Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

On coupled snap system with integral boundary conditions in the G-Caputo sense

  • In this paper, we consider a coupled snap system in a fractional G-Caputo derivative sense with integral boundary conditions. Hyers-Ulam stability criterion is investigated, and a numerical simulation will be supplied to some applications. Some numerical simulations are presented to guarantee the theoretical results.

    Citation: Sabri T. M. Thabet, Mohammed M. Matar, Mohammed Abdullah Salman, Mohammad Esmael Samei, Miguel Vivas-Cortez, Imed Kedim. On coupled snap system with integral boundary conditions in the G-Caputo sense[J]. AIMS Mathematics, 2023, 8(6): 12576-12605. doi: 10.3934/math.2023632

    Related Papers:

    [1] Dongming Nie, Usman Riaz, Sumbel Begum, Akbar Zada . A coupled system of p-Laplacian implicit fractional differential equations depending on boundary conditions of integral type. AIMS Mathematics, 2023, 8(7): 16417-16445. doi: 10.3934/math.2023839
    [2] Sabri T. M. Thabet, Miguel Vivas-Cortez, Imed Kedim . Analytical study of ABC-fractional pantograph implicit differential equation with respect to another function. AIMS Mathematics, 2023, 8(10): 23635-23654. doi: 10.3934/math.20231202
    [3] Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263
    [4] Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438
    [5] Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012
    [6] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [7] Najla Alghamdi, Bashir Ahmad, Esraa Abed Alharbi, Wafa Shammakh . Investigation of multi-term delay fractional differential equations with integro-multipoint boundary conditions. AIMS Mathematics, 2024, 9(5): 12964-12981. doi: 10.3934/math.2024632
    [8] Arjumand Seemab, Mujeeb ur Rehman, Jehad Alzabut, Yassine Adjabi, Mohammed S. Abdo . Langevin equation with nonlocal boundary conditions involving a ψ-Caputo fractional operators of different orders. AIMS Mathematics, 2021, 6(7): 6749-6780. doi: 10.3934/math.2021397
    [9] Qun Dai, Shidong Liu . Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method. AIMS Mathematics, 2022, 7(2): 2498-2511. doi: 10.3934/math.2022140
    [10] Zaid Laadjal, Fahd Jarad . Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059
  • In this paper, we consider a coupled snap system in a fractional G-Caputo derivative sense with integral boundary conditions. Hyers-Ulam stability criterion is investigated, and a numerical simulation will be supplied to some applications. Some numerical simulations are presented to guarantee the theoretical results.



    Over the past decades, the study of nonlinear problems has been the interest of many researchers [5,10,11,14,19,24,25,26]. Also, study of fractional calculus has recently gained great momentum, and has emerged as a significant research area [5,7,15,20,21,30]. Fractional derivatives provide an excellent tool for the description of memory and hereditary properties of various materials and processes; see, for instance, the contribution [2,3,4,6,16,22,23,28,29] and references therein.

    The authors in [8] focused on the study of nonlinear jerk problems due to its various physical applications, as form

    d3ydt3=T(y,dydt,d2ydt2).

    In 2020, the authors investigated the existence and uniqueness of solutions for the following nonlocal generalized fractional Sturm-Liouville and Langevin equations:

    {cDαι+1([p(t)cDγι+1+q(t)]y(t))=T(t,y(t)),t[0,T],α,γ(0,1],y(0)+ϰ1(y)=y1R,cDγι+1y(T)+ϰ2(y)=y2R,

    where cDαι+1, cDγι+1 are the Caputo fractional derivatives, p,qC([0,T]) with |p|K>0, ϰ1,ϰ2:C(J)R are continuous functions and TC([0,T]×R) [27]. The second derivative of the accelaration (fourth derivative of position) is a physical quantity called a snap or jounce, which can be modeled as

    {dy1dt=y2(t),dv2dt=y3(t),dy3dt=y4(t),dy4dt=T(y1,y2,y3,y4). (1.1)

    It is obvious that the model (1.1) can be reduced to the following equation:

    d4y1dt4=T(y1,dy1dt,d2y1dt2,d3y1dt3). (1.2)

    Scientifically, jerk and snap are the third and fourth derivatives of our position with regard to time, respectively. The Eq (1.1) contains a 4th-order derivative of the variable y1, and it describes a 4th-order dynamical vibration model.

    The corresponding fractional model is achieved by using the fractional derivative (of order less than or equal 1) instead of the standard deivative ddt. Many types of fractional derivatives can be used here, such as Riemann-Liouville, Caputo, Hadamard, etc. We prefer to use the generalized fractional derivative (GFD), with respect to differentiable increasing function G. In 2020, Liu {et al.}, developed two iterative algorithms to determine the periods, and then the periodic solutions of nonlinear jerk equations for two possible cases with initial values unknown and initial values given [13]. The authors in a recent article [23] considered the G-fractional snap model (GFSM) with constant, initial conditions

    {cDα;Gι+1y(t)=y1(t),y(ι1)=v0,cDβ;Gι+1y1(t)=y2(t),y1(ι1)=v1,cDγ;Gι+1y2(t)=y3(t),y2(ι1)=v2,cDδ;Gι+1y3(t)=T(t,y,y1,y2,y3),y3(ι1)=v3, (1.3)

    where the G-Caputo derivatives are illustrated by the symbol

    cDη;Gι+1,η{α,β,γ,δ},0<η<1,

    here and the increasing function GC1([ι1,ι2]) is such that G(t)0, for each t[ι1,ι2] and continuous function T belongs to C([ι1,ι2]×R4) and y0,y1,y2,y3R. Abbas {et al.} studied the following coupled system of fractional differential equations:

    {RLDα1;ϱι+1y1(t)=T1(t,y1(t),y2(t)),RLDα2;ϱι+1y2(t)=T2(t,y1(t),y2(t)),

    for t[ι1,ι2] equipped with the generalized fractional integral boundary conditions

    {y1(τ1)=0,y1(ι2)=Iζ1;ϱι+1y1(η1),y2(τ2)=0,y2(ι2)=Iζ2;ϱι+1y2(η2),

    where ϱ(0,1], RLDαi;ϱι+1 denotes the generalized proportional fractional derivatives of Riemann-Liouville type of order 1<αi2, Iζi;ϱι+1 that denotes the generalized proportional fractional integrals of order 0<ζi<1 and τi,ηi(ι1,ι2) and TiC([ι1,ι2]×R2) [1].

    We center our consideration on the problem of the existence and uniqueness along with the Hyers-Ulam stability (U-H-S) of solutions for fractional nonlinear couple snap system (CSS) in the G-Caputo sense (GC) with initial conditions

    {cDq1;Gι+1v1(t)=u1(t),cDq2;Gι+1v2(t)=u2(t),cDp1;Gι+1u1(t)=w1(t),cDp2;Gι+1u2(t)=w2(t),cDr1;Gι+1w1(t)=x1(t),cDr2;Gι+1w2(t)=x2(t),cDs1;Gι+1x1(t)=h1(t,v1,v2,u1,u2,w1,w2,x1,x2),cDs2;Gι+1x2(t)=h2(t,v1,v2,u1,u2,w1,w2,x1,x2), (1.4)

    subject to the following integral boundary conditions

    v1(ι1)=ι2ι1g10(s)ds,v2(ι1)=ι2ι1g20(s)ds,u1(ι1)=ι2ι1g11(s)ds,u2(ι1)=ι2ι1g21(s)ds,w1(ι1)=ι2ι1g12(s)ds,w2(ι1)=ι2ι1g22(s)ds,x1(ι1)=ι2ι1g13(s)ds,x2(ι1)=ι2ι1g23(s)ds, (1.5)

    where the GC derivatives are illustrated by symbol

    cDη;Gι+1,η{qk,pk,rk,sk},0<qk,pk,rk,sk1,

    here the function GC1(Σ) is increasing with G(t)0, for all tΣ=[ι1,ι2] and the functions hkC(Σ×R8),(k=1,2) and gkjC(Σ,R),(j=0,1,2,3;k=1,2) are continuous functions. It is obvious that the CSS (1.4) and (1.5) can be rewritten as

    {cDsk;Gι+1(cDrk;Gι+1(cDpk;Gι+1(cDqk;Gι+1vk(t))))=hk(t)vk(ι1)=ι2ι1gk0(s)ds,cDqk;Gι+1vk(t)|t=ι1=ι2ι1gk1(s)ds,cDpk;Gι+1(cDqk;Gι+1vk(t))|t=ι1=ι2ι1gk2(s)ds,cDrk;Gι+1(cDpk;Gι+1(cDqk;Gι+1vk(t)))|t=ι1=ι2ι1gk3(s)ds,k=1,2, (1.6)

    where

    hv1,v2,k(t)=hk(t,v1(t),v2(t),cDq1;Gι+1v1(t),cDq2;Gι+1v2(t),cDp1;Gι+1(cDq1;Gι+1v1(t)),cDp2;Gι+1(cDq2;Gι+1v2(t)),cDr1;Gι+1(cDp1;Gι+1(cDq1;Gι+1v1(t))),cDr2;Gι+1(cDp2;Gι+1(cDq2;Gι+1v2(t)))).

    The main novelty of this work is that we establish our results with the help of the technique of fixed point theorems for a fractional nonlinear CSS furnished with generalized operators, which leads to some general theoretical findings involving the following special cases: G as G1(ι)=2ι, G2(ι)=ι (Caputo derivative), G3(ι)=lnι (Caputo-Hadamard derivative), G4(ι)=ι (Katugampola derivative).

    This paper is organized as follows: In Section 2, we present some necessary definitions and lemmas that are needed in the subsequent sections. In Section 3, we adopt some fixed point theorems to prove the existence and uniqueness of solutions for problem (1.4). The stability results are extensively discussed in Section 3.2. An illustrative example is presented in Section 4.

    Some primitive notions, definitions and notations, which will be utilized throughout the manuscript, are recalled here. Consider the function G with assumptions in system (1.4). We start this part by defining G-Riemann-Liouville fractional (GF-RL) integrals and derivatives [17]. For η>0, the ηth-GF-RL integral for an integrable function v:ΣR w.r.t G is illustrated as follows

    Iη;Gι+1v(t)=1Γ(η)tι1(G(t)G(σ))η1G(σ)v(σ)dσ, (2.1)

    where Γ(η)=+0ettη1dt,η>0. Let nN and G,vCn(Σ) be such that G has the same properties mentioned above. The ηth-GF-RL derivative of v is defined by

    Dη;Gι+1v(t)=A(n)Inη;Gι+1v(t)=1Γ(nη)A(n)tι1(G(t)G(σ))nη1G(σ)v(σ)dσ,

    in which n=[η]+1, where A=1G(t)ddt. The ηth-G-fractional-Caputo derivative of v is defined by cDη;Gι+1v(t)=Inη;Gι+1A(n)v(t), in which n=[η]+1, (ηN), n=η for ηN [17]. In other words,

    cDη;Gι+1v(t)={tι1(G(t)G(ξ))nη1Γ(nη)G(n)v(ξ)dξ,ηN,Anv(t),η=nN. (2.2)

    This extension (2.2) gives the Caputo derivative when G(t)=t [17]. Also, in the case G(t)=lnt, it yields the Caputo-Hadamard derivative. If vCn(Σ), the ηth-G-fractional-Caputo derivative of v is specified as [18]

    cDη;Gι+1v(t)=Dη;Gι+1(v(t)n1j=0A(j)v(ι1)j!(G(t)G(ι1))j).

    The composition rules for above G-operators are recalled in this lemma.

    Lemma 2.1. [18] Let n1<η<n and vCn(Σ). Then the following holds

    Iη;Gι+1cDη;Gι+1v(t)=v(t)n1j=0A(j)v(ι1)j![G(t)G(ι1)]j,

    for all tΣ. Moreover, if mN and vCn+m(Σ), then, the following holds

    A(m)(cDη;Gι+1v)(t)=cDη+m;Gι+1v(t)+m1j=0[G(t)G(ι1)]j+nηmΓ(j+nηm+1)A(j+n)v(ι1). (2.3)

    Observe that from Eq (2.3) if A(j)v(ι1)=0, for j=n,n+1,,n+m1, we can get the following relation

    A(m)(cDη;Gι+1v)(t)=cDη+m;Gι+1v(t),tΣ.

    Lemma 2.2. [12] Let η,ν>0, and vC(Σ). Then for each tΣ and by assuming

    Fι1(t)=G(t)G(ι1), (2.4)

    we have

    (1) Iη;Gι+1(Iν;Gι+1v)(t)=Iη+ν;Gι+1v(t);

    (2) cDη;Gι+1(Iη;Gι+1v)(t)=v(t);

    (3) Iη;Gι+1(Fι1(t))ν1=Γ(ν)Γ(ν+η)(Fι1(t))ν+η1;

    (4) cDη;Gι+1(Fa(t))ν1=Γ(ν)Γ(νη)(Fι1(t))νη1;

    (5) cDη;Gι+1(Fι1(t))j=0,n1ηn,nN,j=0,1,,n1.

    Theorem 2.3. [9] (Banach's fixed point theorem) Consider Π:YY to be a contraction operator, such that Y is a Banach space. Then, there are only one yY, such that Π(y)=y.

    Lemma 2.4. [9] (Krasnoselskii's fixed point theorem) Assume that BX is a closed convex and nonempty, and L1, L2:BX nonlinear operators, such that:

    (ⅰ) L1u+L2vB whenever u,vB;

    (ⅱ) L1 is a contraction mapping;

    (ⅲ) L2 is compact and continuous.

    Then, there exists wB, such that w=L1w+L2w.

    Definition 2.5. [29] Let X1,X2 be Banach spaces and Λ1,Λ2:X1×X2X1×X2 be two operators. Then, the operational equations system provided by

    {u1(t)=Λ1(u1,u2)(t),u2(t)=Λ2(u1,u2)(t), (2.5)

    is called U-H-S, if there exist αi>0,(i=1,,4), such that, ρ1,ρ2>0, and each solution (u1,u2)X1×X2 of the identities

    {u1Λ1(u1,u2)ρ1,u2Λ2(u1,u2)ρ2,

    there exists (v1,v2)X1×X2 a solution of system (2.5), such that

    {u1v1α1ρ1+α2ρ2,u2v2α3ρ1+α4ρ2.

    Theorem 2.6. [29] Let X1,X2 be Banach spaces and Λ1,Λ2:X1×X2X1×X2 be two operators that satisfy

    {Λ1(u1,u2)Λ1(u1,u2)α1u1u1+α2u2u2,Λ2(u1,u2)Λ2(u1,u2)α3u1u1+α4u2u2, (2.6)

    for each (u1,u2),(u1,u2)X1×X2 and if the matrix

    Ξ=(α1α2α3α4),

    it converges to zero. Then, the system (2.6) is U-H-S.

    Here, we analyze the existence properties of solutions, and their uniqueness for the proposed fractional G-CSS (1.6) using Krasnoselskii and Banach fixed point theorems. We need after lemma, which indicate the corresponding integral equation.

    Lemma 3.1. For given continuous mappings h,gk(k=0,1,2,3) belongs to C(Σ), and the solution of the linear G-snap problem is

    {cDs;Gι+1(cDr;Gι+1(cDp;Gι+1( cDq;Gι+1v(t))))=h(t),v(ι1)=bι1g0(ξ)dξ,cDq;Gι+1v(ι1)=bι1g1(ξ)dξ,cDp;Gι+1(cDq;Gι+1v(ι1))=ι2ι1g2(ξ)dξ,cDr;Gι+1(cDp;Gι+1(cDq;Gι+1v(ι1)))=ι2ι1g3(ξ)dξ, (3.1)

    where q,p,r,s(0,1], are formulated by

    v(t)=ι2ι1g0(ξ)dξ+ι2ι1(Fι1(t))qg1(ξ)Γ(q+1)dξ+ι2ι1(Fι1(t))q+pg2(ξ)Γ(q+p+1)dξ+ι2ι1(Fι1(t))q+p+rg3(ξ)Γ(q+p+r+1)dξ+tι1G(ξ)(Fξ(t))q+p+r+s1Γ(q+p+r+k)h(ξ)dξ.

    Define the vector space

    Xk={vkC(Σ,R):cDqk;Gι+1vk,cDpk;Gι+1(cDqk;Gι+1vk),cDrk;Gι+1(cDpk;Gι+1(cDqk;Gι+1vk(t)))C(Σ,R)}.

    Then, Xk,k=1,2, are Banach spaces via the norm

    vk=sup

    Hence, the product space X_{1}\times X_{2} is a Banach space with the norm

    \left\Vert (v_{1},v_{2})\right\Vert = \max \Big\{\Vert {\mathrm{v}}_{1}\Vert ,\Vert {\mathrm{v}}_{2}\Vert \Big\}.

    In view of Lemma 3.1, the solution of the coupled system (1.6) can be given as

    \begin{align*} {\mathrm{v}}_{k}(\mathfrak{t})& = \int_{\iota_1}^{\iota_2} g_{k0}(\xi)\, {\mathrm{d}}\xi + \int_{\iota_1}^{\iota_2} \frac{(F_{\iota_1}(\mathfrak{t}))^{q_{k}}g_{k1}(\xi ) }{ \Gamma (q_{k}+1)}\, {\mathrm{d}}\xi \\ &\quad + \int_{\iota_1}^{\iota_2} \frac{(F_{\iota_1}(\mathfrak{t}))^{q_{k}+p_{k}} g_{k2}(\xi)}{\Gamma( q_{k}+p_{k}+1)} \, {\mathrm{d}}\xi + \int_{\iota_1}^{\iota_2} \frac{{\mathrm{v}}_{k3}(F_{\iota_1}(\mathfrak{t}))^{q_{k}+p_{k}+r_{k}}g_{k3}(\xi)}{\Gamma (q_{k}+p_{k}+r_{k}+1)}\, {\mathrm{d}}\xi \\[0.16in] & \quad + \int_{\iota_1}^{ \mathfrak{t}}\mathbb{G}^{\prime }(\xi )\frac{(F_{\xi}( \mathfrak{t}))^{q_{k}+p_{k} + r_{k}+s_{k}-1}}{\Gamma (q_{k}+p_{k}+r_{k}+s_{k})} h_{{\mathrm{v}}_1,{\mathrm{v}}_2,k}(\xi {\mathrm{)d}}\xi . \end{align*}

    Define the functional \Lambda _{k} : X_{k} \to \mathbb{R} , such that

    \begin{align} (\Lambda_{k}{\mathrm{v}}_{k})(\mathfrak{t})& = \int_{\iota_1}^{\iota_2} g_{k0}(\xi )\, {\mathrm{d}}\xi + \int_{\iota_1}^{\iota_2} \frac{(F_{\iota_1}(\mathfrak{t}))^{q_{k}} g_{k1}(\xi)}{\Gamma (q_{k}+1)} \, {\mathrm{d}}\xi + \int_{\iota_1}^{\iota_2} \frac{(F_{\iota_1}(\mathfrak{t}))^{q_{k}+p_{k}}g_{k2}(\xi)}{\Gamma(q_{k}+p_{k}+1)}\, {\mathrm{d}}\xi \\ &\quad +\int_{\iota_1}^{\iota_2} \frac{(F_{\iota_1}(\mathfrak{t}))^{q_{k}+p_{k}+r_{k}}g_{k3}(\xi)}{\Gamma(q_{k}+p_{k}+r_{k}+1)} \, {\mathrm{d}}\xi +\int_{\iota_1}^{\mathfrak{t}} \mathbb{G}^{\prime }(\xi ) \frac{(F_{\xi}(\mathfrak{t}))^{q_{k}+p_{k}+r_{k}+s_{k}-1} h_{{\mathrm{v}}_1,{\mathrm{v}}_2,k}(\xi )}{ \Gamma(q_{k}+p_{k}+r_{k}+s_{k})} \, {\mathrm{d}}\xi . \end{align} (3.2)

    Under some conditions, we show next that the functional \Lambda :X_{1} \times X_{2} \to \mathbb{R}^{2} is a contraction, where \Lambda is given as

    \begin{equation*} \Lambda (v_{1},v_{2}) = \big(\Lambda _{1}(v_{1},v_{2}),\Lambda _{2}(v_{1},v_{2})\big). \end{equation*}

    Theorem 3.2. Let h_{k}\in C(\Sigma\times\mathbb{R}^8), \, (k = 1, 2) be continuous functions. Moreover, assume that

    (H1) there exist real constants \ell_k > 0, \, (k = 1, 2) , so that

    \begin{equation} |h_{k}\big(\mathfrak{t},{\mathrm{v}}_1,{\mathrm{v}}_2,\dots,{\mathrm{v}}_8 \big)-h_{k}\big(\mathfrak{t},{\mathrm{v}}_1^\ast, {\mathrm{v}}_2^\ast, \dots,{\mathrm{v}}_8^\ast \big) |\leq\ell_k\sum\limits_{i = 1}^{8}| {\mathrm{v}}_i-{\mathrm{v}}_i^\ast|, \end{equation} (3.3)

    for any \mathfrak{t}\in \Sigma , {\mathrm{v}}_i, {\mathrm{v}}_i^\ast\in C([a, b]) and i = 1, 2, \dots, 8 .

    Then, the fractional \mathbb{G} - \mathbb{C}{\mathrm{S}}\mathbb{S} (1.6) admits a unique solution on \Sigma if \Phi\ell < 1 , whenever \ell = \max\{ \ell_1, \ell_2\} , \Phi = \max\{\Phi_1, \Phi_2\} and

    \begin{align} \Phi_k & = \frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}+r_{k}+s_{k}}}{ \Gamma (q_{k}+p_{k}+r_{k}+s_{k}+1)} + \frac{(F_{\iota_1}(\iota_2))^{p_{k}+r_{k}+s_{k}}}{ \Gamma(p_{k} + r_{k}+s_{k}+1)} \\ &\quad +\frac{ (F_{\iota_1}(\iota_2))^{r_{k}+s_{k}}}{ \Gamma (r_{k}+s_{k}+1)}+ \frac{(F_{\iota_1}(\iota_2))^{s_{k}}}{ \Gamma (s_{k}+1)}, \end{align} (3.4)

    with \Phi_k\ell_k < 1 .

    Proof. First of all, we define a closed bounded ball

    \mathbb{B}_\varepsilon = \Big\{ ({\mathrm{v}}_1,{\mathrm{v}}_2) \in X_{1}\times X_{2}:\; \; \Vert ({\mathrm{v}}_1,{\mathrm{v}}_2) \Vert\leq \varepsilon \Big\},

    satisfying

    \begin{equation} \varepsilon\geq\max\left\lbrace \dfrac{\Delta_1+h_1^0 \Phi_1}{(1- \ell_1 \Phi_1)},\dfrac{\Delta_2+h_2^0 \Phi_2}{(1- \ell_2 \Phi_2)}\right\rbrace, \end{equation} (3.5)

    where

    \begin{align} \Delta_k& = M_{k0} +M_{k1}\left(1+ \frac{(F_{\iota_1}(\iota_2))^{q_{k}}}{ \Gamma (q_{k}+1)}\right) \\ &\quad+M_{k2}\left(1+\frac{(F_{\iota_1}(\iota_2))^{p_{k}}}{\Gamma (p_{k}+1)} + \frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}}}{\Gamma(q_{k}+p_{k}+1)}\right) \\ &\quad +M_{k3}\left( 1 + \frac{(F_{\iota_1}(\iota_2))^{ r_{k}}}{\Gamma (r_{k}+1)} + \frac{(F_{\iota_1}(\iota_2))^{p_{k}+r_{k}}}{\Gamma (p_{k}+r_{k}+1)} + \frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}+r_{k}}}{\Gamma(q_{k} + p_{k} + r_{k}+1)}\right), \end{align} (3.6)

    and

    \begin{align} \label{eqMh} M_{kj} & = \sup\limits_{\mathfrak{t}\in \Sigma}\int_{\iota_1}^{\iota_2}| g_{kj}(\xi)| \, {\mathrm{d}}\xi, \qquad (j = 0,1,2,3), \\ h_k^0 & = \sup\limits_{\mathfrak{t}\in \Sigma }| h_k( \mathfrak{t},0,0,0,0,0,0,0,0)|, \qquad (k = 1,2). \end{align}

    Now, define the operator

    \Lambda (v_{1},v_{2}) = (\Lambda _{1}(v_{1},v_{2}),\Lambda _{2}(v_{1},v_{2})),\qquad \forall \, (v_{1}, v_{2}) \in X_{1}\times X_{2}, (3.7)

    where \Lambda_k is given in (3.2). To show that \Lambda(\mathbb{B}_\varepsilon) \subset \mathbb{B}_\varepsilon , by using hypotheses (H1), for ({\mathrm{v}}_1, {\mathrm{v}}_2) \in\mathbb{B}_\varepsilon and \mathfrak{t} \in \Sigma , we get

    \begin{align} |\Lambda_{k} ( {\mathrm{v}}_{1}, {\mathrm{v}}_{2}) (\mathfrak{t})|& \leq \int_{\iota_1}^{\iota_2} |g_{k0}(\xi)| \, {\mathrm{d}}\xi + \int_{\iota_1}^{\iota_2} \frac{(F_{\iota_1}(\mathfrak{t}))^{q_{k}}| g_{k1}(\xi)| }{\Gamma (q_{k}+1)} \, {\mathrm{d}}\xi \\ &\quad +\int_{\iota_1}^{\iota_2} \frac{(F_{\iota_1}(\mathfrak{t}))^{q_{k}+p_{k}}| g_{k2}(\xi)| }{ \Gamma(q_{k}+p_{k}+1)}\, {\mathrm{d}}\xi + \int_{\iota_1}^{\iota_2} \frac{(F_{\iota_1}( \mathfrak{t}))^{ q_{k} + p_{k} + r_{k}} |g_{k3}(\xi)| }{ \Gamma ( q_{k}+p_{k}+r_{k}+1)}\, {\mathrm{d}}\xi\\ & \quad + \mathcal{I}_{\iota_1^{+}}^{q_{k}+p_{k} + r_{k} + s_{k} ;\mathbb{G}} \Big( |h_{{\mathrm{v}}_1,{\mathrm{v}}_2,k}( \mathfrak{t}) - h_{k}(\mathfrak{t},0,0,0,0,0,0,0,0)| \\ & \quad +|h_{k}(\mathfrak{t},0,0,0,0,0,0,0,0)| \Big) \\ & \leq \int_{a}^{b}|g_{k0}(\xi)| \, {\mathrm{d}}\xi + \int_{\iota_1}^{\iota_2} \frac{(F_{\iota_1}(\mathfrak{t}))^{q_{k}}| g_{k1}(\xi)| }{\Gamma (q_{k}+1)} \, {\mathrm{d}}\xi \\ &\quad + \int_{\iota_1}^{\iota_2} \frac{(F_{\iota_1}(\mathfrak{t}))^{q_{k}+p_{k}} |g_{k2}(\xi)|}{ \Gamma(q_{k} + p_{k}+1)} {\mathrm{d}} +\int_{\iota_1}^{\iota_2} \frac{(F_{\iota_1}(\mathfrak{t}))^{ q_{k}+p_{k}+r_{k}} |g_{k3}(\xi)| }{\Gamma (q_{k}+p_{k}+r_{k}+1)} \, {\mathrm{d}}\xi\\ & \quad + \mathcal{I}_{\iota_1^{+} }^{q_{k}+p_{k} + r_{k}+s_{k} ;\mathbb{G}} \bigg( \ell_k \Big( |{\mathrm{v}}_{1}(\mathfrak{t} )| + |{\mathrm{v}}_{2}(\mathfrak{t} )| \\ & \quad + \left|{ ^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{1}; \mathbb{G}}{\mathrm{v}}_{1}(\mathfrak{t} )\right| + \left| {^{c} \mathcal{D}}_{\iota_1^{+}}^{ q_{2};\mathbb{G}}{\mathrm{v}}_{2}(\mathfrak{t} )\right| \\ &\quad + \left| {^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{1};\mathbb{G}}\left({^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{1};\mathbb{G}}{\mathrm{v}}_{1}(\mathfrak{t} )\right)\right| +\left| {^{c}\mathcal{D}}_{ \iota_1^{+}}^{p_{2}; \mathbb{G}} \left({^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{2}; \mathbb{G}}{\mathrm{v}}_{2}(\mathfrak{t} )\right) \right| \\ &\quad +\left|{^{c}\mathcal{D}}_{\iota_1^{+}}^{r_{1};\mathbb{G}}\left( {^{c}\mathcal{D}} _{\iota_1^{+}}^{p_{1};\mathbb{G}}\left( {^{c}\mathcal{D}}_{a^{+}}^{q_{1};\mathbb{G} }{\mathrm{v}}_{1}(\mathfrak{t} )\right) \right) \right| \\ & \quad +\left| {^{c}\mathcal{D}}_{\iota_1^{+}}^{r_{2}; \mathbb{G}}\left( {^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{2};\mathbb{G}}\left( {^{c}\mathcal{D}}_{\iota_1^{+} }^{q_{2};\mathbb{G}}{\mathrm{v}}_{2}(\mathfrak{t} )\right)\right)\right| \Big)\\ &\quad + |h_{k}(\mathfrak{t},0,0,0,0,0,0,0,0)| \bigg) \\ & \leq M_{k0} + M_{k1}\frac{ (F_{\iota_1}(\iota_2))^{q_{k}}}{\Gamma (q_{k}+1)} + M_{k2} \frac{(F_{\iota_1}(\iota_2))^{ q_{k}+p_{k}}}{\Gamma(q_{k}+p_{k}+1)} \\ & \quad + M_{k3}\frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}+r_{k}}}{\Gamma (q_{k}+p_{k}+r_{k}+1)}\\ & \quad +\frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}+r_{k}+s_{k}}}{\Gamma (q_{k}+p_{k}+r_{k}+s_{k}+1)}\left(\ell_k\left(\|{\mathrm{v}}_{1}\|+\|{\mathrm{v}}_{2}\|\right)+h_{k}^0 \right). \end{align} (3.8)

    Also,

    \begin{align} |{^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{k};\mathbb{G}} & \left( \Lambda _{k}( {\mathrm{v}}_{1},{\mathrm{v}}_{2})(\mathfrak{t})\right) | \leq \int_{\iota_1}^{\iota_2} |g_{k1}(\xi)|\, {\mathrm{d}}\xi + \int_{\iota_1}^{\iota_2} \frac{(F_{\iota_1}(\mathfrak{t}))^{p_{k}} |g_{k2}(\xi)|}{\Gamma( p_{k}+1)} \, {\mathrm{d}}\xi \\ & \quad + \int_{\iota_1}^{\iota_2} \frac{ ( F_{\iota_1}(\mathfrak{t}))^{ p_{k}+r_{k}} |g_{k3}(\xi)|}{\Gamma (p_{k}+r_{k}+1)}\,{\mathrm{d}}\xi\\ & \quad + \mathcal{I}_{\iota_1^{+}}^{p_{k}+r_{k}+s_{k} ;\mathbb{G}} \Big( |h_{{\mathrm{v}}_1,{\mathrm{v}}_2,k} ( \mathfrak{t}) - h_{k}( \mathfrak{t},0,0,0,0,0,0,0,0)| \\ & \quad + |h_{k}( \mathfrak{t},0,0,0,0,0,0,0,0)|\Big) \\ & \leq \int_{ \iota_1}^{\iota_2} |g_{k1}(\xi)| \, {\mathrm{d}}\xi + \int_{\iota_1}^{\iota_2} \frac{ (F_{\iota_1}(\mathfrak{t}))^{p_{k}} |g_{k2}(\xi)|}{\Gamma(p_{k}+1)} {\mathrm{d}}\xi + \int_{\iota_1}^{\iota_2} \frac{ (F_{\iota_1}(\mathfrak{t}))^{p_{k}+r_{k}} |g_{k3}(\xi)| }{\Gamma(p_{k}+r_{k}+1)} \, {\mathrm{d}}\xi \\ & \quad + \mathcal{I}_{\iota_1^{+}}^{p_{k}+r_{k}+s_{k} ;\mathbb{G}} \bigg( \ell_k \Big( |{\mathrm{v}}_{1}(\mathfrak{t} )| + |{\mathrm{v}}_{2}(\mathfrak{t} )| + |{^{c}\mathcal{D}}_{\iota_1^{+}}^{ q_{1}; \mathbb{G}}{\mathrm{v}}_{1}(\mathfrak{t} )| + |{^{c} \mathcal{D}}_{\iota_1^{+}}^{ q_{2}; \mathbb{G}}{\mathrm{v}}_{2}( \mathfrak{t} )| \\ &\quad + \left|{^{c}\mathcal{D}}_{ \iota_1^{+}}^{ p_{1};\mathbb{G}}\left( {^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{1};\mathbb{G}}{\mathrm{v}}_{1}(\mathfrak{t} )\right)\right| +\left| {^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{2};\mathbb{G}}\left( {^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{2};\mathbb{G} } {\mathrm{v}}_{2}(\mathfrak{t} )\right) \right| \\ &\quad + \left|{ ^{c}\mathcal{D}}_{\iota_1^{+}}^{r_{1};\mathbb{G}} \left( {^{c}\mathcal{D}} _{\iota_1^{+}}^{ p_{1};\mathbb{G}}\left( {^{c}\mathcal{D}}_{ \iota_1^{+}}^{q_{1};\mathbb{G} }{\mathrm{v}}_{1}( \mathfrak{t} ) \right) \right) \right| \\ & \quad + \left| {^{c}\mathcal{D}}_{ \iota_1^{+}}^{r_{2};\mathbb{G}}\left({^{c}\mathcal{D}}_{ \iota_1^{+}}^{p_{2};\mathbb{G}}\left( {^{c}\mathcal{D}}_{ \iota_1^{+}}^{q_{2}; \mathbb{G}}{\mathrm{v}}_{2}(\mathfrak{t} )\right)\right)\right| \Big)\\ & \quad + | h_{k}( \mathfrak{t},0,0,0,0,0,0,0,0)|\bigg) \\ & \leq M_{k1} + M_{k2} \frac{(F_{\iota_1}(\iota_2))^{p_{k}}}{\Gamma(p_{k}+1)} + M_{k3}\frac{(F_{\iota_1}(\iota_2))^{p_{k}+r_{k}}}{\Gamma (p_{k}+r_{k}+1)}\\ & \quad + \mathcal{I}_{\iota_1^{+}}^{p_{k}+r_{k}+s_{k} ;\mathbb{G}} \left( \ell_k \left(\|{\mathrm{v}}_{1}\|+\|{\mathrm{v}}_{2}\|\right)+h_{k}^0\right) \\ & \leq M_{k1} + M_{k2}\frac{(F_{\iota_1}(\iota_2))^{p_{k}}}{\Gamma (p_{k}+1)} +M_{k3} \frac{(F_{\iota_1}(\iota_2))^{p_{k}+r_{k}}}{\Gamma (p_{k}+r_{k}+1)}\\ & \quad + \frac{(F_{\iota_1}(\iota_2))^{p_{k}+r_{k}+s_{k}}}{\Gamma (p_{k}+r_{k}+s_{k}+1)} \left(\ell_k\left(\|{\mathrm{v}}_{1}\|+\|{\mathrm{v}}_{2}\|\right)+h_{k}^0\right), \end{align} (3.9)
    \begin{align} \left|{^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{k};\mathbb{G}}\left( { ^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{k};\mathbb{G}}\left( \Lambda _{k}({\mathrm{v}}_{1},{\mathrm{v}}_{2})(\mathfrak{t})\right) \right) \right| & \leq M_{k2} +M_{k3}\frac{(F_{\iota_1}(\iota_2))^{r_{k}}}{\Gamma (r_{k}+1)}\\ & \quad + \frac{(F_{\iota_1}(\iota_2))^{r_{k}+s_{k}}}{\Gamma (r_{k}+s_{k}+1)} \left( \ell_k\left(\|{\mathrm{v}}_{1}\|+\|{\mathrm{v}}_{2}\|\right)+h_{k}^0\right), \end{align} (3.10)

    and

    \begin{align} \left|{^{c}\mathcal{D}}_{\iota_1^{+}}^{r_{k};\mathbb{G}} \right. & \left. \left( {^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{k};\mathbb{G}}\left( {^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{k};\mathbb{G}}\left( \Lambda _{k}({\mathrm{v}}_{1},{\mathrm{v}}_{2})(\mathfrak{t})\right) \right)\right) \right| \\ & \leq M_{k3}+\frac{(F_{\iota_1}(\iota_2))^{s_{k}}}{ \Gamma (s_{k}+1)}\left( \ell_k\left(\|{\mathrm{v}}_{1}\|+\|{\mathrm{v}}_{2}\|\right)+h_{k}^0\right). \end{align} (3.11)

    Thus, due to (3.8)–(3.11) and (3.5), we obtain

    \begin{align*} \Vert \Lambda _{k}({\mathrm{v}}_{1},{\mathrm{v}}_{2})\Vert & = \sup\limits_{\mathfrak{t}\in \Sigma } |\Lambda _{k}({\mathrm{v}}_{1},{\mathrm{v}}_{2})(\mathfrak{t})|+\sup\limits_{\mathfrak{t}\in \Sigma} \left\vert {}^{c}\mathcal{D}_{\iota_1^{+}}^{ q_{k}; \mathbb{G}}\left( \Lambda _{k}( {\mathrm{v}}_{1},{\mathrm{v}}_{2})\right) (\mathfrak{t})\right\vert \\ & \quad+\sup\limits_{\mathfrak{t} \in \Sigma}\left\vert {}^{c}\mathcal{D}_{\iota_1^{+}}^{p_{k}; \mathbb{G}}\left( {}^{c}\mathcal{D}_{\iota_1^{+}}^{q_{k};\mathbb{G}}\left( \Lambda _{k}({\mathrm{v}}_{1},{\mathrm{v}}_{2})\right)(\mathfrak{t})\right) \right\vert \\ & \quad +\sup\limits_{\mathfrak{t}\in \Sigma}\left\vert {}{^{c}\mathcal{D}} _{\iota_1^{+}}^{r_{k};\mathbb{G}}\left({^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{k};\mathbb{G}}\left( {^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{k};\mathbb{G}}\left( \Lambda _{k}({\mathrm{v}}_{1},{\mathrm{v}}_{2})\right)(\mathfrak{t}) \right) \right) \right\vert \\ &\leq \left[M_{k0} + M_{k1}\left(1+ \frac{(F_{\iota_1}(\iota_2))^{q_{k}}}{ \Gamma (q_{k}+1)}\right)\right. \\ &\quad+M_{k2}\left(1+\frac{(F_{\iota_1}(\iota_2))^{p_{k}}}{\Gamma(p_{k}+1)}+ \frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}}}{\Gamma(q_{k}+p_{k}+1)}\right) \\ &\quad\left. +M_{k3}\left( 1+\frac{(F_{\iota_1}(\iota_2))^{r_{k}}}{ \Gamma(r_{k}+1)}+\frac{(F_{\iota_1}(\iota_2))^{p_{k}+r_{k}}}{\Gamma (p_{k}+r_{k}+1)} + \frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}+r_{k}}}{\Gamma (q_{k}+p_{k}+r_{k}+1)}\right) \right] \\ &\quad+\left(\ell_k\|\left({\mathrm{v}}_{1},{\mathrm{v}}_{2}\right)\|+h_{k}^0\right)\left[\frac{ (F_{\iota_1}(\iota_2))^{q_{k}+p_{k}+r_{k}+s_{k}}}{\Gamma(q_{k}+p_{k}+r_{k}+s_{k}+1)} \right.\\ &\quad\left. +\frac{(F_{\iota_1}(\iota_2))^{p_{k}+r_{k}+s_{k}}}{\Gamma (p_{k}+r_{k}+s_{k}+1)} +\frac{(F_{\iota_1}(\iota_2))^{r_{k}+s_{k}}}{\Gamma (r_{k}+s_{k}+1)}+ \frac{(F_{\iota_1}(\iota_2))^{s_{k}}}{\Gamma (s_{k}+1)} \right] \\ &\leq \left[M_{k0} +M_{k1}\left(1+ \frac{(F_{\iota_1}(\iota_2))^{q_{k}}}{ \Gamma (q_{k}+1)}\right)\right. \\ &\quad + M_{k2}\left( 1 +\frac{(F_{\iota_1}(\iota_2))^{p_{k}}}{\Gamma (p_{k}+1)}+ \frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}}}{\Gamma(q_{k}+p_{k}+1)}\right) \\ &\quad\left. + M_{k3}\left( 1+\frac{(F_{\iota_1}(\iota_2))^{r_{k}}}{ \Gamma(r_{k}+1)} + \frac{(F_{\iota_1}(\iota_2))^{p_{k}+r_{k}}}{\Gamma (p_{k}+r_{k}+1)} + \frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}+r_{k}}}{\Gamma (q_{k}+p_{k}+r_{k}+1)}\right)\right] \\ &\quad+\left( \ell_k\varepsilon+h_{k}^0\right)\left[\frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}+r_{k}+s_{k}}}{\Gamma (q_{k}+p_{k}+r_{k}+s_{k}+1)}+\frac{(F_{\iota_1}(\iota_2))^{p_{k}+r_{k}+s_{k}}}{\Gamma (p_{k}+r_{k}+s_{k}+1)} \right. \\ &\quad\left. + \frac{(F_{\iota_1}(\iota_2))^{r_{k}+s_{k}}}{\Gamma (r_{k}+s_{k}+1)}+ \frac{(F_{\iota_1}(\iota_2))^{s_{k}}}{ \Gamma (s_{k}+1)} \right] \\ &\leq \Delta_k+\left( \ell_k\varepsilon+h_{k}^0\right)\Phi_k\leq\varepsilon. \end{align*}

    Hence, we deduce that \Vert \Lambda ({\mathrm{v}}_{1}, {\mathrm{v}}_{2})\Vert\leq\varepsilon, for ({\mathrm{v}}_1, {\mathrm{v}}_2) \in\mathbb{B}_\varepsilon , so \Lambda(\mathbb{B}_\varepsilon)\subset\mathbb{B}_\varepsilon. Next, we prove that \Lambda is a contraction operator, by using {\mathrm{(H1)}} , for ({\mathrm{v}}_1, {\mathrm{v}}_2), ({\mathrm{u}}_1, {\mathrm{u}}_2) \in\mathbb{B}_\varepsilon and \mathfrak{t}\in\Sigma , we have

    \begin{align} |\Lambda _{k}({\mathrm{v}}_{1},{\mathrm{v}}_{2})(\mathfrak{t}) & - \Lambda _{k}({\mathrm{u}}_{1},{\mathrm{u}}_{2})(\mathfrak{t})| \\ & \leq \mathcal{I}_{\iota_1^{+}}^{ q_{k}+p_{k}+r_{k}+s_{k} ;\mathbb{G}} | h_{{\mathrm{v}}_1,{\mathrm{v}}_2,k} ( \mathfrak{t}) - h_{{\mathrm{u}}_1,{\mathrm{u}}_2,k} ( \mathfrak{t})|\\ & \leq \mathcal{I}_{\iota_1^{+}}^{q_{k}+p_{k} + r_{k}+s_{k} ;\mathbb{G}} \bigg( \ell_k \Big( |{\mathrm{v}}_{1}(\mathfrak{t} )-{\mathrm{u}}_{1}(\mathfrak{t} )|+|{\mathrm{v}}_{2}(\mathfrak{t} ) - {\mathrm{u}}_{2}(\mathfrak{t} )| \\ & \quad + \left|{^{c}\mathcal{D}}_{\iota_1^{+} }^{q_{1};\mathbb{G}}{\mathrm{v}}_{1}(\mathfrak{t} ) - {^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{1};\mathbb{G}} {\mathrm{u}}_{1}(\mathfrak{t} ) \right| + \left|{^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{2};\mathbb{G}}{\mathrm{v}}_{2}(\mathfrak{t} )-{^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{2};\mathbb{G}}{\mathrm{u}}_{2}(\mathfrak{t} ) \right| \\ & \quad + \left| {^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{1};\mathbb{G}}\left( {^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{1};\mathbb{G}}{\mathrm{v}}_{1}(\mathfrak{t} )\right) - {^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{1};\mathbb{G}}\left( {^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{1};\mathbb{G}}{\mathrm{u}}_{1}(\mathfrak{t} )\right)\right| \\ &\quad+\left| {^{c}\mathcal{D}} _{\iota_1^{+}}^{p_{2};\mathbb{G}}\left( {^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{2};\mathbb{G} } {\mathrm{v}}_{2}(\mathfrak{t} )\right) - {^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{2};\mathbb{G}}\left( {^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{2};\mathbb{G} }{\mathrm{u}}_{2}(\mathfrak{t} )\right)\right|\\ &\quad+\left|{^{c}\mathcal{D}}_{\iota_1^{+}}^{r_{1};\mathbb{G}}\left( {^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{1};\mathbb{G}}\left({^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{1};\mathbb{G} } {\mathrm{v}}_{1}(\mathfrak{t} )\right) \right) \right. \\ & \quad \left. -{^{c} \mathcal{D}}_{\iota_1^{+}}^{r_{1};\mathbb{G}}\left( {^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{1};\mathbb{G}}\left({^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{1};\mathbb{G}}{\mathrm{u}}_{1}(\mathfrak{t} )\right) \right)\right|\\ &\quad + \left| {^{c}\mathcal{D}}_{\iota_1^{+}}^{r_{2}; \mathbb{G}}\left({^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{2};\mathbb{G}}\left( {^{c} \mathcal{D}}_{\iota_1^{+}}^{q_{2};\mathbb{G}}{\mathrm{v}}_{2}(\mathfrak{t})\right)\right) \right. \\ & \quad \left. -{^{c}\mathcal{D}}_{a^{+}}^{r_{2}; \mathbb{G}}\left({^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{2};\mathbb{G}}\left( {^{c} \mathcal{D}}_{\iota_1^{+}}^{q_{2};\mathbb{G}}{\mathrm{u}}_{2}(\mathfrak{t} )\right)\right)\right| \Big) \bigg) \\ &\leq \mathcal{I}_{\iota_1^{+}}^{q_{k}+p_{k}+r_{k}+s_{k} ;\mathbb{G}} \left(\ell_k\left(\|{\mathrm{v}}_{1}-{\mathrm{u}}_{1}\|+\|{\mathrm{v}}_{2}-{\mathrm{u}}_{2}\|\right)\right)\\ &\leq\frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}+r_{k}+s_{k}}}{\Gamma (q_{k}+p_{k}+r_{k}+s_{k}+1)} \left(\ell_k\left(\|{\mathrm{v}}_{1}-{\mathrm{u}}_{1}\|+\|{\mathrm{v}}_{2}-{\mathrm{u}}_{2}\|\right)\right), \end{align} (3.12)
    \begin{align} |{^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{k};\mathbb{G}}\left(\Lambda_{k}({\mathrm{v}}_{1},{\mathrm{v}}_{2})\right)(\mathfrak{t}) &- {^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{k};\mathbb{G}}\left(\Lambda _{k} ( {\mathrm{u}}_{1},{\mathrm{u}}_{2})\right)(\mathfrak{t}) |\\ & \leq \mathcal{I}_{\iota_1^{+}}^{p_{k}+r_{k}+s_{k} ;\mathbb{G}} \left| h_{{\mathrm{v}}_1,{\mathrm{v}}_2,k}(\mathfrak{t})-h_{{\mathrm{u}}_1,{\mathrm{u}}_2,k}(\mathfrak{t}) \right|\\ & \leq \mathcal{I}_{\iota_1^{+}}^{p_{k}+r_{k}+s_{k} ;\mathbb{G}} \bigg( \ell_k \Big( |{\mathrm{v}}_{1}(\mathfrak{t} ) - {\mathrm{u}}_{1}(\mathfrak{t} )|+|{\mathrm{v}}_{2}(\mathfrak{t} )-{\mathrm{u}}_{2}(\mathfrak{t} )| \\ & \quad + \left| {^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{1};\mathbb{G}}{\mathrm{v}}_{1}(\mathfrak{t} )-{ ^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{1};\mathbb{G}}{\mathrm{u}}_{1}(\mathfrak{t} )\right| \\ & \quad + \left| {^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{2};\mathbb{G}}{\mathrm{v}}_{2}(\mathfrak{t} )-{^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{2};\mathbb{G}}{\mathrm{u}}_{2}(\mathfrak{t} ) \right| \\ & \quad + \left|{^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{1};\mathbb{G}}\left( {^{c}\mathcal{D}} _{\iota_1^{+}}^{q_{1};\mathbb{G}}{\mathrm{v}}_{1}(\mathfrak{t} ) \right) - {^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{1};\mathbb{G}}\left( {^{c}\mathcal{D}} _{\iota_1^{+}}^{q_{1};\mathbb{G}}{\mathrm{u}}_{1}(\mathfrak{t} )\right)\right|\\ &\quad + \left| {^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{2}; \mathbb{G}}\left({^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{2};\mathbb{G} }{\mathrm{v}}_{2}(\mathfrak{t} )\right) - {^{c}\mathcal{D}} _{\iota_1^{+}}^{p_{2};\mathbb{G}}\left( {^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{2};\mathbb{G} }{\mathrm{u}}_{2}(\mathfrak{t} )\right)\right|\\ &\quad+\left|{^{c}\mathcal{D}}_{\iota_1^{+}}^{r_{1};\mathbb{G}}\left({^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{1};\mathbb{G}}\left({^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{1};\mathbb{G}}{\mathrm{v}}_{1}(\mathfrak{t} )\right) \right) \right. \\ & \quad \left. -{^{c}\mathcal{D}}_{\iota_1^{+}}^{r_{1};\mathbb{G}}\left( {^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{1};\mathbb{G}}\left({^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{1};\mathbb{G}}{\mathrm{u}}_{1}(\mathfrak{t} )\right) \right)\right|\\ &\quad +\left| {^{c}\mathcal{D}}_{\iota_1^{+}}^{r_{2}; \mathbb{G}}\left({^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{2};\mathbb{G}}\left( {^{c} \mathcal{D}}_{\iota_1^{+}}^{q_{2};\mathbb{G}}{\mathrm{v}}_{2}(\mathfrak{t} )\right)\right) \right. \\ & \quad \left. -{^{c}\mathcal{D}}_{\iota_1^{+}}^{r_{2}; \mathbb{G}}\left( {^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{2};\mathbb{G}}\left( {^{c} \mathcal{D}}_{\iota_1^{+}}^{q_{2};\mathbb{G}}{\mathrm{u}}_{2}(\mathfrak{t} )\right)\right)\right| \Big)\bigg)\\ &\leq \mathcal{I}_{\iota_1^{+}}^{p_{k}+r_{k}+s_{k} ;\mathbb{G}} \left( \ell_k\left(\|{\mathrm{v}}_{1}-{\mathrm{u}}_{1}\|+\|{\mathrm{v}}_{2}-{\mathrm{u}}_{2}\|\right)\right)\\ &\leq \frac{ (F_{\iota_1}(\iota_2))^{p_{k}+r_{k}+s_{k}}}{\Gamma (p_{k}+r_{k}+s_{k}+1)} \left(\ell_k\left(\|{\mathrm{v}}_{1}-{\mathrm{u}}_{1}\|+\|{\mathrm{v}}_{2}-{\mathrm{u}}_{2}\|\right)\right), \end{align} (3.13)
    \begin{align} \left| { ^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{k}; \mathbb{G}}\left( {^{c}\mathcal{D}}_{\iota_1^{+} }^{q_{k};\mathbb{G}}\left( \Lambda _{k}({\mathrm{v}}_{1}, {\mathrm{v}}_{2})\right)\right) (\mathfrak{t}) \right. & \left. - { ^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{k};\mathbb{G}} \left({^{c} \mathcal{D}}_{\iota_1^{+}}^{q_{k};\mathbb{G}}\left(\Lambda_{k} ({\mathrm{u}}_{1},{\mathrm{u}}_{2})\right)\right) (\mathfrak{t}) \right| \\ &\leq \frac{ (F_{\iota_1}(\iota_2))^{r_{k}+s_{k}}}{\Gamma (r_{k}+s_{k}+1)}\left( \ell_k\left(\|{\mathrm{v}}_{1}-{\mathrm{u}}_{1}\|+\|{\mathrm{v}}_{2}-{\mathrm{u}}_{2}\|\right)\right), \end{align} (3.14)

    and

    \begin{align} \left|{ ^{c}\mathcal{D}}_{\iota_1^{+}}^{r_{k};\mathbb{G}} \right. & \left. \left( {^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{k};\mathbb{G}}\left({^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{k};\mathbb{G}}\left( \Lambda _{k}({\mathrm{v}}_{1},{\mathrm{v}}_{2})\right)\right)\right) (\mathfrak{t}) \right. \left. -{^{c}\mathcal{D}}_{\iota_1^{+}}^{r_{k};\mathbb{G}}\left( {^{c}\mathcal{D}}_{\iota_1^{+}}^{p_{k};\mathbb{G}}\left({^{c}\mathcal{D}}_{\iota_1^{+}}^{q_{k};\mathbb{G}}\left(\Lambda _{k}({\mathrm{u}}_{1}, {\mathrm{u}}_{2})\right)\right)\right) (\mathfrak{t}) \right| \\ &\leq \frac{(F_{\iota_1}(\iota_2))^{s_{k}}}{\Gamma (s_{k}+1)} \left(\ell_k\left(\|{\mathrm{v}}_{1}-{\mathrm{u}}_{1}\|+\|{\mathrm{v}}_{2}-{\mathrm{u}}_{2}\|\right)\right). \end{align} (3.15)

    Therefore, due to (3.12)–(3.15), we get

    \begin{align*} \|\Lambda _{k}({\mathrm{v}}_{1},{\mathrm{v}}_{2}) & - \Lambda _{k}( {\mathrm{u}}_{1},{\mathrm{u}}_{2})\|\\ & \leq\left[ \frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}+r_{k}+s_{k}}}{\Gamma (q_{k}+p_{k}+r_{k}+s_{k}+1)} + \frac{(F_{\iota_1}(\iota_2))^{p_{k}+r_{k}+s_{k}}}{\Gamma (p_{k}+r_{k}+s_{k}+1)} \right. \\ &\quad\left. + \frac{(F_{\iota_1}(\iota_2))^{r_{k}+s_{k}}}{\Gamma (r_{k}+s_{k}+1)}+ \frac{(F_{\iota_1}(\iota_2))^{s_{k}}}{ \Gamma (s_{k}+1)} \right]\left(\ell_k\left(\|{\mathrm{v}}_{1}-{\mathrm{u}}_{1}\|+\|{\mathrm{v}}_{2}-{\mathrm{u}}_{2}\|\right)\right)\\ &\leq \Phi_k \ell_k \left(\|{\mathrm{v}}_{1}-{\mathrm{u}}_{1}\|+\|{\mathrm{v}}_{2}-{\mathrm{u}}_{2}\|\right). \end{align*}

    Consequently,

    \|\Lambda({\mathrm{v}}_{1},{\mathrm{v}}_{2})-\Lambda({\mathrm{u}}_{1},{\mathrm{u}}_{2})\| \leq \Phi\ell\|({\mathrm{v}}_{1},{\mathrm{u}}_{1})-({\mathrm{v}}_{2},{\mathrm{u}}_{2})\|.

    Since \Phi\ell < 1 , therefore, \Lambda is a contraction operator. Thus, by Banach's fixed point Theorem 2.3, the operator \Lambda has a unique fixed point, which is the unique solution of fractional G-snap system (1.6) and the proof is finished.

    Next, we are ready to study the existence of solution of fractional \mathbb{G} - (\mathbb{C}{\mathrm{S}}\mathbb{S}) (1.6). For this regaed, we define the operators \Omega, \Pi :X_{1}\times X_{2}\rightarrow \mathbb{R}^2, \Omega = (\Omega_1, \Omega_2), \Pi = (\Pi_1, \Pi_2) , such that \Lambda_k = \Omega_k+\Pi_k , where

    \begin{align} (\Omega _{k}{\mathrm{v}}_{k})(\mathfrak{t}) = \int_{\iota_1}^{ \mathfrak{t}}\mathbb{G}^{\prime }(\xi ) \frac{(F_{\iota_1}(\mathfrak{t}))^{q_{k}+p_{k}+r_{k}+s_{k}-1}}{\Gamma (q_{k}+p_{k}+r_{k}+s_{k})}h_{{\mathrm{v}}_1,{\mathrm{v}}_2,k}(\xi ){\mathrm{d}}\xi, \end{align} (3.16)

    and

    \begin{align} (\Pi _{k}{\mathrm{v}}_{k })(\mathfrak{t})& = \int_{\iota_1}^{\iota_2} g_{k0}(\xi) \, {\mathrm{d}}\xi + \frac{ (F_{\iota_1}( \mathfrak{t}))^{q_{k}}}{ \Gamma(q_{k}+1)} \int_{\iota_1}^{\iota_2} g_{k1}(\xi)\, {\mathrm{d}}\xi \\ & \quad +\int_{\iota_1}^{\iota_2} \frac{(F_{\iota_1}(\mathfrak{t}))^{q_{k}+p_{k}} g_{k2}(\xi)}{\Gamma(q_{k}+p_{k}+1)} \, {\mathrm{d}}\xi + \int_{\iota_1}^{\iota_2} \frac{(F_{\iota_1}(\mathfrak{t}))^{q_{k}+p_{k}+r_{k}} g_{k3}(\xi)}{\Gamma (q_{k}+p_{k}+r_{k}+1)} \, {\mathrm{d}}\xi. \end{align} (3.17)

    Theorem 3.3. Let h_{k}\in C(\Sigma \times\mathbb{R}^8), (k = 1, 2) be continuous functions. Moreover, assume that

    (H2) there exist real constants \lambda_k > 0, \, (k = 1, 2) , so that

    |h_{k} (\mathfrak{t},{\mathrm{ v}}_1,{\mathrm{v}}_2,\dots,{\mathrm{v}}_8 ) |\leq\lambda_k,\qquad \forall \mathfrak{t}\in \Sigma\, \,{\mathrm{v}}_i \in C(\Sigma), \, (i = 1,2,\dots,8).

    Then, the fractional \mathbb{G} - \mathbb{C}{\mathrm{S}}\mathbb{S} (1.6) has at least one solution on \Sigma .

    Proof. At the beginning, we define a closed bounded ball

    \mathbb{B}_r = \Big\{ ({\mathrm{v}}_1,{\mathrm{v}}_2) \in X_{1}\times X_{2} \, : \, \Vert ({\mathrm{v}}_1,{\mathrm{v}}_2) \Vert\leq r \Big\},

    which satisfying

    \begin{equation} r\geq\max\left\lbrace r_1, r_2 \right\rbrace, \end{equation} (3.18)

    where

    \begin{align*} r_k & \geq M_{k0} +M_{k1}\left(1+ \frac{(F_{\iota_1}(\iota_2))^{q_{k}}}{ \Gamma (q_{k}+1)}\right) \nonumber\\ &\quad+M_{k2}\left(1+\frac{(F_{\iota_1}(\iota_2))^{p_{k}}}{\Gamma(p_{k}+1)}+ \frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}}}{\Gamma (q_{k}+p_{k}+1)}\right) \nonumber\\ &\quad +M_{k3}\left( 1+\frac{(F_{\iota_1}(\iota_2))^{r_{k}}}{ \Gamma(r_{k}+1)}+\frac{(F_{\iota_1}(\iota_2))^{p_{k}+r_{k}}}{\Gamma (p_{k}+r_{k}+1)}+\frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}+r_{k}}}{\Gamma (q_{k}+p_{k}+r_{k}+1)} \right)\nonumber\\ &\quad+\frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}+r_{k}+s_{k}}}{\Gamma(q_{k}+p_{k}+r_{k}+s_{k}+1)} \lambda_k. \end{align*}

    Firstly, we will prove \Omega{\mathrm{v}}+\Pi{\mathrm{u}}\in\mathbb{B}_r . By using {\mathrm{(H2)}} , for {\mathrm{v}} = ({\mathrm{v}}_1, {\mathrm{v}}_2), {\mathrm{u}} = ({\mathrm{u}}_1, {\mathrm{u}}_2) \in\mathbb{B}_r and \mathfrak{t}\in[a, b] , we have

    \begin{align} \|\Omega_k({\mathrm{v_1}},{\mathrm{v_2}})\| \leq\frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}+r_{k}+s_{k}}}{\Gamma (q_{k}+p_{k}+r_{k}+s_{k}+1)} \lambda_k, \end{align} (3.19)

    and

    \begin{align} \|\Pi_k({\mathrm{u_1}}, {\mathrm{u_2}})\| &\leq M_{k0} +M_{k1}\left(1+ \frac{(F_{\iota_1}(\iota_2))^{q_{k}}}{ \Gamma (q_{k}+1)}\right) \\ &\quad+M_{k2}\left(1+\frac{(F_{\iota_1}(\iota_2))^{p_{k}}}{\Gamma(p_{k}+1)}+ \frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}}}{\Gamma(q_{k}+p_{k}+1)}\right) \\ &\quad +M_{k3}\left( 1+\frac{ ( F_{\iota_1}(\iota_2))^{r_{k}}}{\Gamma (r_{k}+1)}+\frac{(F_{\iota_1}(\iota_2))^{p_{k}+r_{k}}}{\Gamma(p_{k}+r_{k}+1)}+\frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}+r_{k}}}{\Gamma (q_{k}+p_{k}+r_{k}+1)}\right). \end{align} (3.20)

    Hence, from (3.19) and (3.20), we have

    \begin{align*} \|\Omega_k({\mathrm{v_1}},{\mathrm{v_2}}) & +\Pi_k({\mathrm{u_1}},{\mathrm{u_2}}) \|\nonumber\\ &\leq M_{k0} +M_{k1}\left(1+ \frac{(F_{\iota_1}(\iota_2))^{q_{k}}}{\Gamma (q_{k}+1)}\right) \nonumber\\ &\quad+M_{k2} \left( 1+ \frac{ (F_{\iota_1} (\iota_2))^{p_{k}}}{ \Gamma(p_{k}+1)}+ \frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}}}{\Gamma(q_{k}+p_{k}+1)}\right) \nonumber\\ &\quad +M_{k3}\left(1+ \frac{(F_{\iota_1}(\iota_2))^{r_{k}}}{\Gamma (r_{k}+1)} + \frac{(F_{\iota_1}(\iota_2))^{p_{k}+r_{k}}}{\Gamma (p_{k}+r_{k}+1)} + \frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}+r_{k}}}{\Gamma (q_{k}+p_{k}+r_{k}+1)}\right)\\ &\quad+\frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}+r_{k}+s_{k}}}{\Gamma (q_{k}+p_{k}+r_{k}+s_{k}+1)} \lambda_k\leq r. \end{align*}

    Then,

    \|\Omega({\mathrm{v_1}},{\mathrm{v_2}})+\Pi({\mathrm{u_1}},{\mathrm{u_2}})\|\leq r,

    this implying that \Omega{\mathrm{v}}+\Pi{\mathrm{u}}\in\mathbb{B}_r .

    Secondly, we will prove that the operator \Pi is a contraction mapping. It is clearly that \Pi_k is a contraction with the constant zero. Thus, \Pi is a contraction operator.

    Third, we will prove that the operator \Omega is a continuous. Let ({\mathrm{v}}_{n, 1}, {\mathrm{v}}_{n, 2}) be a sequence of a bounded ball \mathbb{B}_r , such that ({\mathrm{v}}_{n, 1}, {\mathrm{v}}_{n, 2})\rightarrow ({\mathrm{v}}_{1}, {\mathrm{v}}_{2}) as n\rightarrow \infty in \mathbb{B}_r , we find that

    \begin{align*} \label{15} |(\Omega_k({\mathrm{v_{n,1}}},{\mathrm{v_{n,2}}}))(\mathfrak{t}) &- ( \Omega_k({\mathrm{v_{1}}},{\mathrm{v_{2}}}))(\mathfrak{t})|\nonumber \\ &\leq\int_{\iota_1}^{\mathfrak{t}}\frac{\mathbb{G}^{\prime }(\xi )(F_{\iota_1}(\mathfrak{t}))^{q_{k}+p_{k}+r_{k}+s_{k}-1}}{\Gamma (q_{k}+p_{k}+r_{k}+s_{k})} \left| h_{{\mathrm{v}}_{n,1},{\mathrm{v}}_{n,2},k}(\xi ) - h_{{\mathrm{v}}_1,{\mathrm{v}}_2,k}(\xi )\right| \, {\mathrm{d}}\xi \nonumber\\ &\leq \frac{(F_{\iota_1}(\iota_2))^{q_{k}+p_{k}+r_{k}+s_{k}}}{\Gamma (q_{k}+p_{k}+r_{k}+s_{k}+1)} \left\| h_{{\mathrm{v}}_{n,1},{\mathrm{v}}_{n,2},k}(. )- h_{{\mathrm{v}}_1,{\mathrm{v}}_2,k}(. )\right\|. \end{align*}

    By continuity of h_{{\mathrm{v}}_1, {\mathrm{v}}_2, k} , we have

    \|\Omega_k({\mathrm{v_{n,1}}},{\mathrm{v_{n,2}}})-\Omega_k({\mathrm{v_{1}}},{\mathrm{v_{2}}})\|\rightarrow 0,

    as n\rightarrow \infty . So, \Omega is a continuous operator.

    Fourth, we will prove that the operator \Omega is a compact operator. By using {\mathrm{(H2)}} , for {\mathrm{v}} = ({\mathrm{v}}_1, {\mathrm{v}}_2), \in\mathbb{B}_r and \mathfrak{t_1}, \mathfrak{t_2}\in \Sigma with \mathfrak{t_1} < \mathfrak{t_2} , we have

    \begin{align*} |(\Omega_k({\mathrm{v_{1}}},{\mathrm{v_{2}}}))(\mathfrak{t_2})-&(\Omega_k({\mathrm{v_{1}}},{\mathrm{v_{2}}}))(\mathfrak{t_1})| \\ &\leq\left| \int_{\iota_1}^{\mathfrak{t_2}}\frac{\mathbb{G}^{\prime }(\xi )(F_{\iota_1}(\mathfrak{t}_2))^{q_{k}+p_{k}+r_{k}+s_{k}-1}}{\Gamma(q_{k}+p_{k}+r_{k}+s_{k})} h_{{\mathrm{v}}_{1},{\mathrm{v}}_{2},k}(\xi ) {\mathrm{d}}\xi \right.\\ &\quad\left. - \int_{\iota_1}^{\mathfrak{t_1}}\frac{\mathbb{G}^{\prime }(\xi )(F_{\iota_1}(\mathfrak{t}_1))^{q_{k}+p_{k}+r_{k}+s_{k}-1}}{\Gamma( q_{k}+ p_{k}+r_{k}+s_{k})} h_{{\mathrm{v}}_{1}, {\mathrm{v}}_{2},k}(\xi) \, {\mathrm{d}}\xi \right|\\ &\leq\left| \int_{\iota_1}^{ \mathfrak{t_1}} \frac{\mathbb{G}^{\prime }(\xi )(F_{\iota_1}(\mathfrak{t})_2)^{q_{k}+p_{k}+r_{k}+s_{k}-1}}{\Gamma(q_{k}+p_{k}+r_{k}+s_{k})} h_{{\mathrm{v}}_{1},{\mathrm{v}}_{2},k}(\xi ) \, {\mathrm{d}}\xi \right.\\ &\quad\left. - \int_{\iota_1}^{ \mathfrak{t_1}}\frac{\mathbb{G}^{\prime }(\xi )(F_{\iota_1}(\mathfrak{t})_2)^{q_{k}+p_{k}+r_{k}+s_{k}-1}}{\Gamma(q_{k}+p_{k}+r_{k}+s_{k})} h_{{\mathrm{v}}_{1},{\mathrm{v}}_{2},k}(\xi )\, {\mathrm{d}}\xi \right|\\ &\quad + \left| \int_{\mathfrak{t_1}}^{\mathfrak{t_2}}\frac{\mathbb{G}^{\prime }(\xi) (F_{\iota_1}(\mathfrak{t}_2))^{q_{k}+p_{k}+r_{k}+s_{k}-1}}{\Gamma(q_{k}+p_{k}+r_{k}+s_{k})} h_{{\mathrm{v}}_{1},{\mathrm{v}}_{2},k}(\xi )\, {\mathrm{d}}\xi \right|\\ &\leq\lambda_k\left[\frac{(F_{\mathfrak{t}_1}(\mathfrak{t}_2))^{q_{k}+p_{k}+r_{k}+s_{k}}}{\Gamma(q_{k}+p_{k}+r_{k}+s_{k}+1)}-\frac{(F_{\mathfrak{t}_1}(\mathfrak{t}_2))^{q_{k}+p_{k}+r_{k}+s_{k}}}{\Gamma (q_{k}+p_{k}+r_{k}+s_{k}+1)}\right] \\ &\quad+ \lambda_k\frac{(F_{\mathfrak{t}_1}(\mathfrak{t}_2))^{q_{k}+p_{k}+r_{k}+s_{k}}}{\Gamma (q_{k}+p_{k}+r_{k}+s_{k}+1)}. \end{align*}

    As \mathfrak{t_1} \to \mathfrak{t_2} , we obtain

    |( \Omega_k({\mathrm{v_{1}}}, {\mathrm{v_{2}}}))(\mathfrak{t_2})-(\Omega_k({\mathrm{v_{1}}},{\mathrm{v_{2}}}))(\mathfrak{t_1})|\to 0,

    impling that \Omega is equicontinuous. Furthermore, in view of (3.19), \Omega is uniformly bounded. Hence, due to the Arzelá-Ascoli theorem, we deduce that \Omega is a compact operator. Then, all the conditions of Theorem 2.4 are holding. Thus, fractional \mathbb{G} - \mathbb{C}{\mathrm{S}}\mathbb{S} (1.6) has at least one solution ({\mathrm{v}}_1, {\mathrm{v}}_2) \in\mathbb{B}_r . The proof is completed.

    In this part, we review the stability criterion in the context of the {\mathrm{U}} - {\mathrm{H}} - \mathbb{S} for solutions of the fractional \mathbb{G} - \mathbb{C}{\mathrm{S}}\mathbb{S} (1.6).

    Theorem 3.4. Let {\mathrm{(H1)}} and \Phi_k\ell_k < 1, (k = 1, 2) hold. Then, the fractional \mathbb{G} - \mathbb{C}{\mathrm{S}}\mathbb{S} (1.6) is {\mathrm{U}} - {\mathrm{H}} - \mathbb{S} .

    Proof. According to Theorem 3.2, we have

    \begin{align*} \|\Lambda _{k}({\mathrm{v}}_{1},{\mathrm{v}}_{2})-\Lambda _{k}({\mathrm{u}}_{1},{\mathrm{u}}_{2})\| \leq \Phi_k\ell_k\|{\mathrm{v}}_{1}-{\mathrm{u}}_{1}\|+\Phi_k\ell_k\|{\mathrm{v}}_{2}-{\mathrm{u}}_{2}\|, \end{align*}

    which yields that

    \begin{align*} \|\Lambda ({\mathrm{v}}_{1},{\mathrm{v}}_{2})-\Lambda ({\mathrm{u}}_{1},{\mathrm{u}}_{2})\| \leq \varXi \times \left( \begin{matrix} \|{\mathrm{v}}_{1}-{\mathrm{u}}_{1}\| \\ \|{\mathrm{v}}_{2}-{\mathrm{u}}_{2}\| \end{matrix}\right), \end{align*}

    where

    \varXi = \left( \begin{matrix} \Phi_1 \ell_1 & \Phi_1 \ell_1 \\ \Phi_2 \ell_2 & \Phi_2 \ell_2 \end{matrix}\right).

    Since \Phi_k \ell_k < 1 and each geometric sequences (\Phi_k \ell_k)^n\rightarrow 0, hence \varXi^n\rightarrow 0 as n\rightarrow \infty. Therefore, due to Theorem 2.6, the fractional \mathbb{G} - \mathbb{C}{\mathrm{S}}\mathbb{S} (1.6) is {\mathrm{U}} - {\mathrm{H}}-\mathbb{S} .

    We allow here a few illustrations of the fractional \mathbb{G} - \mathbb{C}{\mathrm{S}}\mathbb{S} , based on numerical recreation to analyze their solutions. In these cases, we consider distinctive cases of the function \mathbb{G} to cover the Caputo, Caputo-Hadamard and Katugampola adaptations.

    Example 4.1. Based on the system (1.6), by assuming \Sigma = [0.05, 0.95] ,

    q_{1} = 0.73 \in (0,1],\quad q_{2} = 0.36 \in (0,1],\quad p_{1} = 0.92 \in (0,1], \quad p_{2} = 0.45 \in (0,1],
    r_{1} = 0.12 \in (0,1], \quad r_{2} = 0.87 \in (0,1], \quad s_{1} = 0.54 \in (0,1], \quad s_{2} = 0.27 \in (0,1],

    we consider a fractional \mathbb{C}{\mathrm{S}}\mathbb{S} as

    \begin{equation} \left\{ \begin{array}{l} {^{c}\mathcal{D}}_{\iota_1^{+}}^{0.73; \mathbb{G}} {\mathrm{v}}_{1}( \mathfrak{t}) = {\mathrm{u}}_{1}( \mathfrak{t}), \quad {^{c}\mathcal{D}}_{\iota_1^{+}}^{0.36;\mathbb{G}} {\mathrm{v}}_{2}( \mathfrak{t}) = {\mathrm{u}}_{2}(\mathfrak{t}), \\[0.3cm] {^{c}\mathcal{D}}_{\iota_1^{+}}^{0.92;\mathbb{G}}{\mathrm{u}}_{1}(\mathfrak{t}) = {\mathrm{w}}_{1}(\mathfrak{t}),\quad {^{c}\mathcal{D}}_{\iota_1^{+}}^{0.45;\mathbb{G}}{\mathrm{u}}_{2}(\mathfrak{t}) = {\mathrm{w}}_{2}(\mathfrak{t}), \\[0.3cm] {^{c}\mathcal{D}}_{\iota_1^{+}}^{0.12;\mathbb{G}}{\mathrm{w}}_{1}(\mathfrak{t}) = {\mathrm{x}}_{1}(\mathfrak{t}), \quad {^{c}\mathcal{D}}_{\iota_1^{+}}^{0.87;\mathbb{G}} {\mathrm{w}}_{2}( \mathfrak{t}) = {\mathrm{x}}_{2}(\mathfrak{t}),\\[0.3cm] {^{c}\mathcal{D}}_{\iota_1^{+}}^{0.54;\mathbb{G}}{\mathrm{x}}_{1}(\mathfrak{t} ) = \dfrac{5 \mathfrak{t}}{36(\sqrt{15} + \mathfrak{t}^2)} + \dfrac{\arctan^2({\mathrm{v}}_1)}{36 \left(7+\arctan^2({\mathrm{v}}_1)\right)} \\ \quad \quad + \dfrac{ \exp(|{\mathrm{v}}_{2}|+1)}{36 \left( \sqrt{15} + \exp( |{\mathrm{v}}_{2}|)\right)} + \dfrac{1}{72} \arcsin\dfrac{{\mathrm{u}}_{1}}{\sqrt[3]{36+{\mathrm{u}}_{1}}} \\ \quad \quad+ \dfrac{\mathfrak{t}}{36} \dfrac{\sin | {\mathrm{u}}_{2}|}{15 + \sin|{\mathrm{u}}_{2} |} + \dfrac{\exp({\mathrm{w}}_1)}{36(\sqrt{7}+\exp({\mathrm{w}}_1))} + \dfrac{ {\mathrm{w}}_2^2}{108\left({\mathrm{w}}_2+3\right)^2}\\ \quad \quad+ \dfrac{\left({\mathrm{x}}_1 {\mathrm{x}}_2\right)^2}{54\left({\mathrm{x}}_1 {\mathrm{x}}_2 + 21 \right)^2}\\[0.3cm] {^{c}\mathcal{D}}_{\iota_1^{+}}^{0.27;\mathbb{G}}{\mathrm{x}}_{2}(\mathfrak{t} ) = \dfrac{ \mathfrak{t}^2}{2\sqrt{3} (\mathfrak{t}^2+49)} + \dfrac{ \tan^2({\mathrm{v}}_1)}{1.5 \left( 7 + \tan^2( {\mathrm{v}}_1) \right) } \\ \quad \quad + \dfrac{ \cos^2(|{\mathrm{v}}_{2}|+1)}{36 \left( \sqrt{15} + \cos^2( |{\mathrm{v}}_{2}|)\right)} + \dfrac{1}{25} \arctan \dfrac{3{\mathrm{u}}_{1}}{\sqrt[5]{6+{\mathrm{u}}_{1}}} \\ \quad \quad+ \dfrac{\arctan | {\mathrm{u}}_{2}|}{45 + \arctan|{\mathrm{u}}_{2} |} + \dfrac{ |{\mathrm{w}}_1|+3}{48\left(|{\mathrm{w}}_1|+5\right)^2} + \dfrac{ \exp({\mathrm{w}}_2)}{45(\sqrt{12} + \exp({\mathrm{w}}_2))} \\ \quad \quad+ \dfrac{\left({\mathrm{x}}_1 +{\mathrm{x}}_2\right)^2}{\sqrt{10} \left({\mathrm{x}}_1 +{\mathrm{x}}_2 + 21 \right)^2}, \end{array}\right. \end{equation} (4.1)

    for \mathfrak{t} \in \Sigma and

    \begin{align*} {\mathrm{v}}_{1}(\iota_1) & = \int_{\iota_1}^{\iota_2} \frac{s}{2}\, {\mathrm d}s = 0.2250, & {\mathrm{v}}_{2}(\iota_1) & = \int_{\iota_1}^{\iota_2} \sqrt{s} \, {\mathrm d}s = 0.6098,\\ {\mathrm{u}}_{1}(\iota_1) & = \int_{\iota_1}^{\iota_2} \frac{s^2}{5}\, {\mathrm d}s = 0.0571, & {\mathrm{u}}_{2}(\iota_1) & = \int_{\iota_1}^{\iota_2} \frac{3}{2} s\, {\mathrm d}s = 0.6750,\notag\\ {\mathrm{w}}_{1}(\iota_1) & = \int_{\iota_1}^{\iota_2} \frac{s}{\sqrt{2}} \, {\mathrm d}s = 0.3181,& {\mathrm{w}}_{2}(\iota_1) & = \int_{\iota_1}^{ \iota_2} \frac{\sqrt{s}}{7} \, {\mathrm d}s = 0.0871, \notag\\ {\mathrm{x}}_{1}(\iota_1) & = \int_{\iota_1}^{\iota_2} \sin (\pi s)\, {\mathrm d}s = 0.6287,& {\mathrm{x}}_{2}(\iota_1) & = \int_{\iota_1}^{ \iota_2} \cos (\pi s)\, {\mathrm d}s = 0. \notag \end{align*}

    Clearly,

    \begin{align*} h_{1} & (\mathfrak{t}, {\mathrm{v}}_{1}, {\mathrm{v}}_{2},{\mathrm{u}}_{1},{\mathrm{u}}_{2}, {\mathrm{w}}_{1}, {\mathrm{w}}_{2} {\mathrm{,x}}_{1}, {\mathrm{x}}_{2}) \\ & = \dfrac{5 \mathfrak{t}}{36(\sqrt{15} + \mathfrak{t}^2)} + \dfrac{\arctan^2({\mathrm{v}}_1)}{36 \left(7+\arctan^2({\mathrm{v}}_1)\right)} + \dfrac{ \exp(|{\mathrm{v}}_{2}|+1)}{36 \left( \sqrt{15} + \exp( |{\mathrm{v}}_{2}|)\right)} \\ & \quad + \dfrac{1}{72} \arcsin \dfrac{{\mathrm{u}}_{1}}{\sqrt[3]{36+{\mathrm{u}}_{1}}}+ \dfrac{\mathfrak{t}}{36} \dfrac{\sin | {\mathrm{u}}_{2}|}{15 + \sin|{\mathrm{u}}_{2} |} + \dfrac{\exp({\mathrm{w}}_1)}{36(\sqrt{7}+\exp({\mathrm{w}}_1))} \\ & \quad + \dfrac{{\mathrm{w}}_1^2}{108\left({\mathrm{w}}_1+3\right)^2}+ \dfrac{\left({\mathrm{x}}_1 {\mathrm{x}}_2\right)^2}{54\left({\mathrm{x}}_1 {\mathrm{x}}_2 + 21 \right)^2}, \end{align*}

    and

    \begin{align*} h_{2} & (\mathfrak{t}, {\mathrm{v}}_{1}, {\mathrm{v}}_{2},{\mathrm{u}}_{1},{\mathrm{u}}_{2}, {\mathrm{w}}_{1}, {\mathrm{w}}_{2} {\mathrm{,x}}_{1}, {\mathrm{x}}_{2}) \\ & = \dfrac{ \mathfrak{t}^2}{ 2\sqrt{3} (\mathfrak{t}^2+49)} + \dfrac{ \tan^2({\mathrm{v}}_1)}{1.5 \left( 7 + \tan^2( {\mathrm{v}}_1) \right) } \dfrac{ \cos^2(|{\mathrm{v}}_{2}|+1)}{36 \left( \sqrt{15} + \cos^2( |{\mathrm{v}}_{2}|)\right)} \\ & \quad + + \dfrac{1}{25} \arctan \dfrac{3{\mathrm{u}}_{1}}{\sqrt[5]{6+{\mathrm{u}}_{1}}} + \dfrac{\arctan | {\mathrm{u}}_{2}|}{45 + \arctan|{\mathrm{u}}_{2} |} + \dfrac{ |{\mathrm{w}}_1|+3}{48\left(|{\mathrm{w}}_1|+5\right)^2} \\ & \quad + \dfrac{\exp({\mathrm{w}}_2)}{45(\sqrt{12} + \exp({\mathrm{w}}_2))} + \dfrac{\left({\mathrm{x}}_1 +{\mathrm{x}}_2\right)^2}{\sqrt{10} \left({\mathrm{x}}_1 +{\mathrm{x}}_2 + 21 \right)^2}. \end{align*}

    Thus, we can rewrite the above system as Eq (1.6). At present, we will have

    \begin{align*} \big\vert h_{1} & \big(\mathfrak{t},{\mathrm{v}}_1,{\mathrm{v}}_2,\dots,{\mathrm{v}}_8 \big) - h_{1} \big(\mathfrak{t},{\mathrm{v}}_1^\ast, {\mathrm{v}}_2^\ast, \dots, {\mathrm{v}}_8^\ast \big) \big\vert\\ & = \bigg\vert \dfrac{5 \mathfrak{t}}{36(\sqrt{15} + \mathfrak{t}^2)} + \dfrac{ \arctan^2({\mathrm{v}}_1)}{36 \left( 7 + \arctan^2({\mathrm{v}}_1)\right)} + \dfrac{ \exp(|{\mathrm{v}}_{2}|+1)}{36 \left( \sqrt{15} + \exp( | {\mathrm{v}}_{2}|)\right)} \\ & \quad + \dfrac{1}{72} \arcsin \dfrac{{\mathrm{v}}_3}{\sqrt[3]{36+{\mathrm{v}}_3}}+ \dfrac{\mathfrak{t}}{36} \dfrac{\sin | {\mathrm{v}}_4|}{15 + \sin|{\mathrm{v}}_4 |} + \dfrac{\exp({\mathrm{v}}_5)}{36(\sqrt{7}+\exp({\mathrm{v}}_5))} \\ & \quad + \dfrac{{\mathrm{v}}_6^2}{ 108\left({\mathrm{v}}_6+3\right)^2}+ \dfrac{ ({\mathrm{v}}_7{\mathrm{v}}_8)^2}{ 54 \left({\mathrm{v}}_7{\mathrm{v}}_8 + 21 \right)^2}\\ &\quad - \bigg( \dfrac{5 \mathfrak{t}}{36(\sqrt{15} + \mathfrak{t}^2)} + \dfrac{\arctan^2({\mathrm{v}}_1^\ast)}{36 \left(7+\arctan^2({\mathrm{v}}_1^\ast)\right)} + \dfrac{ \exp(|{\mathrm{v}}_2^\ast|+1)}{36 \left( \sqrt{15} + \exp( |{\mathrm{v}}_2^\ast|)\right)} \\ & \quad + \dfrac{1}{72} \arcsin \dfrac{ {\mathrm{v}}_3^\ast}{\sqrt[3]{36 + {\mathrm{v}}_3^\ast}}+ \dfrac{ \mathfrak{t}}{36} \dfrac{\sin |{\mathrm{v}}_4^\ast|}{15 + \sin|{\mathrm{v}}_4^\ast |} + \dfrac{\exp({\mathrm{v}}_5^\ast)}{36(\sqrt{7} + \exp({\mathrm{v}}_5^\ast))} \\ & \quad + \dfrac{ ({\mathrm{v}}_6^\ast)^2}{108\left( {\mathrm{v}}_6^\ast+3\right)^2}+ \dfrac{ \left({\mathrm{v}}_7^\ast {\mathrm{v}}_8^\ast\right)^2}{ 54 \left({\mathrm{v}}_7^\ast {\mathrm{v}}_8^\ast + 21 \right)^2}\bigg)\bigg\vert \leq \frac{5}{36} \sum\limits_{i = 1}^{8}| {\mathrm{v}}_i-{\mathrm{v}}_i^\ast|, \end{align*}

    with \ell_1 = \frac{5}{36} and

    \begin{align*} \big\vert h_{2} & \big(\mathfrak{t},{\mathrm{v}}_1,{\mathrm{v}}_2,\dots,{\mathrm{v}}_8 \big) - h_{2} \big(\mathfrak{t},{\mathrm{v}}_1^\ast, {\mathrm{v}}_2^\ast, \dots, {\mathrm{v}}_8^\ast \big) \big\vert\\ & = \bigg\vert \dfrac{ \mathfrak{t}^2}{2 \sqrt{3} (\mathfrak{t}^2+49)} + \dfrac{ \tan^2({\mathrm{v}}_1)}{1.5 \left( 7 + \tan^2( {\mathrm{v}}_1) \right) } + \dfrac{ \cos^2(|{\mathrm{v}}_{2}|+1)}{36 \left( \sqrt{15} + \cos^2(|{\mathrm{v}}_{2}|)\right)} \\ & \quad + \dfrac{1}{25} \arctan \dfrac{3{\mathrm{v}}_3}{\sqrt[5]{6 + {\mathrm{v}}_3}} + \dfrac{\arctan | {\mathrm{v}}_4|}{45 + \arctan|{\mathrm{v}}_4 |} + \dfrac{|{\mathrm{v}}_5|+3}{48\left(|{\mathrm{v}}_5|+5\right)^2} \\ & \quad + \dfrac{ \exp({\mathrm{v}}_6)}{ 45(\sqrt{12} + \exp({\mathrm{v}}_6))} + \dfrac{\left({\mathrm{v}}_7 +{\mathrm{v}}_8\right)^2}{\sqrt{10} \left({\mathrm{v}}_7 + {\mathrm{v}}_8 + 21 \right)^2}\\ &\quad - \bigg(\dfrac{ \mathfrak{t}^2}{2 \sqrt{3} (\mathfrak{t}^2+49)} + \dfrac{ \tan^2({\mathrm{v}}_1^\ast)}{1.5 \left( 7 + \tan^2( {\mathrm{v}}_1^\ast) \right) } + \dfrac{ \cos^2(|{\mathrm{v}}_2^\ast|+1)}{36 \left( \sqrt{15} + \cos^2( |{\mathrm{v}}_2^\ast|)\right)} \\ & \quad + \dfrac{1}{25} \arctan \dfrac{3{\mathrm{v}}_3^\ast}{\sqrt[5]{ 6 +{\mathrm{v}}_3^\ast}} + \dfrac{\arctan | {\mathrm{v}}_4^\ast|}{45 + \arctan| {\mathrm{v}}_4^\ast |} + \dfrac{ |{\mathrm{v}}_5^\ast|+3}{48\left( | {\mathrm{v}}_5^\ast|+5\right)^2} \\ & \quad + \dfrac{\exp({\mathrm{v}}_6^\ast)}{45(\sqrt{12} + \exp({\mathrm{v}}_6^\ast))} + \dfrac{\left( {\mathrm{v}}_7^\ast +{\mathrm{v}}_8^\ast\right)^2}{\sqrt{10} \left({\mathrm{v}}_8^\ast +{\mathrm{v}}_8^\ast + 21 \right)^2}\bigg)\bigg\vert \leq \frac{1}{2\sqrt{3}} \sum\limits_{i = 1}^{8}| {\mathrm{v}}_i-{\mathrm{v}}_i^\ast|, \end{align*}

    with \ell_2 = \frac{1}{2\sqrt{3}} . So \ell = \frac{1}{2\sqrt{3}} . Now, from (3.6), we consider four cases for \mathbb{G} as:

    \mathbb{G}_1(\iota) = 2^{\iota} ,

    \mathbb{G}_2(\iota) = \iota (Caputo derivative),

    \mathbb{G}_3(\iota) = \ln \iota (Caputo-Hadamard derivative),

    \mathbb{G}_4(\iota) = \sqrt{\iota} (Katugampola derivative).

    Thus,

    \begin{align} \Phi_1 & = \frac{(F_{ \iota_1}( \iota_2))^{ q_{1}+p_{1}+r_{1}+s_{1}}}{ \Gamma (q_{1}+p_{1}+r_{1}+s_{1}+1)} + \frac{(F_{\iota_1}(\iota_2))^{p_{1}+r_{1}+s_{1}}}{\Gamma(p_{k} + r_{1}+s_{1}+1)} \\ &\quad +\frac{ (F_{\iota_1}(\iota_2))^{r_{1}+s_{1}}}{ \Gamma (r_{1}+s_{1}+1)}+ \frac{(F_{\iota_1}(\iota_2))^{s_{1}}}{ \Gamma (s_{1}+1)}\simeq \left\{\begin{array}{ll} 0.4091, & \mathbb{G}_1(\iota) = 2^{\iota},\\ 0.4106, & \mathbb{G}_2(\iota) = \iota,\\ 1.7597, & \mathbb{G}_3( \iota) = \ln \iota,\\ 0.3473, & \mathbb{G}_4(\iota) = \sqrt{\iota}, \end{array} \right. \end{align} (4.2)

    and

    \begin{align} \Phi_2 & = \frac{(F_{ \iota_1}( \iota_2))^{q_{2}+p_{2}+r_{2}+s_{2}}}{ \Gamma (q_{2}+p_{2}+r_{2}+s_{2}+1)} + \frac{(F_{\iota_1}(\iota_2))^{p_{2}+r_{2}+s_{2}}}{ \Gamma(p_{k} + r_{2}+s_{2}+1)} \\ &\quad +\frac{ (F_{\iota_1}(\iota_2))^{r_{2}+s_{2}}}{ \Gamma (r_{2}+s_{2}+1)}+ \frac{(F_{\iota_1}(\iota_2))^{s_{2}}}{ \Gamma (s_{2}+1)}\simeq \left\{\begin{array}{ll} 0.3370, & \mathbb{G}_1(\iota) = 2^{\iota},\\ 0.3383, & \mathbb{G}_2(\iota) = \iota,\\ 1.4912, & \mathbb{G}_3( \iota) = \ln \iota,\\ 0.2826, & \mathbb{G}_4(\iota) = \sqrt{\iota}. \end{array} \right. \end{align} (4.3)

    Hence,

    \Phi\simeq \left\{\begin{array}{ll} 2.9461, & \mathbb{G}_1(\iota) = 2^{\iota},\\ 2.9567, & \mathbb{G}_2(\iota) = \iota,\\ 12.9144, & \mathbb{G}_3( \iota) = \ln \iota,\\ 2.5009, & \mathbb{G}_4(\iota) = \sqrt{\iota}, \end{array} \right.

    and we have

    \Phi\ell \simeq \left\{ \begin{array}{ll} 0.4091 < 1, & \mathbb{G}_1(\iota) = 2^{\iota},\\ 0.4106 < 1, & \mathbb{G}_2(\iota) = \iota,\\ 1.7936\nleq 1, & \mathbb{G}_3( \iota) = \ln \iota,\\ 0.3473 < 1, & \mathbb{G}_4(\iota) = \sqrt{\iota}.\end{array} \right.

    On the other hand, by using equations in (3.7), we get

    \begin{equation*} M_{1j} = \sup\limits_{\mathfrak{t}\in \Sigma} \int_{\iota_1}^{\mathfrak{t}} |g_{1j}(\xi)| \, {\mathrm{d}} \xi = 0.6328, \qquad M_{2j} = \sup\limits_{\mathfrak{t}\in \Sigma} \int_{\iota_1}^{\iota_2} |g_{1j}(\xi)| \, {\mathrm{d}}\xi = 0.7632, \end{equation*}

    for j = 0, 1, 2, 3 and

    \begin{align*} h_1^0 & = \sup\limits_{\mathfrak{t}\in \Sigma }| h_1( \mathfrak{t},0,0,0,0,0,0,0,0)|\simeq \frac{5}{36} + \frac{1}{36(1+\sqrt{7})},\\ \qquad h_2^0 & = \sup\limits_{\mathfrak{t}\in \Sigma }| h_2( \mathfrak{t},0,0,0,0,0,0,0,0)|\simeq \frac{1}{2\sqrt{3}} + \frac{1}{18(1+\sqrt{15})}, \end{align*}

    for k = 1, 2 . By employing Eq (3.6), we obtain

    \begin{align*} \Delta_1& = M_{10} +M_{11}\left(1+ \frac{(F_{\iota_1}(\iota_2))^{q_{1}}}{ \Gamma (q_1+1)}\right) + M_{12} \left(1+\frac{(F_{\iota_1}(\iota_2))^{p_{1}}}{\Gamma (p_{1}+1)} + \frac{(F_{\iota_1}(\iota_2))^{q_1 + p_1 }}{ \Gamma(q_1+ p_1+1)}\right) \notag\\ &\quad +M_{13}\left( 1 + \frac{(F_{\iota_1}(\iota_2))^{ r_1}}{\Gamma (r_1+1)} + \frac{(F_{\iota_1}(\iota_2))^{p_{1}+r_{1}}}{\Gamma (p_{1}+r_{1}+1)} + \frac{(F_{\iota_1}(\iota_2))^{q_{1} + p_{1} + r_{1}}}{\Gamma(q_{1} + p_{1} + r_{1}+1)}\right),\\ &\simeq \left\{\begin{array}{ll} 3.4102, & \mathbb{G}_1(\iota) = 2^{\iota},\\ 3.4173, & \mathbb{G}_2(\iota) = \iota,\\ 9.3326, & \mathbb{G}_3( \iota) = \ln \iota,\\ 3.1122, & \mathbb{G}_4(\iota) = \sqrt{\iota}, \end{array} \right.\\ \Delta_2& = M_{20} +M_{21}\left(1+ \frac{ (F_{\iota_1}(\iota_2))^{q_{2}}}{\Gamma (q_{2}+1)}\right) + M_{22} \left(1+\frac{(F_{\iota_1}( \iota_2))^{p_{2}}}{\Gamma (p_{2}+1)} + \frac{(F_{\iota_1}(\iota_2))^{q_{2}+p_{2}}}{\Gamma(q_{2}+p_{2}+1)}\right) \notag\\ &\quad +M_{23}\left( 1 + \frac{(F_{\iota_1}(\iota_2))^{ r_{2}}}{\Gamma (r_{2}+1)} + \frac{(F_{\iota_1}(\iota_2))^{p_{2}+r_{2}}}{\Gamma (p_{2} + r_{2}+1)} + \frac{(F_{\iota_1}(\iota_2))^{q_{2}+p_{2}+r_{2}}}{\Gamma(q_{2} + p_{2} + r_{2}+1)}\right)\\ &\simeq \left\{\begin{array}{ll} 4.4208, & \mathbb{G}_1(\iota) = 2^{\iota},\\ 4.4285, & \mathbb{G}_2(\iota) = \iota,\\ 9.8667, & \mathbb{G}_3( \iota) = \ln \iota,\\ 4.0927, & \mathbb{G}_4(\iota) = \sqrt{\iota}, \end{array} \right. \end{align*}

    and so we can choose

    \begin{align*} \varepsilon\geq \max\left\lbrace \dfrac{\Delta_1+h_1^0 \Phi_1}{(1- \ell_1 \Phi_1)},\dfrac{\Delta_2+h_2^0 \Phi_2}{(1- \ell_2 \Phi_2)}\right\rbrace &\simeq \left\{\begin{array}{ll} 7.2317, & \mathbb{G}_1(\iota) = 2^{\iota},\\ 7.2597, & \mathbb{G}_2(\iota) = \iota,\\ -14.7276, & \mathbb{G}_3( \iota) = \ln \iota,\\ 6.1479, & \mathbb{G}_4(\iota) = \sqrt{\iota}. \end{array} \right. \end{align*}

    We define the Algorithm 1 for obtaining the values of \Phi\ell , \Delta_i and \varepsilon , which is shown in the MATLAB commands. One can check numerical results of \Phi\ell , \Delta_i and \varepsilon in Tables 1 and 2 for \iota\in \lbrack 0.05, 0.95] , and in Figure 1. Accordingly, all requirements of Theorem 3.2 hold, and so the fractional nonlinear couple snap system (\mathbb{C}{\mathrm{S}}\mathbb{S}) in the \mathbb{G} -Caputo sense (\mathbb{G}{\mathrm{C}}) with initial conditions (4.1) has one unique solution on the \lbrack 0.05, 0.95] .

    Table 1.  Numerical values of \Phi\ell, \, \Delta_1, \Delta_1 and \varepsilon in Example 4.1 \forall \iota \in \lbrack 0.05, 0.95] when \mathbb{G}_1 = 2^{\iota} and \mathbb{G}_2 = \iota.
    \mathbb{G}_1(\iota)=2^{\iota} \mathbb{G}_2(\iota)=\iota
    \iota \Phi\ell \Delta_1 \Delta_2 \varepsilon\geq \Phi\ell \Delta_1 \Delta_2 \varepsilon\geq
    0.05 0.4092 0.0000 0.6098 1.4836 0.4107 0.0000 0.6098 1.4886
    0.13 0.4092 0.0916 0.8907 1.9071 0.4107 0.0918 0.8915 1.9142
    0.21 0.4092 0.2602 1.1697 2.3280 0.4107 0.2608 1.1713 2.3371
    0.29 0.4092 0.4976 1.4321 2.7238 0.4107 0.4986 1.4344 2.7347
    0.37 0.4092 0.7921 1.6660 3.0766 0.4107 0.7938 1.6687 3.0888
    0.45 0.4092 1.1297 1.8627 3.3733 0.4107 1.1321 1.8658 3.3867
    0.53 0.4092 1.4944 2.0267 3.6206 0.4107 1.4976 2.0300 3.6348
    0.61 0.4092 1.8697 2.2517 3.9599 0.4107 1.8736 2.2552 3.9752
    0.69 0.4092 2.2394 2.5593 4.5209 0.4107 2.2441 2.5634 4.5429
    0.77 0.4092 2.5889 2.9421 5.1124 0.4107 2.5943 2.9469 5.1371
    0.85 0.4092 2.9058 3.3892 5.6758 0.4107 2.9119 3.3949 5.6977
    0.93 0.4092 3.1810 3.8873 6.4269 0.4107 3.1877 3.8940 6.4518

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical values of \Phi\ell, \, \Delta_1, \Delta_1 and \varepsilon in Example 4.1 \forall \iota \in \lbrack 0.05, 0.95] when \mathbb{G}_3 (\iota) = \ln \iota and \mathbb{G}_4(\iota) = \sqrt{\iota}.
    \mathbb{G}_3=\ln \iota \mathbb{G}_4=\sqrt{\iota}
    \iota \Phi\ell \Delta_1 \Delta_2 \varepsilon\geq \Phi\ell \Delta_1 \Delta_2 \varepsilon\geq
    0.05 1.7937 0.0000 0.6098 -2.4433 0.3474 0.0000 0.6098 1.2925
    0.13 1.7937 0.2549 1.5187 -2.7789 0.3474 0.0835 0.8562 1.6360
    0.21 1.7937 0.7237 2.3707 -3.3959 0.3474 0.2373 1.1034 1.9805
    0.29 1.7937 1.3828 3.1158 -4.2635 0.3474 0.4537 1.3383 2.3081
    0.37 1.7937 2.1996 3.7133 -5.3387 0.3474 0.7224 1.5507 2.6041
    0.45 1.7937 3.1339 4.1339 -6.5685 0.3474 1.0303 1.7330 2.8582
    0.53 1.7937 4.1410 4.3933 -7.8940 0.3474 1.3629 1.8890 3.0758
    0.61 1.7937 5.1740 4.8174 -9.2538 0.3474 1.7053 2.1001 3.3700
    0.69 1.7937 6.1876 5.4819 -10.5880 0.3474 2.0427 2.3850 3.7672
    0.77 1.7937 7.1402 6.3609 -11.8418 0.3474 2.3617 2.7371 4.2581
    0.85 1.7937 7.9969 7.4169 -12.9695 0.3474 2.6511 3.1472 4.8298
    0.93 1.7937 8.7318 8.6033 -13.9368 0.3474 2.9026 3.6035 5.4660

     | Show Table
    DownLoad: CSV
    Figure 1.  Graphical representation of \Delta_1, \Delta_1 and \varepsilon for \iota \in [0.05, 0.95] in Example 4.1.

    In this paper, we defined a new fractional mathematical model of a BVP consisting of a coupled snap equation with integral boundary conditions in the framework of the generalized sequential \mathbb{G} -operators, and turned to the investigation of the qualitative behaviors of its solutions, including existence, uniqueness, stability and inclusion version. To confirm the existence criterion, we used the Krasnoselskii theorem, and to confirm the uniqueness criterion, we utilized the Banach theorem. Different kinds of stability criteria were studied based on the standard definitions of these notions. In the final step, we designed examples, and, by assuming different cases for the function \mathbb{G} and order q , we obtained numerical results of these two suggested fractional coupled snap systems in some versions, such as Caputo, Caputo-Hadamard and Katugampola.

    We declare that no competing interests.

    Table Algorithm A1.  MATLAB lines for Example 4.1.
    1   clear;
    2   format short;
    3   syms v e;
    4   q_1=0.83; q_2=0.36; p_1=0.92; p_2=0.45;
    5   r_1=0.12; r_2=0.87; s_1=0.54; s_2=0.27;
    6   iota_1=0.05; iota_2=0.95;
    7   G1=2^v; G2=v; G3=log(v); G4=sqrt(v);
    8   g_10=v/2; g_20=sqrt(v);
    9   g_11=v^2/5; g_21=3*v/2;
    10   g_12=v/sqrt(2); g_22=sqrt(v)/7;
    11   g_13=sin(v*pi); g_23=cos(v*pi);
    12   mathrmv_1=int(g_10, v, iota_1, iota_2);
    13   mathrmv_2=int(g_20, v, iota_1, iota_2);
    14   mathrmu_1=int(g_11, v, iota_1, iota_2);
    15   mathrmu_2=int(g_21, v, iota_1, iota_2);
    16   mathrmw_1=int(g_12, v, iota_1, iota_2);
    17   mathrmw_2=int(g_22, v, iota_1, iota_2);
    18   mathrmx_1=int(g_13, v, iota_1, iota_2);
    19   mathrmx_2=int(g_23, v, iota_1, iota_2);
    20   ell_1=5/36; ell_2=1/(5*sqrt(3));
    21   ell=max(ell_1, ell_2);
    22   h_1_0=5/36+1/(36*(1+sqrt(7)));
    23   h_2_0=1/(5*sqrt(3))+1/(18*(1+sqrt(15)));
    24   %G1
    25   t=iota_1;
    26   column=1;
    27   nn=1;
    28   while t < =iota_2+0.08
    29       MI(nn, column) = nn;
    30       MI(nn, column+1) = t;
    31       Phi_1=(eval(subs(G1, {v}, {iota_2}))...
    32           -eval(subs(G1, {v}, {iota_1})))^(q_1+p_1+r_1+s_1)...
    33           /gamma(q_1+p_1+r_1+s_1+1)+(eval(subs(G1, {v}, {iota_2}))...
    34           -eval(subs(G1, {v}, {iota_1})))^(p_1+r_1+s_1)...
    35            /gamma(p_1+r_1+s_1+1)+(eval(subs(G1, {v}, {iota_2}))...
    36           -eval(subs(G1, {v}, {iota_1})))^(r_1+s_1)...
    37           /gamma(r_1+s_1+1)+(eval(subs(G1, {v}, {iota_2}))...
    38           -eval(subs(G1, {v}, {iota_1})))^(s_1)/gamma(s_1+1);
    39       MI(nn, column+2)=Phi_1*ell_1;
    40       MI(nn, column+3)=Phi_1*ell_1 < 1;
    41       Phi_2=(eval(subs(G1, {v}, {iota_2}))...
    42             -eval(subs(G1, {v}, {iota_1})))^(q_2+p_2+r_2+s_2)...
    43             /gamma(q_2+p_2+r_2+s_2+1)+(eval(subs(G1, {v}, {iota_2}))...
    44             -eval(subs(G1, {v}, {iota_1})))^(p_2+r_2+s_2)...
    45             /gamma(p_2+r_2+s_2+1)+(eval(subs(G1, {v}, {iota_2}))...
    46             -eval(subs(G1, {v}, {iota_1})))^(r_2+s_2)...
    47             /gamma(r_2+s_2+1)+(eval(subs(G1, {v}, {iota_2}))...
    48             -eval(subs(G1, {v}, {iota_1})))^(s_2)/gamma(s_2+1);
    49       MI(nn, column+4)=Phi_2*ell_2;
    50       MI(nn, column+5)=Phi_2*ell_2 < 1;
    51       Phi=max(Phi_1, Phi_2);
    52       MI(nn, column+6)=Phi;
    53       MI(nn, column+7)=Phi*ell;
    54       MI(nn, column+8)=Phi*ell < 1;
    55       M_10=int(abs(g_10), v, iota_1, t);
    56       MI(nn, column+9)=M_10;
    57       M_11=int(abs(g_11), v, iota_1, t);
    58       MI(nn, column+10)=M_11;
    59       M_12=int(abs(g_12), v, iota_1, t);
    60       MI(nn, column+11)=M_12;
    61       M_13=int(abs(g_13), v, iota_1, t);
    62       MI(nn, column+12)=M_13;
    63       M_20=int(abs(g_20), v, iota_1, iota_2);
    64       MI(nn, column+13)=M_20;
    65       M_21=int(abs(g_21), v, iota_1, t);
    66       MI(nn, column+14)=M_21;
    67       M_22=int(abs(g_22), v, iota_1, t);
    68       MI(nn, column+15)=M_22;
    69       M_23=int(abs(g_23), v, iota_1, t);
    70       MI(nn, column+16)=M_23;
    71       M_1j=max(max(max(M_10, M_11), M_12), M_13);
    72       MI(nn, column+17)=M_1j;
    73       M_2j=max(max(max(M_20, M_21), M_22), M_23);
    74       MI(nn, column+18)=M_2j;
    75       Delta_1=M_10+M_11*(1+(eval(subs(G1, {v}, {iota_2}))...
    76             -eval(subs(G1, {v}, {iota_1})))^(q_1)/gamma(q_1+1))...
    77             +M_12*(1+(eval(subs(G1, {v}, {iota_2}))...
    78             -eval(subs(G1, {v}, {iota_1})))^(p_1)/gamma(p_1+1)...
    79             +(eval(subs(G1, {v}, {iota_2}))...
    80             -eval(subs(G1, {v}, {iota_1})))^(q_1+p_1)/gamma(q_1+p_1+1))...
    81             +M_13*(1+(eval(subs(G1, {v}, {iota_2}))...
    82             -eval(subs(G1, {v}, {iota_1})))^(r_1)/gamma(r_1+1)...
    83             +(eval(subs(G1, {v}, {iota_2}))...
    84             -eval(subs(G1, {v}, {iota_1})))^(p_1+r_1)/gamma(p_1+r_1+1)...
    85             +(eval(subs(G1, {v}, {iota_2}))...
    86             -eval(subs(G1, {v}, {iota_1})))^(q_1+p_1+r_1)...
    87             /gamma(q_1+p_1+r_1+1));
    88       MI(nn, column+19)=Delta_1;
    89       Delta_2=M_20+M_21*(1+(eval(subs(G1, {v}, {iota_2}))...
    90             -eval(subs(G1, {v}, {iota_1})))^(q_2)/gamma(q_2+1))...
    91             +M_22*(1+(eval(subs(G1, {v}, {iota_2}))...
    92             -eval(subs(G1, {v}, {iota_1})))^(p_2)/gamma(p_2+1)...
    93             +(eval(subs(G1, {v}, {iota_2}))...
    94             -eval(subs(G1, {v}, {iota_1})))^(q_2+p_2)/gamma(q_2+p_2+1))...
    95             +M_23*(1+(eval(subs(G1, {v}, {iota_2}))...
    96             -eval(subs(G1, {v}, {iota_1})))^(r_2)/gamma(r_2+1)...
    97             +(eval(subs(G1, {v}, {iota_2}))...
    98             -eval(subs(G1, {v}, {iota_1})))^(p_2+r_2)/gamma(p_2+r_2+1)...
    99             +(eval(subs(G1, {v}, {iota_2}))...
    100             -eval(subs(G1, {v}, {iota_1})))^(q_2+p_2+r_2)...
    101             /gamma(q_2+p_2+r_2+1));
    102       MI(nn, column+20)=Delta_2;
    103       D1=(Delta_1+h_1_0*Phi_1)/(1-ell_1*Phi_1);
    104       MI(nn, column+21)=D1;
    105       D2=(Delta_2+h_2_0*Phi_1)/(1-ell_2*Phi_2);
    106       MI(nn, column+22)=D2;
    107       MI(nn, column+23)=max(D1, D2);
    108       t=t+0.08;
    109       nn=nn+1;
    110   end;
    111   %G2
    112   t=iota_1;
    113   column=25;
    114   nn=1;
    115   while t < =iota_2+0.08
    116       MI(nn, column) = nn;
    117       MI(nn, column+1) = t;
    118       Phi_1=(eval(subs(G2, {v}, {iota_2}))...
    119             -eval(subs(G2, {v}, {iota_1})))^(q_1+p_1+r_1+s_1)...
    120             /gamma(q_1+p_1+r_1+s_1+1)+(eval(subs(G2, {v}, {iota_2}))...
    121             -eval(subs(G2, {v}, {iota_1})))^(p_1+r_1+s_1)...
    122             /gamma(p_1+r_1+s_1+1)+(eval(subs(G2, {v}, {iota_2}))...
    123             -eval(subs(G2, {v}, {iota_1})))^(r_1+s_1)...
    124             /gamma(r_1+s_1+1)+(eval(subs(G2, {v}, {iota_2}))...
    125             -eval(subs(G2, {v}, {iota_1})))^(s_1)/gamma(s_1+1);
    126       MI(nn, column+2)=Phi_1*ell_1;
    127       MI(nn, column+3)=Phi_1*ell_1 < 1;
    128       Phi_2=(eval(subs(G2, {v}, {iota_2}))...
    129             -eval(subs(G2, {v}, {iota_1})))^(q_2+p_2+r_2+s_2)...
    130             /gamma(q_2+p_2+r_2+s_2+1)+(eval(subs(G2, {v}, {iota_2}))...
    131             -eval(subs(G2, {v}, {iota_1})))^(p_2+r_2+s_2)...
    132             /gamma(p_2+r_2+s_2+1)+(eval(subs(G2, {v}, {iota_2}))...
    133             -eval(subs(G2, {v}, {iota_1})))^(r_2+s_2)...
    134             /gamma(r_2+s_2+1)+(eval(subs(G2, {v}, {iota_2}))...
    135             -eval(subs(G2, {v}, {iota_1})))^(s_2)/gamma(s_2+1);
    136       MI(nn, column+4)=Phi_2*ell_2;
    137       MI(nn, column+5)=Phi_2*ell_2 < 1;
    138       Phi=max(Phi_1, Phi_2);
    139       MI(nn, column+6)=Phi;
    140       MI(nn, column+7)=Phi*ell;
    141       MI(nn, column+8)=Phi*ell < 1;
    142       M_10=int(abs(g_10), v, iota_1, t);
    143       MI(nn, column+9)=M_10;
    144       M_11=int(abs(g_11), v, iota_1, t);
    145       MI(nn, column+10)=M_11;
    146       M_12=int(abs(g_12), v, iota_1, t);
    147       MI(nn, column+11)=M_12;
    148       M_13=int(abs(g_13), v, iota_1, t);
    149       MI(nn, column+12)=M_13;
    150       M_20=int(abs(g_20), v, iota_1, iota_2);
    151       MI(nn, column+13)=M_20;
    152       M_21=int(abs(g_21), v, iota_1, t);
    153       MI(nn, column+14)=M_21;
    154       M_22=int(abs(g_22), v, iota_1, t);
    155       MI(nn, column+15)=M_22;
    156       M_23=int(abs(g_23), v, iota_1, t);
    157       MI(nn, column+16)=M_23;
    158       M_1j=max(max(max(M_10, M_11), M_12), M_13);
    159       MI(nn, column+17)=M_1j;
    160       M_2j=max(max(max(M_20, M_21), M_22), M_23);
    161       MI(nn, column+18)=M_2j;
    162       Delta_1=M_10+M_11*(1+(eval(subs(G2, {v}, {iota_2}))...
    163             -eval(subs(G2, {v}, {iota_1})))^(q_1)/gamma(q_1+1))...
    164             +M_12*(1+(eval(subs(G2, {v}, {iota_2}))...
    165             -eval(subs(G2, {v}, {iota_1})))^(p_1)/gamma(p_1+1)...
    166             +(eval(subs(G2, {v}, {iota_2}))-eval(subs(G2, {v}, {iota_1})))^(q_1+p_1)...
    167             /gamma(q_1+p_1+1))+M_13*(1+(eval(subs(G2, {v}, {iota_2}))...
    168             -eval(subs(G2, {v}, {iota_1})))^(r_1)/gamma(r_1+1)...
    169             +(eval(subs(G2, {v}, {iota_2}))-eval(subs(G2, {v}, {iota_1})))^(p_1+r_1)...
    170             /gamma(p_1+r_1+1)+(eval(subs(G2, {v}, {iota_2}))...
    171             -eval(subs(G2, {v}, {iota_1})))^(q_1+p_1+r_1)/gamma(q_1+p_1+r_1+1));
    172       MI(nn, column+19)=Delta_1;
    173       Delta_2=M_20+M_21*(1+(eval(subs(G2, {v}, {iota_2}))...
    174             -eval(subs(G2, {v}, {iota_1})))^(q_2)/gamma(q_2+1))...
    175             +M_22*(1+(eval(subs(G2, {v}, {iota_2}))...
    176             -eval(subs(G2, {v}, {iota_1})))^(p_2)/gamma(p_2+1)...
    177             +(eval(subs(G2, {v}, {iota_2}))...
    178             -eval(subs(G2, {v}, {iota_1})))^(q_2+p_2)/gamma(q_2+p_2+1))...
    179             +M_23*(1+(eval(subs(G2, {v}, {iota_2}))...
    180             -eval(subs(G2, {v}, {iota_1})))^(r_2)/gamma(r_2+1)...
    181             +(eval(subs(G2, {v}, {iota_2}))...
    182             -eval(subs(G2, {v}, {iota_1})))^(p_2+r_2)/gamma(p_2+r_2+1)...
    183             +(eval(subs(G2, {v}, {iota_2}))...
    184             -eval(subs(G2, {v}, {iota_1})))^(q_2+p_2+r_2)...
    185             /gamma(q_2+p_2+r_2+1));
    186       MI(nn, column+20)=Delta_2;
    187       D1=(Delta_1+h_1_0*Phi_1)/(1-ell_1*Phi_1);
    188       MI(nn, column+21)=D1;
    189       D2=(Delta_2+h_2_0*Phi_1)/(1-ell_2*Phi_2);
    190       MI(nn, column+22)=D2;
    191       MI(nn, column+23)=max(D1, D2);
    192       t=t+0.08;
    193       nn=nn+1;
    194   end;
    195   %G3
    196   t=iota_1;
    197   column=49;
    198   nn=1;
    199   while t < =iota_2+0.08
    200       MI(nn, column) = nn;
    201       MI(nn, column+1) = t;
    202       Phi_1=(eval(subs(G3, {v}, {iota_2}))...
    203             -eval(subs(G3, {v}, {iota_1})))^(q_1+p_1+r_1+s_1)...
    204             /gamma(q_1+p_1+r_1+s_1+1)+(eval(subs(G3, {v}, {iota_2}))...
    205             -eval(subs(G3, {v}, {iota_1})))^(p_1+r_1+s_1)...
    206             /gamma(p_1+r_1+s_1+1)+(eval(subs(G3, {v}, {iota_2}))...
    207             -eval(subs(G3, {v}, {iota_1})))^(r_1+s_1)...
    208             /gamma(r_1+s_1+1)+(eval(subs(G3, {v}, {iota_2}))...
    209             -eval(subs(G3, {v}, {iota_1})))^(s_1)/gamma(s_1+1);
    210       MI(nn, column+2)=Phi_1*ell_1;
    211       MI(nn, column+3)=Phi_1*ell_1 < 1;
    212       Phi_2=(eval(subs(G3, {v}, {iota_2}))...
    213             -eval(subs(G3, {v}, {iota_1})))^(q_2+p_2+r_2+s_2)...
    214             /gamma(q_2+p_2+r_2+s_2+1)+(eval(subs(G3, {v}, {iota_2}))...
    215             -eval(subs(G3, {v}, {iota_1})))^(p_2+r_2+s_2)...
    216             /gamma(p_2+r_2+s_2+1)+(eval(subs(G3, {v}, {iota_2}))...
    217             -eval(subs(G3, {v}, {iota_1})))^(r_2+s_2)...
    218             /gamma(r_2+s_2+1)+(eval(subs(G3, {v}, {iota_2}))...
    219             -eval(subs(G3, {v}, {iota_1})))^(s_2)/gamma(s_2+1);
    220       MI(nn, column+4)=Phi_2*ell_2;
    221       MI(nn, column+5)=Phi_2*ell_2 < 1;
    222       Phi=max(Phi_1, Phi_2);
    223       MI(nn, column+6)=Phi;
    224       MI(nn, column+7)=Phi*ell;
    225       MI(nn, column+8)=Phi*ell < 1;
    226       M_10=int(abs(g_10), v, iota_1, t);
    227       MI(nn, column+9)=M_10;
    228       M_11=int(abs(g_11), v, iota_1, t);
    229       MI(nn, column+10)=M_11;
    230       M_12=int(abs(g_12), v, iota_1, t);
    231       MI(nn, column+11)=M_12;
    232       M_13=int(abs(g_13), v, iota_1, t);
    233       MI(nn, column+12)=M_13;
    234       M_20=int(abs(g_20), v, iota_1, iota_2);
    235       MI(nn, column+13)=M_20;
    236       M_21=int(abs(g_21), v, iota_1, t);
    237       MI(nn, column+14)=M_21;
    238       M_22=int(abs(g_22), v, iota_1, t);
    239       MI(nn, column+15)=M_22;
    240       M_23=int(abs(g_23), v, iota_1, t);
    241       MI(nn, column+16)=M_23;
    242       M_1j=max(max(max(M_10, M_11), M_12), M_13);
    243       MI(nn, column+17)=M_1j;
    244       M_2j=max(max(max(M_20, M_21), M_22), M_23);
    245       MI(nn, column+18)=M_2j;
    246       Delta_1=M_10+M_11*(1+(eval(subs(G3, {v}, {iota_2}))...
    247             -eval(subs(G3, {v}, {iota_1})))^(q_1)/gamma(q_1+1))...
    248             +M_12*(1+(eval(subs(G3, {v}, {iota_2}))...
    249             -eval(subs(G3, {v}, {iota_1})))^(p_1)/gamma(p_1+1)...
    250             +(eval(subs(G3, {v}, {iota_2}))...
    251             -eval(subs(G3, {v}, {iota_1})))^(q_1+p_1)/gamma(q_1+p_1+1))...
    252             +M_13*(1+(eval(subs(G3, {v}, {iota_2}))...
    253             -eval(subs(G3, {v}, {iota_1})))^(r_1)/gamma(r_1+1)...
    254             +(eval(subs(G3, {v}, {iota_2}))...
    255             -eval(subs(G3, {v}, {iota_1})))^(p_1+r_1)/gamma(p_1+r_1+1)...
    256             +(eval(subs(G3, {v}, {iota_2}))...
    257             -eval(subs(G3, {v}, {iota_1})))^(q_1+p_1+r_1)...
    258             /gamma(q_1+p_1+r_1+1));
    259       MI(nn, column+19)=Delta_1;
    260       Delta_2=M_20+M_21*(1+(eval(subs(G3, {v}, {iota_2}))...
    261             -eval(subs(G3, {v}, {iota_1})))^(q_2)/gamma(q_2+1))...
    262             +M_22*(1+(eval(subs(G3, {v}, {iota_2}))...
    263             -eval(subs(G3, {v}, {iota_1})))^(p_2)/gamma(p_2+1)...
    264             +(eval(subs(G3, {v}, {iota_2}))...
    265             -eval(subs(G3, {v}, {iota_1})))^(q_2+p_2)/gamma(q_2+p_2+1))...
    266             +M_23*(1+(eval(subs(G3, {v}, {iota_2}))...
    267             -eval(subs(G3, {v}, {iota_1})))^(r_2)/gamma(r_2+1)...
    268             +(eval(subs(G3, {v}, {iota_2}))...
    269             -eval(subs(G3, {v}, {iota_1})))^(p_2+r_2)/gamma(p_2+r_2+1)...
    270             +(eval(subs(G3, {v}, {iota_2}))...
    271             -eval(subs(G3, {v}, {iota_1})))^(q_2+p_2+r_2)...
    272             /gamma(q_2+p_2+r_2+1));
    273             MI(nn, column+20)=Delta_2;
    274             D1=(Delta_1+h_1_0*Phi_1)/(1-ell_1*Phi_1);
    275             MI(nn, column+21)=D1;
    276             D2=(Delta_2+h_2_0*Phi_1)/(1-ell_2*Phi_2);
    277             MI(nn, column+22)=D2;
    278             MI(nn, column+23)=max(D1, D2);
    279             t=t+0.08;
    280             nn=nn+1;
    281   end;
    282   %G4
    283   t=iota_1;
    284   column=73;
    285   nn=1;
    286   while t < =iota_2+0.08
    287       MI(nn, column) = nn;
    288       MI(nn, column+1) = t;
    289       Phi_1=(eval(subs(G4, {v}, {iota_2}))...
    290             -eval(subs(G4, {v}, {iota_1})))^(q_1+p_1+r_1+s_1)...
    291             /gamma(q_1+p_1+r_1+s_1+1)+(eval(subs(G4, {v}, {iota_2}))...
    292             -eval(subs(G4, {v}, {iota_1})))^(p_1+r_1+s_1)...
    293             /gamma(p_1+r_1+s_1+1)+(eval(subs(G4, {v}, {iota_2}))...
    294             -eval(subs(G4, {v}, {iota_1})))^(r_1+s_1)...
    295             /gamma(r_1+s_1+1)+(eval(subs(G4, {v}, {iota_2}))...
    296             -eval(subs(G4, {v}, {iota_1})))^(s_1)/gamma(s_1+1);
    297       MI(nn, column+2)=Phi_1*ell_1;
    298       MI(nn, column+3)=Phi_1*ell_1 < 1;
    299       Phi_2=(eval(subs(G4, {v}, {iota_2}))...
    300             -eval(subs(G4, {v}, {iota_1})))^(q_2+p_2+r_2+s_2)...
    301             /gamma(q_2+p_2+r_2+s_2+1)+(eval(subs(G4, {v}, {iota_2}))...
    302             -eval(subs(G4, {v}, {iota_1})))^(p_2+r_2+s_2)...
    303             /gamma(p_2+r_2+s_2+1)+(eval(subs(G4, {v}, {iota_2}))...
    304             -eval(subs(G4, {v}, {iota_1})))^(r_2+s_2)...
    305             /gamma(r_2+s_2+1)+(eval(subs(G4, {v}, {iota_2}))...
    306             -eval(subs(G4, {v}, {iota_1})))^(s_2)/gamma(s_2+1);
    307       MI(nn, column+4)=Phi_2*ell_2;
    308       MI(nn, column+5)=Phi_2*ell_2 < 1;
    309       Phi=max(Phi_1, Phi_2);
    310       MI(nn, column+6)=Phi;
    311       MI(nn, column+7)=Phi*ell;
    312       MI(nn, column+8)=Phi*ell < 1;
    313       M_10=int(abs(g_10), v, iota_1, t);
    314       MI(nn, column+9)=M_10;
    315       M_11=int(abs(g_11), v, iota_1, t);
    316       MI(nn, column+10)=M_11;
    317       M_12=int(abs(g_12), v, iota_1, t);
    318       MI(nn, column+11)=M_12;
    319       M_13=int(abs(g_13), v, iota_1, t);
    320       MI(nn, column+12)=M_13;
    321       M_20=int(abs(g_20), v, iota_1, iota_2);
    322       MI(nn, column+13)=M_20;
    323       M_21=int(abs(g_21), v, iota_1, t);
    324       MI(nn, column+14)=M_21;
    325       M_22=int(abs(g_22), v, iota_1, t);
    326       MI(nn, column+15)=M_22;
    327       M_23=int(abs(g_23), v, iota_1, t);
    328       MI(nn, column+16)=M_23;
    329       M_1j=max(max(max(M_10, M_11), M_12), M_13);
    330       MI(nn, column+17)=M_1j;
    331       M_2j=max(max(max(M_20, M_21), M_22), M_23);
    332       MI(nn, column+18)=M_2j;
    333       Delta_1=M_10+M_11*(1+(eval(subs(G4, {v}, {iota_2}))...
    334             -eval(subs(G4, {v}, {iota_1})))^(q_1)/gamma(q_1+1))...
    335             +M_12*(1+(eval(subs(G4, {v}, {iota_2}))...
    336             -eval(subs(G4, {v}, {iota_1})))^(p_1)/gamma(p_1+1)...
    337             +(eval(subs(G4, {v}, {iota_2}))...
    338             -eval(subs(G4, {v}, {iota_1})))^(q_1+p_1)/gamma(q_1+p_1+1))...
    339             +M_13*(1+(eval(subs(G4, {v}, {iota_2}))...
    340             -eval(subs(G4, {v}, {iota_1})))^(r_1)/gamma(r_1+1)...
    341             +(eval(subs(G4, {v}, {iota_2}))...
    342             -eval(subs(G4, {v}, {iota_1})))^(p_1+r_1)/gamma(p_1+r_1+1)...
    343             +(eval(subs(G4, {v}, {iota_2}))...
    344             -eval(subs(G4, {v}, {iota_1})))^(q_1+p_1+r_1)...
    345             /gamma(q_1+p_1+r_1+1));
    346       MI(nn, column+19)=Delta_1;
    347       Delta_2=M_20+M_21*(1+(eval(subs(G4, {v}, {iota_2}))...
    348             -eval(subs(G4, {v}, {iota_1})))^(q_2)/gamma(q_2+1))...
    349             +M_22*(1+(eval(subs(G4, {v}, {iota_2}))...
    350             -eval(subs(G4, {v}, {iota_1})))^(p_2)/gamma(p_2+1)...
    351             +(eval(subs(G4, {v}, {iota_2}))...
    352             -eval(subs(G4, {v}, {iota_1})))^(q_2+p_2)/gamma(q_2+p_2+1))...
    353             +M_23*(1+(eval(subs(G4, {v}, {iota_2}))...
    354             -eval(subs(G4, {v}, {iota_1})))^(r_2)/gamma(r_2+1)...
    355             +(eval(subs(G4, {v}, {iota_2}))...
    356             -eval(subs(G4, {v}, {iota_1})))^(p_2+r_2)/gamma(p_2+r_2+1)...
    357             +(eval(subs(G4, {v}, {iota_2}))...
    358             -eval(subs(G4, {v}, {iota_1})))^(q_2+p_2+r_2)...
    359             /gamma(q_2+p_2+r_2+1));
    360       MI(nn, column+20)=Delta_2;
    361       D1=(Delta_1+h_1_0*Phi_1)/(1-ell_1*Phi_1);
    362       MI(nn, column+21)=D1;
    363       D2=(Delta_2+h_2_0*Phi_1)/(1-ell_2*Phi_2);
    364       MI(nn, column+22)=D2;
    365       MI(nn, column+23)=max(D1, D2);
    366       t=t+0.08;
    367       nn=nn+1;
    368   end;

     | Show Table
    DownLoad: CSV


    [1] M. I. Abbas, M. Ghaderi, S. Rezapour, S. T. M. Thabet, On a coupled system of fractional differential equations via the generalized proportional fractional derivatives, J. Funct. Spaces, 2022 (2022), 4779213. https://doi.org/10.1155/2022/4779213 doi: 10.1155/2022/4779213
    [2] Y. Adjabi, M. E. Samei, M. M. Matar, J. Alzabut, Langevin differential equation in frame of ordinary and hadamard fractional derivatives under three point boundary conditions, AIMS Math., 6 (2021), 2796–2843. https://doi.org/10.3934/math.2021171 doi: 10.3934/math.2021171
    [3] H. Afshari, S. Kalantari, E. Karapinar, Solution of fractional differential equations via coupled fixed point, Electron. J. Differ. Equ., 2015 (2015), 1–12.
    [4] S. T. M. Thabet, B. Ahmad, R. P. Agarwal, On abstract Hilfer fractional integrodifferential equations with boundary conditions, Arab J. Math. Sci., 26 (2020), 107–125. https://doi.org/10.1016/j.ajmsc.2019.03.001 doi: 10.1016/j.ajmsc.2019.03.001
    [5] J. Alzabut, A. G. M. Selvam, R. A. El-Nabulsi, V. Dhakshinamoorthy, M. E. Samei, Asymptotic stability of nonlinear discrete fractional pantograph equations with non-local initial conditions, Symmetry, 13 (2021), 473. https://doi.org/10.3390/sym13030473 doi: 10.3390/sym13030473
    [6] P. Amiri, M. E. Samei, Existence of urysohn and atangana-baleanu fractional integral inclusion systems solutions via common fixed point of multi-valued operators, Chaos Solitons Fract., 165 (2022), 112822. https://doi.org/10.1016/j.chaos.2022.112822 doi: 10.1016/j.chaos.2022.112822
    [7] A. Boutiara, K. Guerbati, M. Benbachir, Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces, AIMS Math., 5 (2020), 259–272. https://doi.org/10.3934/math.2020017 doi: 10.3934/math.2020017
    [8] J. V. d. C. Sousa, E. C. de Oliveira, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the \psi-Hilfer operator, J. Fixed Point Theory Appl., 20 (2018), 96. https://doi.org/10.1007/s11784-018-0587-56 doi: 10.1007/s11784-018-0587-56
    [9] K. Deimling, Nonlinear functional analysis, Springer Berlin, Heidelberg, 1985. https://doi.org/10.1007/978-3-662-00547-7
    [10] A. R. Elsonbaty, A. M. El-Sayed, Further nonlinear dynamical analysis of simple jerk system with multiple attractors, Nonlinear Dyn., 87 (2017), 1169–1186. https://doi.org/10.1007/s11071-016-3108-3 doi: 10.1007/s11071-016-3108-3
    [11] H. P. W. Gottlieb, Harmonic balance approach to periodic solutions of nonlinear jerk equations, J. Sound Vib., 271 (2004), 671–683. https://doi.org/10.1016/S0022-460X(03)00299-2 doi: 10.1016/S0022-460X(03)00299-2
    [12] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, North-Holland Mathematics Studies, Elsevier, 2006.
    [13] C. S. Liu, J. R. Chang, The periods and periodic solutions of nonlinear jerk equations solved by an iterative algorithm based on a shape function method, Appl. Math. Lett., 102 (2019), 106151. https://doi.org/10.1016/j.aml.2019.106151 doi: 10.1016/j.aml.2019.106151
    [14] N. Mahmudov, M. M. Matar, Existence of mild solution for hybrid differential equations with arbitrary fractional order, TWMS J. Pure Appl. Math., 8 (2017), 160–169.
    [15] M. M. Matar, Qualitative properties of solution for hybrid nonlinear fractional differential equations, Afr. Mat., 30 (2019), 1169–1179. https://doi.org/10.1007/s13370-019-00710-2 doi: 10.1007/s13370-019-00710-2
    [16] M. M. Matar, M. Jarad, M. Ahmad, A. Zada, S. Etemad, S. Rezapour, On the existence and stability of two positive solutions of a hybrid differential system of arbitrary fractional order via Avery-Anderson-Henderson criterion on cones, Adv. Differ. Equ., 2021 (2021), 423. https://doi.org/10.1186/s13662-021-03576-6 doi: 10.1186/s13662-021-03576-6
    [17] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [18] I. Podlubny, Fractional differential equations, New York: Academic Press, 1993.
    [19] M. S. Rahman, A. S. M. Z. Hasan, Modified harmonic balance method for the solution of nonlinear jerk equations, Results Phys., 8 (2018), 893–897. https://doi.org/10.1016/j.rinp.2018.01.030 doi: 10.1016/j.rinp.2018.01.030
    [20] S. Rezapour, M. E. Samei, On the existence of solutions for a multi-singular point-wise defined fractional q-integro-differential equation, Bound. Value Probl., 2020 (2020), 38. https://doi.org/10.1186/s13661-020-01342-3 doi: 10.1186/s13661-020-01342-3
    [21] S. Rezapour, S. T. M. Thabet, M. M. Matar, J. Alzabut, S. Etemad, Some existence and stability criteria to a generalized FBVP having fractional composite p-Laplacian operator, J. Funct. Spaces, 2021 (2021), 9554076. https://doi.org/10.1155/2021/9554076 doi: 10.1155/2021/9554076
    [22] M. E. Samei, V. Hedayati, S. Rezapour, Existence results for a fraction hybrid differential inclusion with Caputo-Hadamard type fractional derivative, Adv. Differ. Equ., 2019 (2019), 163. https://doi.org/10.1186/s13662-019-2090-8 doi: 10.1186/s13662-019-2090-8
    [23] M. E. Samei, M. M. Matar, S. Etemad, S. Rezapour, On the generalized fractional snap boundary problems via G-{C}aputo operators: existence and stability analysis, Adv. Differ. Equ., 2021 (2021), 498. https://doi.org/10.1186/s13662-021-03654-9 doi: 10.1186/s13662-021-03654-9
    [24] S. T. M. Thabet, M. B. Dhakne, On abstract fractional integro-differential equations via measure of noncompactness, Adv. Fixed Point Theory, 6 (2016), 175–193.
    [25] S. T. M. Thabet, M. B. Dhakne, On nonlinear fractional integro-differential equations with two boundary conditions, Adv. Stud. Contemp. Math., 26 (2016), 513–526.
    [26] S. T. M. Thabet, M. B. Dhakne, On positive solutions of higher order nonlinear fractional integro-differential equations with boundary conditions, Malaya J. Mat., 7 (2019), 20–26. https://doi.org/10.26637/MJM0701/0005 doi: 10.26637/MJM0701/0005
    [27] S. T. M. Thabet, M. B. Dhakne, M. A. Salman, R. Gubran, Generalized fractional Sturm-Liouville and langevin equations involving Caputo derivative with nonlocal conditions, Progr. Fract. Differ. Appl., 6 (2020), 225–237. https://doi.org/10.18576/pfda/060306 doi: 10.18576/pfda/060306
    [28] S. T. M. Thabet, S. Etemad, S. Rezapour, On a coupled Caputo conformable system of pantograph problems, Turk. J. Math., 45 (2021), 496–519. https://doi.org/10.3906/mat-2010-70 doi: 10.3906/mat-2010-70
    [29] C. Urs, Coupled fixed point theorems and applications to periodic boundary value problems, Miskolc Math. Notes, 14 (2013), 323–333. https://doi.org/10.18514/MMN.2013.598 doi: 10.18514/MMN.2013.598
    [30] H. Zhou, J. Alzabut, S. Rezapour, M. E. Samei, Uniform persistence and almost periodic solutions of a non-autonomous patch occupancy model, Adv. Differ. Equ., 2020 (2020), 143. https://doi.org/10.1186/s13662-020-02603-2 doi: 10.1186/s13662-020-02603-2
  • This article has been cited by:

    1. Pradip Ramesh Patle, Moosa Gabeleh, Vladimir Rakočević, Mohammad Esmael Samei, New best proximity point (pair) theorems via MNC and application to the existence of optimum solutions for a system of \psi -Hilfer fractional differential equations, 2023, 117, 1578-7303, 10.1007/s13398-023-01451-5
    2. Shahram Rezapour, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez, Mehran Ghaderi, A computational method for investigating a quantum integrodifferential inclusion with simulations and heatmaps, 2023, 8, 2473-6988, 27241, 10.3934/math.20231394
    3. Amjad Ali, Khezer Hayat, Abrar Zahir, Kamal Shah, Thabet Abdeljawad, Qualitative Analysis of Fractional Stochastic Differential Equations with Variable Order Fractional Derivative, 2024, 23, 1575-5460, 10.1007/s12346-024-00982-5
    4. Sabri T. M. Thabet, Imed Kedim, An investigation of a new Lyapunov-type inequality for Katugampola–Hilfer fractional BVP with nonlocal and integral boundary conditions, 2023, 2023, 1029-242X, 10.1186/s13660-023-03070-5
    5. Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, M. Iadh Ayari, Aziz Khan, A higher-order extension of Atangana–Baleanu fractional operators with respect to another function and a Gronwall-type inequality, 2023, 2023, 1687-2770, 10.1186/s13661-023-01736-z
    6. Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez, Efficient results on unbounded solutions of fractional Bagley-Torvik system on the half-line, 2024, 9, 2473-6988, 5071, 10.3934/math.2024246
    7. Anil Chavada, Nimisha Pathak, Transmission dynamics of breast cancer through Caputo Fabrizio fractional derivative operator with real data, 2024, 4, 2767-8946, 119, 10.3934/mmc.2024011
    8. Sabri T. M. Thabet, Miguel Vivas-Cortez, Imed Kedim, Analytical study of \mathcal{ABC} -fractional pantograph implicit differential equation with respect to another function, 2023, 8, 2473-6988, 23635, 10.3934/math.20231202
    9. Sabri T. M. Thabet, Sa'ud Al-Sa'di, Imed Kedim, Ava Sh. Rafeeq, Shahram Rezapour, Analysis study on multi-order \varrho -Hilfer fractional pantograph implicit differential equation on unbounded domains, 2023, 8, 2473-6988, 18455, 10.3934/math.2023938
    10. Kottakkaran Sooppy Nisar, Efficient results on Hilfer pantograph model with nonlocal integral condition, 2023, 80, 11100168, 342, 10.1016/j.aej.2023.08.061
    11. R.N. Premakumari, Chandrali Baishya, Mohammad Esmael Samei, Manisha Krishna Naik, A novel optimal control strategy for nutrient–phytoplankton–zooplankton model with viral infection in plankton, 2024, 137, 10075704, 108157, 10.1016/j.cnsns.2024.108157
    12. Sabri T. M. Thabet, Thabet Abdeljawad, Imed Kedim, M. Iadh Ayari, A new weighted fractional operator with respect to another function via a new modified generalized Mittag–Leffler law, 2023, 2023, 1687-2770, 10.1186/s13661-023-01790-7
    13. Xinguang Zhang, Peng Chen, Hui Tian, Yonghong Wu, The Iterative Properties for Positive Solutions of a Tempered Fractional Equation, 2023, 7, 2504-3110, 761, 10.3390/fractalfract7100761
    14. Latif Ur Rahman, Muhammad Arshad, Sabri T. M. Thabet, Imed Kedim, Xiaolong Qin, Iterative Construction of Fixed Points for Functional Equations and Fractional Differential Equations, 2023, 2023, 2314-4785, 1, 10.1155/2023/6677650
    15. Ava Sh. Rafeeq, Sabri T.M. Thabet, Mohammed O. Mohammed, Imed Kedim, Miguel Vivas-Cortez, On Caputo-Hadamard fractional pantograph problem of two different orders with Dirichlet boundary conditions, 2024, 86, 11100168, 386, 10.1016/j.aej.2023.11.081
    16. Brahim Tellab, Abdelkader Amara, Mohammed El-Hadi Mezabia, Khaled Zennir, Loay Alkhalifa, Study of a Coupled Ψ–Liouville–Riemann Fractional Differential System Characterized by Mixed Boundary Conditions, 2024, 8, 2504-3110, 510, 10.3390/fractalfract8090510
    17. Deepesh Kumar Patel, Moosa Gabeleh, Mohammad Esmael Samei, On existence of solutions for \Psi -Hilfer type fractional BVP of generalized higher order, 2024, 43, 2238-3603, 10.1007/s40314-024-02681-y
    18. R. Poovarasan, Mohammad Esmael Samei, V. Govindaraj, Study of three-point impulsive boundary value problems governed by \Psi -Caputo fractional derivative, 2024, 70, 1598-5865, 3947, 10.1007/s12190-024-02122-3
    19. Yanfang Li, Donal O’Regan, Jiafa Xu, Nontrivial Solutions for a First-order Impulsive Integral Boundary Value Problem on Time Scales, 2024, 23, 1575-5460, 10.1007/s12346-024-00954-9
    20. Sabri T. M. Thabet, Miguel Vivas-Cortez, Imed Kedim, Mohammad Esmael Samei, M. Iadh Ayari, Solvability of a ϱ-Hilfer Fractional Snap Dynamic System on Unbounded Domains, 2023, 7, 2504-3110, 607, 10.3390/fractalfract7080607
    21. M. Lavanya, B. Sundara Vadivoo, Kottakkaran Sooppy Nisar, Controllability Analysis of Neutral Stochastic Differential Equation Using \psi -Hilfer Fractional Derivative with Rosenblatt Process, 2025, 24, 1575-5460, 10.1007/s12346-024-01178-7
    22. Said Zibar, Brahim Tellab, Abdelkader Amara, Homan Emadifar, Atul Kumar, Sabir Widatalla, Existence, uniqueness and stability analysis of a nonlinear coupled system involving mixed ϕ-Riemann-Liouville and ψ-Caputo fractional derivatives, 2025, 2025, 1687-2770, 10.1186/s13661-025-01994-z
    23. R. Poovarasan, Mohammad Esmael Samei, V. Govindaraj, Analysis of existence, uniqueness, and stability for nonlinear fractional boundary value problems with novel integral boundary conditions, 2025, 1598-5865, 10.1007/s12190-025-02378-3
    24. Abderrahman Elgmairi, M’hamed Elomari, Said Melliani, Hybrid Fractional Differential Equations Involving the \psi -Caputo Derivative, 2025, 11, 2349-5103, 10.1007/s40819-025-01856-3
    25. Kalimuthu Ramalakshmi, Mohammad Esmael Samei, Behnam Mohammadaliee, A prominent optimal control strategy for soil-transmitted helminth infections via generalized mathematical model of fractional differential equation, 2025, 3, 30505178, 100023, 10.1016/j.nls.2025.100023
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1803) PDF downloads(166) Cited by(25)

Figures and Tables

Figures(1)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog