB(X,}’)|Z2()’)|_+§4(HX)ﬁ f 22 410
1 y B - 1 1 X

= (L§3,f4lz2|)(-x)7-x € [17 e]~

-1
Note that (L, £,) < 1. This means that (I - L&,&) exists and
-1 2 n
(I - L§3,§4) =T+ Leg + Lgg + ot Lgg +
-1
Consequently, note that (I - L&,&) : P — P, and we have

-1
(I = Leye)laD() < 0= o) < (I = Leg,) 0=0,
which implies that z,(x) = 0, x € [1, e] and contradicts z, € dB,,. Therefore, Lemma 2.7 implies that
deg(I-T,B,,0)=1

Using this with (3.10), we have
deg (I - T.B,\B,,.0) = deg (I — T, Bg,.0) - deg (I - T. B,,,0) = —

Hence, T has at least one fixed point in Bg, \Erl, i.e., (1.1) has at least one nontrivial solution. This

completes the proof.

Now, we consider the case that our nonlinearities are suberlinear. From [8], we know that E’s
conjugate space E* := {p : p has bounded variation on [1, e¢]}. Moreover, the dual cone of P and the
bounded linear functional on E are

P* :={p € E" : pis non-decreasing on [1,e]} and {p,z) = f z(x)dp(x),z € E,p € E".
1

Note that r(Ls¢) > 1 in (H7), and from the similar method in [23], there exists g ¢ € P*\{0}

such that
Lz"syfﬁl/’fs,fs = r(Lé*s,é"@)‘r//fs,fs’ (3.13)

Electronic Research Archive Volume 32, Issue 3, 2120-2136.



2130

where L; . @ E* — E is the conjugate operator of L ., denoted by
’ i ‘ dp(x) “ (Inx)’~! dp(x) .
(Lfs,§6p) ) = fo de Gu(x, D2 4 () P e P
1 1 X . B-1 X

Theorem 3.2. Let (H1)—(H4), (H7), and (H8) hold, then (1.1) has a nontrivial solution.
Proof. From (H7), there exists r, > 0 such that

f(x,2) 2 &lzl, g(x,2) = &lzl, for x € [1, €],z < ra. (3.14)
For this r,, we prove that
z2—=Tz # pwy, 2 € 0B,,,u >0, (3.15)

where w, € P is a fixed element and B,, = {z € E : ||z]| < r»}. We use an argument by indirection, then
there exist z3 € dB,,, 3 > 0 such that
73 — T'z3 = 3.

Note that by (3.14), we have

1
(In v dnx) >0,z3 € 0B,,,x € [1,e].
X

(Tz3)(x) = f Gp(x, ) f(y, Z3(}’))— + -1 J, g(x, z3(x))

Hence, u3; > 0, wy € P enable us to find

23 =Tz + p3wy > 0,

and
23(x) = (T'z3)(x)
¢ d (In xy*~! d (X)
Zfsf Gﬁ(%)’)&()’)—y +&6 3( =
1 y B-1 Ui
Multiplying st ™) ‘56( “ on both sides of the above inequalities and integrating over [1, e], from (3.13),
we obtain

¢ d d 1 -1ore d
[ S eslD | Vs (g f Gy, y)Zz(y)— &,(nf)ﬁ] f () ”;x))
1 1 1
e -1
o o [ st [0t
L Be
:\[ @d( §5§6¢§:5a§6)(y)
= r(Leso) fl %y)dl//fsfﬁ(y) -

Note that ¢, ¢, € P*\{0}, then from the definition of the Riemann-Stieltjes integral, we have

e N n@
[0 i S 2y 60 - )] 20, (3.17)

i=1
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where 0 = xp < x1 < *++ < X1 < X < X1 = 1,4 = maXyqc, (X5 — Xi21), Y& € [Xio,x],0 =
1,2,---,n. Therefore, r(Lg, ¢) > 1 and (3.16) enable us to obtain
¢ d X
f a(x)—w&f( ) o, (3.18)
1

Note that for all divisions x;, (3.18) holds, and we only obtain z3(x) = 0, x € [1, e]. Therefore, this
contradicts z3 € dB,, and (3.15) holds. Lemma 2.6 implies that

deg(I-T,B,,,0)=0. (3.19)
By (HS8), there exist dy, d, > 0 such that
|f(x, 2| < &7lzl + di, |g(x, 2)| < &slzl + da, for |z € R, x € [1, e]. (3.20)

In what follows, we prove that § = {z € E : Tz = uz,;u > 1} is a bounded set. If there exist
74 € S, 4 > 1 such that

Tz4 = paza,
then (3.20) implies that

1
|40l = —|(Tz4)(x)|
s

1
f Gy(x, y)|f(y,zm)>|—+(“)ﬁ f 1g(x, 24(1))| (x)
(lnx)ﬁ

dn(x)

f Gg(x, y)(&lzay)l + dl)_ f (&5lz4(0)| + dr)

e d2 fe dn(x)
< (Lg glzal)(x) + dy f Ggle, y)— + ,8—1x’ x€[l,e].
-1
Note that (L, ) < 1. Thus (1 - L&,‘fg) exists, and
(1- LMS) =D+ Lo+ L o+ + L+

-1
Consequently, note that (I - L&,gg) : P — P, and we have

(= Loaleah(®) < [

1 d2f1€@
BE-DI@B)  p-1

and, thus,

¢ dn(x)
-1 d d | =~
|za(x)| < (1 - Lfmfs) ( 1 + ﬁ ], x€[l,e],

BB—-DIrE)  p-1

which implies that S is a bounded set, as required. Let R, > sup S and R, > r,, then we have

Tz # uz, 7€ 0Bg,,u > 1.

Electronic Research Archive Volume 32, Issue 3, 2120-2136.



2132

Therefore, Lemma 2.7 implies that
deg(I — T, Bg,,0) = 1.
Using this with (3.19), we have
deg (I - T. Bg,\B,,.0) = deg (I — T, B,,0) — deg (I - T, B,,.0) = 1.

Hence, T has at least one fixed point in B, \E,z, i.e., (1.1) has at least one nontrivial solution. This

completes the proof.
Theorem 3.3. Let (H1), (H4), and (H9) hold, then (1.1) has a nontrivial solution.
Proof. Define a linear operator L, ¢, : E — E as follows:

]
(Lgy £02)(x) = §9f Gp(x, y)z(y)—+€1o(nx)ﬁ f z2(x)—— n() x€[l,e]l, z€E.

Now, we prove that 1 isn’t an eigenvalue for L, s,. On the contrary, then there exists z* € E\{0}

such that

Leygo? =7 (3.21)

By Lemma 2.2, we obtain
= DP7'(x) = 7' (%), x € (1, e),

2(1) = 62°(1) = 0,62 (e) = & f Z(x )d”(x)

Next, we will consider the following two cases.
Case 1. & + &, = 0. By Lemma 2.2, we have

() = dy(In ™" + dy(In X/~ + ds(In x)P 3,

where cz €R,i=1,23. Note that 8 € (2, 3], the boundary condition z*(1) = 6z"(1) = 6z"(e) = 0
implies that d; = 0, and z"(x) = 0, x € [1, e]. This contradicts z* € E\{0}.
Case 2. & + &, # 0. From (3.21), we have

(In x)ﬁ dﬂ(X)

7(x) = §9f Gp(x, y)7" (Y)— 510

feM
s||z*||[|§9| fl Gﬁ<e,y>7y+|§m| = ] xellel.

By (H9), we obtain that

+ &0l

® * |§:9| ﬁe @ %
1zl < llz ||[Im -1 < Iz"]].

This is impossible.
As aresult, we claim that 1 isn’t an eigenvalue for Ly, ¢, as required.
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By (H9), for all & > 0, there exists A > 0 such that
|/ (x,2) = &ozl < é€lzl, 1g(x,2) — 10zl < &lzl, for [z > A, x € [1,e].

Note that when |z] < A and x € [1, ], | f(x,2) — &oz| and |g(x, 2) — &10z| are bounded. Therefore, there
exist o; > 0 (i = 1, 2) such that

[f(x,2) — &zl < €lzl + 01, |g(x,2) — &0zl S €lzl + 02, 2€R, x€[l,e]. (3.22)

Hence, (3.22) enables us to obtain

72~ Le,zcll = max f Gy L 200) — fgz(y)]— )ﬁ f (805, 500 ~ 0] T2
d
f Gple. YIf(.2()) — §9z<y>|— T f l2(x, 2(x)) — 1020 ”(x)
dn(x)
ellzll + o1 |
<Gt T o el e
This implies that
¢ dn(x
”TZ - Lf%_’floz” <se 1 n fl % .
lzfi—o0 Izl BB-DIEB) p-1
Note that from the arbitrariness of €, we know that
”TZ B L§9,§10Z” —0.
llzll—o0 [zl

Lemma 2.8 indicates that T has at least one fixed point, and note that 70 # 0 by f, g(z,0) # 0,¢ €
[1, e]. Therefore, (1.1) has at least one nontrivial solution. This completes the proof.

4. Conclusions

We note that the spectral theory of linear operators can be used to study differential equations, see
for example, [2,6,9, 10]. In [9], the authors studied the following fractional boundary value problem

Dg z(t) + q()f(t,2(1) =0, O<t<ln-1<a<n,
20) =20 = =220 =0, z1)= [ s)dA(s),

where a > 2, Dy, is the Riemann-Liouville derivative and f € C([0, 1] X (0, +0c0), R*). They obtained
two existence theorems of positive solutions for their problem when the nonlinearity f satisfies one of
the following growth conditions

sublinear condition: limsup sup £%2 < A;, and liminf inf {42 > A
otoo 1e[0,1] © 750*  1e[0,1] Z
superlinear condition: limsup sup VALEIRE A1, and liminf inf fD) ( EINE A1, where A, = (r(L))™", r(L)

20+ 1€[0,1] Z z—+00  te[0,1]

is the spectral radius of the linear operator (Lz)(¢) = fo Gwang (1, $)q(5)z(5)ds, Gwang 18 their Green’s
function.
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Compared with our problem, we don’t incorporate the integral boundary conditions into the Green’s
function, and consider a new linear operator (2.5). Moreover, we obtain several existence theorems of
nontrivial solutions under some conditions regarding the spectral radius of the linear operator. On the
other hand, our nonlinearities f, g can be sign-changing, in contrast to the nonlinearities in [1-10],
which are assumed to be nonnegative. These imply that our main results generalize and improve the
corresponding ones in the works cited above.
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