Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Evaluation of nanostructured electrode materials for high-performance supercapacitors using multiple-criteria decision-making approach

  • Received: 18 December 2022 Revised: 04 February 2023 Accepted: 12 February 2023 Published: 24 February 2023
  • The enhancement of electrode materials' properties for improving mercantile supercapacitors' performances is a remarkable research area. Throughout recent years, a significant amount of research has been devoted to improving the electrochemical performance of supercapacitors via the improvement of novel electrode materials. The nanocomposite structure provides a greater specific surface area (SSA) and lower ion/electron diffusion tracks, consequently enhancing supercapacitors' energy density and specific capacitance. These significant properties offer a wide range of potential for the electrode materials to be applied in diverse applications. For instance, their applications are in portable electronic systems such as all-solid-state supercapacitors, flexible/transparent supercapacitors and hybrid supercapacitors. The authors of this paper introduced a multi-criteria model to assess the priority of nanostructured electrode materials (NEMs) for high-performance supercapacitors (HPSCs). This work combines Analytic Hierarchy Process (AHP) with the Evaluation Based on Distance from Average Solution (EDAS) and Grey Relational Analysis (GRA) methods. Herein, the rough concept addresses the uncertainties resulting from the group decision-making process and the vague values of the properties of the NEMs. The modified R-AHP method was employed to find the criteria weights based on the multi-experts' opinions. The results reveal that specific capacitance (SC) and energy density (ED) are the most important criteria. R-AHP was integrated with R-EDAS and R-GRA models to evaluate the fourteen NEMs. The results of the R-EDAS method were compared with those provided by the R-GRA method. The results of the proposed integrated approach confirmed that it results in reliable and reputable ranks that will provide a framework for further applications and help physicists find optimal materials by evaluating various alternatives.

    Citation: Ibrahim M. Hezam, Aref M. Al-Syadi, Abdelaziz Foul, Ahmad Alshamrani, Jeonghwan Gwak. Evaluation of nanostructured electrode materials for high-performance supercapacitors using multiple-criteria decision-making approach[J]. Electronic Research Archive, 2023, 31(4): 2286-2314. doi: 10.3934/era.2023117

    Related Papers:

    [1] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [2] Xinghua You, Ghulam Farid, Lakshmi Narayan Mishra, Kahkashan Mahreen, Saleem Ullah . Derivation of bounds of integral operators via convex functions. AIMS Mathematics, 2020, 5(5): 4781-4792. doi: 10.3934/math.2020306
    [3] Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546
    [4] Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386
    [5] Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392
    [6] Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328
    [7] Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297
    [8] Wenfeng He, Ghulam Farid, Kahkashan Mahreen, Moquddsa Zahra, Nana Chen . On an integral and consequent fractional integral operators via generalized convexity. AIMS Mathematics, 2020, 5(6): 7632-7648. doi: 10.3934/math.2020488
    [9] Mehmet Eyüp Kiriş, Miguel Vivas-Cortez, Gözde Bayrak, Tuğba Çınar, Hüseyin Budak . On Hermite-Hadamard type inequalities for co-ordinated convex function via conformable fractional integrals. AIMS Mathematics, 2024, 9(4): 10267-10288. doi: 10.3934/math.2024502
    [10] Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379
  • The enhancement of electrode materials' properties for improving mercantile supercapacitors' performances is a remarkable research area. Throughout recent years, a significant amount of research has been devoted to improving the electrochemical performance of supercapacitors via the improvement of novel electrode materials. The nanocomposite structure provides a greater specific surface area (SSA) and lower ion/electron diffusion tracks, consequently enhancing supercapacitors' energy density and specific capacitance. These significant properties offer a wide range of potential for the electrode materials to be applied in diverse applications. For instance, their applications are in portable electronic systems such as all-solid-state supercapacitors, flexible/transparent supercapacitors and hybrid supercapacitors. The authors of this paper introduced a multi-criteria model to assess the priority of nanostructured electrode materials (NEMs) for high-performance supercapacitors (HPSCs). This work combines Analytic Hierarchy Process (AHP) with the Evaluation Based on Distance from Average Solution (EDAS) and Grey Relational Analysis (GRA) methods. Herein, the rough concept addresses the uncertainties resulting from the group decision-making process and the vague values of the properties of the NEMs. The modified R-AHP method was employed to find the criteria weights based on the multi-experts' opinions. The results reveal that specific capacitance (SC) and energy density (ED) are the most important criteria. R-AHP was integrated with R-EDAS and R-GRA models to evaluate the fourteen NEMs. The results of the R-EDAS method were compared with those provided by the R-GRA method. The results of the proposed integrated approach confirmed that it results in reliable and reputable ranks that will provide a framework for further applications and help physicists find optimal materials by evaluating various alternatives.



    On different time ranges, fractional calculus has a great impact due to a diversity of applications that have contributed to several fields of technical sciences and engineering [1,2,3,4,5,6,7,8,9,10,11,12]. One of the principal options behind the popularity of the area is that fractional-order differentiations and integrations are more beneficial tools in expressing real-world matters than the integer-order ones. Various studies in the literature, on distinct fractional operators such as the classical Riemann-Liouville, Caputo, Katugamploa, Hadamard, and Marchaud versions have shown versatility in modeling and control applications across various disciplines. However, such forms of fractional derivatives may not be able to explain the dynamic performance accurately, hence, many authors are found to be sorting out new fractional differentiations and integrations which have a kernel depending upon a function and this makes the range of definition expanded [13,14]. Furthermore, models based on these fractional operators provide excellent results to be compared with the integer-order differentiations [15,16,17,18,19,20,21,22,23,24,25,26,27].

    The derivatives in this calculus seemed complicated and lost some of the basic properties that usual derivatives have such as the product rule and the chain rule. However, the semigroup properties of these operators behave well in some cases. Recently, the authors in [28] defined a new well-behaved simple derivative called "conformable fractional derivative" which depends just on the basic limit definition of the derivative. It will define the derivative of higher-order (i.e., order δ>1) and also define the integral of order 0<δ1 only. It will also prove the product rule and the mean value theorem and solve some (conformable) differential equations where the fractional exponential function eϑδδ plays an important rule. Inequalities and their utilities assume a crucial job in the literature of pure and applied mathematics [29,30,31,32,33,34,35,36,37]. The assortment of distinct kinds of classical variants and their modifications were built up by using the classical fractional operators.

    Convexity and its applications exist in almost every field of mathematics due to impermanence in several areas of science, technology in nonlinear programming and optimization theory. By utilizing the idea of convexity, numerous variants have been derived by researchers, for example, Hardy, Opial, Ostrowski, Jensen and the most distinguished one is the Hermite-Hadamard inequality [38,39,40,41].

    Let IR be an interval and Q:IR be a convex function. Then the double inequality

    (l2l1)Q(l1+l22)l2l1Q(z)dz(l2l1)Q(l1)+Q(l2)2, (1.1)

    holds for all l1,l2I with l1l2. Clearly, if Q is concave on I, then one has the reverse of inequality (1.1). By taking into account fractional integral operators, several lower and upper bounds for the mean value of a convex function can be obtained by utilizing of inequality (1.1).

    Exponentially convex functions have emerged as a significant new class of convex functions, which have potential applications in technology, data science, and statistics. In [42], Bernstein introduced the concept of exponentially convex function in covariance formation, then the idea of an exponentially convex function is extended by inserting the condition of r-convexity [43]. Following this tendency, Jakšetić and Pečarić introduced various kinds of exponentially convex functions in [44] and have contemplated the applications in Euler-Radau expansions and Stolarsky means. Our aim is to utilize the exponential convexity property of the functions as well as the absolute values of their derivatives in order to establish estimates for conformable fractional integral introduced by Abdeljawed [45] and Jarad et al. [46].

    Following the above propensity, we present a novel technique for establishing new generalizations of Hermite-Hadamard inequalities that correlate with exponentially tgs-convex functions and conformable fractional operator techniques in this paper. The main purpose is that our consequences, which are more consistent and efficient, are accelerated via the fractional calculus technique. In addition, our consequences also taking into account the estimates for Hermite-Hadamard inequalities for exponentially tgs-convex functions. We also investigate the applications of the two proposed conformable fractional operator to exponentially tgs-convex functions and fractional calculus. The proposed numerical experiments show that our results are superior to some related results.

    Before coming to the main results, we provide some significant definitions, theorems and properties of fractional calculus in order to establish a mathematically sound theory that will serve the purpose of the current article.

    Awan et al. [47] proposed a new class of functions called exponentially convex functions.

    Definition 2.1. (See [47]) A positive real-valued function Q:KR(0,) is said to be exponentially convex on K if the inequality

    Q(ϑl1+(1ϑ)l2)ϑQ(l1)eαl1+(1ϑ)Q(l2)eαl2, (2.1)

    holds for all l1,l2R,αR and ϑ[0,1].

    Now, we introduce a novel concept of convex function which is known as the exponentially tgs-convex function.

    Definition 2.2. A positive real-valued function Q:KR(0,) is said to be exponentially tgs-convex on K if the inequality

    Q(ϑl1+(1ϑ)l2)ϑ(1ϑ)[Q(l1)eαl1+Q(l2)eαl2], (2.2)

    holds for all l1,l2R,αR and ϑ[0,1].

    The conformable fractional integral operator was introduced by Abdeljawad [45].

    Definition 2.3. (See [45]) Let ρ(n,n+1] and δ=ρn. Then the left and right-sided conformable fractional integrals of order ρ>0 is defined by

    Jρl+1Q(z)=1n!zl1(zϑ)n(ϑl1)ρ1Q(ϑ)dϑ (2.3)

    and

    Jρl2Q(z)=1n!l2z(ϑz)n(l2ϑ)ρ1Q(ϑ)dϑ. (2.4)

    Next, we demonstrate the following fractional integral operator introduced by Jarad et al. [46].

    Definition 2.4. (See [46]) Let δC and (δ)>0. Then the left and right-sided fractional conformable integral operators of order ρ>0 are stated as:

    Jρ,δl+1Q(z)=1Γ(δ)zl1((zl1)ρ(ϑl1)ρρ)δ1Q(ϑ)(ϑl1)1ρdϑ (2.5)

    and

    Jρ,δl2Q(z)=1Γ(δ)zl1((l2z)ρ(l2ϑ)ρρ)δ1Q(ϑ)(l2ϑ)1ρdϑ. (2.6)

    Recalling some special functions which are known as beta and incomplete beta function.

    B(l1,l2)=10ϑl11(1ϑ)l21dϑ,
    Bv(l1,l2)=v0ϑl11(1ϑ)l21dϑ,v[0,1].

    Further, the following relationship holds between classical Beta and incomplete Beta functions:

    B(l1,l2)=Bv(l1,l2)+B1v(l1,l2),
    Bv(l1+1,l2)=l1Bv(l1,l2)(12)l1+l2l1+l2

    and

    Bv(l1,l2+1)=l2Bv(l1,l2)(12)l1+l2l1+l2.

    Throughout the article, let I=[l1,l2] be an interval in real line R. In this section, we shall demonstrate some integral versions of exponentially tgs-convex functions via conformable fractional integrals.

    Theorem 3.1. For ρ(n,n+1]) with ρ>0 and let Q:IRR be an exponentially tgs-convex function such that QL1([l1,l2]), then the following inequalities hold:

    4Γ(ρn)Γ(ρ+1)Q(l1+l22)
    1(l2l1)ρ[Jρl+1Q(l2)eαl2+Jρl2Q(l1)eαl1]
    2(n+1)Γ(ρn+1)Γ(ρ+3)(Q(l1)eαl1+Q(l2)eαl2). (3.1)

    Proof. By using exponentially tgs-convexity of Q, we have

    Q(x+y2)14(Q(x)eαx+Q(y)eαy). (3.2)

    Let x=ϑl1+(1ϑ)l2 and y=(1ϑ)l1+ϑl2, we get

    4Q(l1+l22)Q(ϑl1+(1ϑ)l2)eαQ(ϑl1+(1ϑ)l2)+Q(ϑl2+(1ϑ)l1)eα[(1ϑ)l1+ϑl2]. (3.3)

    If we multiply (3.3) by 1n!ϑn(1ϑ)ρn1 with ϑ(0,1),ρ>0 and then integrating the resulting estimate with respect to ϑ over [0,1], we find

    4n!Q(l1+l22)10ϑn(1ϑ)ρn1dϑ
    1n!10ϑn(1ϑ)ρn1Q(ϑl1+(1ϑ)l2)eαQ(ϑl1+(1ϑ)l2)dϑ
    +1n!10ϑn(1ϑ)ρn1Q(ϑl2+(1ϑ)l1)eα[(1ϑ)l1+ϑl2]dϑ
    =I1+I2 (3.4)

    By setting u=ϑl1+(1ϑ)l2, we have

    I1=1n!10ϑn(1ϑ)ρn1Q(ϑl1+(1ϑ)l2)eαQ(ϑl1+(1ϑ)l2)dϑ
    =1n!(l2l1)ρl2l1(l21)n(ul1)ρm1Q(u)eαudu
    =1(l2l1)ρJρl+1Q(l2)eαl2. (3.5)

    Analogously, by setting v=ϑl2+(1ϑ)l1, we have

    I2=1n!10ϑn(1ϑ)ρn1Q(ϑl2+(1ϑ)l1)dϑ
    =1n!(l2l1)ρl2l1(vl1)n(l2v)ρn1Q(v)eαvdv
    =1(l2l1)ρJρl2Q(l1)eαl1. (3.6)

    Thus by using (3.5) and (3.6) in (3.4), we get the first inequality of (3.1).

    Consider

    Q(ϑl1+(1ϑ)l2)ϑ(1ϑ)(Q(l1)eαl1+Q(l2)eαl2)

    and

    Q(ϑl2+(1ϑ)l1)ϑ(1ϑ)(Q(l1)eαl1+Q(l2)eαl2).

    By adding

    Q(ϑl1+(1ϑ)l2)+Q(ϑl2+(1ϑ)l1)2ϑ(1ϑ)(Q(l1)eαl1+Q(l2)eαl2). (3.7)

    If we multiply (3.7) by 1n!ϑn(1ϑ)ρn1 with ϑ(0,1),ρ>0 and then integrating the resulting inequality with respect to ϑ over [0,1], we get

    1(l2l1)ρ[Jρl+1Q(l2)eαl2+Jρl2Q(l1)eαl1]
    2(n+1)Γ(ρn+1)Γ(ρ+3)(Q(l1)eαl1+Q(l2)eαl2), (3.8)

    which is the required result.

    Some special cases of above theorem are stated as follows:

    Corollary 3.1. Choosing α=0, then Theorem 3.1 reduces to a new result

    4Γ(ρn)Γ(ρ+1)Q(l1+l22)
    1(l2l1)ρ[Jρl+1Q(l2)+Jρl2Q(l1)]
    2(n+1)Γ(ρn+1)Γ(ρ+3)(Q(l1)+Q(l2)).

    Remark 3.1. Choosing ρ=n+1 and α=0, then Theorem 3.1 reduces to Theorem 3.1 in [19].

    Our next result is the following lemma which plays a dominating role in proving our coming results.

    Lemma 4.1. For ρ(n,n+1]) with ρ>0 and let Q:IRR be differentiable function on I(interior of I) with l1<l2 such that QL1([l1,l2]), then the following inequality holds:

    B(n+1,ρn)(Q(l1)+Q(l2)2)n!2(l2l1)ρ[Jρl+1Q(l2)+Jρl2Q(l1)]
    =10(B1u(n+1,ρn)Bu(n+1,ρn))Q(ϑl1+(1ϑ)l2)dϑ. (4.1)

    Proof. It suffices that

    10(B1u(n+1,ρn)Bu(n+1,ρn))Q(ϑl1+(1ϑ)l2)dϑ
    =10B1u(n+1,ρn)Q(ϑl1+(1ϑ)l2)dϑ
    10Bu(n+1,ρn)Q(ϑl1+(1ϑ)l2)dϑ
    =S1S2 (4.2)

    Then by integration by parts, we have

    S1=10B1u(n+1,ρn)Q(ϑl1+(1ϑ)l2)dϑ
    =10(1u0vn(1v)ρn1dv)Q(ϑl1+(1ϑ)l2)dϑ
    =1l2l1B(n+1,ρn)Q(l2)
    1l2l110(1u)nuρn1Q(ϑl1+(1ϑ)l2)dϑ
    =1l2l1B(n+1,ρn)Q(l2)
    1l2l1l1l2(l1zl1l2)n(zl2l1l2)ρn1Q(z)l1l2dz
    =1l2l1B(n+1,ρn)Q(l2)n!(l2l1)ρ+1Jρl2Q(l1). (4.3)

    Analogously

    S2=10Bu(n+1,ρn)Q(ϑl1+(1ϑ)l2)dϑ
    =10(u0vm(1v)ρn1dv)Q(ϑl1+(1ϑ)l2)dϑ
    =1l2l1B(n+1,ρn)Q(l1)
    +1l2l110(u)n(1u)ρn1Q(ϑl1+(1ϑ)l2)dϑ
    =1l2l1B(n+1,ρn)Q(l1)
    +1l2l1l1l2(zl2l1l2)n(l1zl1l2)ρn1Q(z)l1l2dz
    =1l2l1B(n+1,ρn)Q(l1)n!(l2l1)ρ+1Jρl+1Q(l2). (4.4)

    By substituting values of S1 and S2 in (4.2) and then If we multiply by l2l12, we get (4.1).

    For the sake of simplicity, we use the following notation:

    ΥQ(ρ;B;n;l1,l2)=B(n+1,ρn)(Q(l1)+Q(l2)2)n!2(l2l1)ρ[Jρl+1Q(l2)+Jρl2Q(l1)].

    Theorem 4.2. For ρ(n,n+1]) with ρ>0 and let Q:IRR be a differentiable function on I with l1<l2 such that QL1([l1,l2]). If | Q|r, with r1, is an exponentially tgs-convex function, then the following inequality holds:

    | ΥQ(ρ;B;n;l1,l2)|l2l12(B(n+1,ρn+1)B(n+1,ρn)+B(n+2,ρn))11r
    ×(eαrl2|Q(l1)|r+eαrl1|Q(l2)|r6eαrl1eαrl2)1r. (4.5)

    Proof. Utilizing exponentially tgs-convex function of | Q|r, Lemma 4.1 and Hölder's inequality, one obtains

    | ΥQ(ρ;B;n;l1,l2)|
    =| l2l1210(B1u(n+1,ρn)Bu(n+1,ρn))Q(ϑl1+(1ϑ)l2)dϑ|
    l2l12(10(B1u(n+1,ρn)Bu(n+1,ρn))dϑ)11r
    ×(10| Q(ϑl1+(1ϑ)l2)|rdϑ)1r
    l2l12(B(n+1,ρn+1)B(n+1,ρn)+B(n+2,ρn))11r
    ×(10ϑ(1ϑ)(| Q(l1)eαl1|r+| Q(l2)eαl2|r)dϑ)1r
    l2l12(B(n+1,ρn+1)B(n+1,ρn)+B(n+2,ρn))11r
    ×(eαrl2|Q(l1)|r+eαrl1|Q(l2)|r6eαrl1eαrl2)1r, (4.6)

    which is the required result.

    Theorem 4.3. For ρ(n,n+1] with ρ>0 and let Q:IRR be a differentiable function on I with l1<l2 such that QL1([l1,l2]). If |Q|r, with r,s>1 such that 1s+1r=1, is exponentially tgs-convex function, then the following inequality holds:

    | ΥQ(ρ;B;n;l1,l2)|l2l12(2120(1uuvn(1v)ρn1dv)sdu)1s
    ×(eαrl2|Q(l1)|r+eαrl1|Q(l2)|r6eαrl1eαrl2)1r. (4.7)

    Proof. Utilizing exponentially tgs-convex function of | Q|r and well-known Hölder inequality, one obtains

    | ΥQ(ρ;B;n;l1,l2)|
    =| l2l1210(B1u(n+1,ρn)Bu(n+1,ρn))Q(ϑl1+(1ϑ)l2)dϑ|
    l2l12(10| B1u(n+1,ρn)Bn(n+1,ρn)|sdϑ)1s
    ×(10| Q(ϑl1+(1ϑ)l2)|rdϑ)1r
    l2l12(120(B1u(n+1,ρn)Bu(n+1,ρn))sdu
    +112(Bu(n+1,ρn)B1u(n+1,ρn))sdu)1s(10ϑ(1ϑ)(| Q(l1)|reαrl1+| Q(l2)|qeαrl2)dϑ)1r
    =l2l12(120(1uuvn(1v)ρn1dv)sdv+112(u1uvn(1v)ρn1dv)sdv)1s
    ×(eαrl2|Q(l1)|r+eαrl1|Q(l2)|r6eαrl1eαrl2)1r
    =l2l12(2120(1uuvn(1v)ρn1dv)sdu)1s(eαrl2|Q(l1)|r+eαrl1|Q(l2)|r6eαrl1eαrl2)1r, (4.8)

    which is the required result.

    This section is devoted to proving some new generalizations for exponentially tgs-convex functions within the generalized conformable integral operator.

    Theorem 5.1. For ρ>0 and let Q:[l1,l2]RR be an exponentially tgs-convex function such that QL1[l1,l2], then the following inequality holds:

    4δρδQ(l1+l22)Γ(δ)(l2l1)ρδ[Jρ,δl+1Q(l2)eαl2+Jρ,δl2Q(l1)eαl1]
    1ρ[B(ρ+1ρ,δ)+B(ρ+2ρ,δ)](Q(l1)eαl1+Q(l2)eαl2). (5.1)

    Proof. Taking into account (3.3) and conducting product of (3.3) by (1ϑρρ)δ1ϑρ1 with ϑ(0,1),ρ>0 and then integrating the resulting estimate with respect to ϑ over [0,1], we find

    4Q(l1+l22)10(1ϑρρ)δ1ϑρ1dϑ
    10(1ϑρρ)δ1ϑρ1Q(ϑl1+(1ϑ)l2)eα(ϑl1+(1ϑ)l2)dϑ
    +10(1ϑρρ)δ1ϑρ1Q(ϑl2+(1ϑ)l1)eα(ϑl2+(1ϑ)l1)dϑ
    =R1+R2. (5.2)

    By making change of variable u=ϑl1+(1ϑ)l2, we have

    R1=10(1ϑρρ)δ1ϑρ1Q(ϑl1+(1ϑ)l2)eα(ϑl1+(1ϑ)l2)dϑ
    =l1l2(1(ul2l1l2)ρρ)δ1(ul2l1l2)ρ1Q(u)eαudul1l2
    =1(l2l1)ρδl2l1((l2l1)ρ(l2u)ρρ)δ1(l2u)ρ1Q(u)eαudu
    =Γ(δ(l2l1)ρδJρ,δl2Q(l1)eαl1. (5.3)

    Substituting v=ϑl2+(1ϑ)l1, we have

    R2=10(1ϑρρ)δ1ϑρ1Q(ϑl2+(1ϑ)l1)eα(ϑl2+(1ϑ)l1)dϑ
    =l1l2(1(vl1l2l1)ρρ)δ1(vl1l2l1)ρ1Q(v)eαvdul2l1
    =1(l2l1)ρδl2l1((l2l1)ρ(vl1)ρρ)δ1(vl1)ρ1Q(v)eαvdv
    =Γ(δ)(l2l1)ρQJρ,δl2Q(l2)eαl2. (5.4)

    Thus by using (5.2) and (5.3) in (5.4), we get the first inequality of (5.1).

    Consider

    Q(ϑl1+(1ϑ)l2)ϑ(1ϑ)(Q(l1)eαl1+Q(l2)eαl2)

    and

    Q(ϑl2+(1ϑ)l1)ϑ(1ϑ)(Q(l1)eαl1+Q(l2)eαl2).

    By adding

    Q(ϑl1+(1ϑ)l2)+Q(ϑl2+(1ϑ)l1)2ϑ(1ϑ)(Q(l1)eαl1+Q(l2)eαl2). (5.5)

    If we multiply (5.5) by (1ϑρρ)δ1ϑρ1 with ϑ(0,1),ρ>0 and then integrating the resulting estimate with respect to ϑ over [0,1], we get

    Γ(δ)(l2l1)ρδ[Jρ,δl+1Q(l2)eαl2+Jρ,δl2Q(l1)eαl1]
    1ρ[B(ρ+1ρ,δ)+B(ρ+2ρ,δ)](Q(l1)eαl1+Q(l2)eαl2), (5.6)

    the desired inequality is the right hand side of (5.1).

    Our main results depend on the following identity.

    Lemma 5.2. For ρ>0 and let Q:IRR be a differentiable function on (l1,l2) with l1<l2 such that QL1[l1,l2], then the following identity holds:

    (Q(l1)+Q(l2)2)ρδΓ(δ+1)2(l2l1)ρδ[Jρ,δl+1Q(l2)+Jρ,δl+2Q(l1)]
    =(l2l1)ρδ210[(1ϑρρ)δ(1(1ϑ)ρρ)δ]Q(ϑl1+(1ϑ)l2)dϑ. (5.7)

    Proof. It suffices that

    10[(1ϑρρ)δ(1(1ϑ)ρρ)δ]Q(ϑl1+(1ϑ)l2)dϑ
    =10(1ϑρρ)δQ(ϑl1+(1ϑ)l2)dϑ(1(1ϑ)ρρ)δQ(ϑl1+(1ϑ)l2)dϑ
    =M1M2. (5.8)

    Using integration by parts and making change of variable technique, we have

    M1=10(1ϑρρ)δQ(ϑl1+(1ϑ)l2)dϑ
    =1l1l2(1ϑρρ)δQ(ϑl1+(1ϑ)l2)dϑ|10
    +δl1l210(1ϑρρ)δ1ϑρ1Q(ϑl1+(1ϑ)l2)dϑ
    =Q(l2)(l2l1)ρδδl2l110(1ϑρρ)δ1ϑρ1Q(ϑl1+(1ϑ)l2)dϑ
    =Q(l2)(l2l1)ρδδΓ(δ)(l2l1)ρδ+1Jρ,δl2Q(l1)

    Analogously

    M2=10(1(1ϑ)ρρ)δQ(ϑl1+(1ϑ)l2)dϑ
    =1l1l2(1(1ϑ)ρρ)δQ(ϑl1+(1ϑ)l2)|10
    1l1l210Q(1(1ϑ)ρρ)δ1(1ϑ)ρ1Q(ϑl1+(1ϑ)l2)dϑ
    =Q(l1)(l2l1)ρδ+δl2l110(1(1ϑ)ρρ)δ1(1ϑ)ρ1Q(ϑl1+(1ϑ)l2)dϑ
    =Q(l1)(l2l1)ρδ+δΓ(δ)(l2l1)ρδ+1Jρ,δl+1Q(l2). (5.9)

    By substituting values of M1 and M2 in (5.8) and then conducting product on both sides by (l2l1)ρδ2, we get the desired result.

    Theorem 5.3. For ρ>0 and let Q:IRR be a differentiable function on I with l1<l2 such that QL1([l1,l2]). If | Q|r, with r1, is an exponentially tgs-convex function, then the following inequality holds

    |(Q(l1)+Q(l2)2)ρδΓ(δ+1)2(l2l1)ρδ[Jρ,δl+1Q(l2)+Jρ,δl+2Q(l1)]|
    (l2l1)ρδ2(1ρδ+1B(1ρ,δ+1)+1ρδ+2B(1ρ2,δ+1))11r(eαrl2|Q(l1)|r+eαrl1|Q(l2)|r6eαrl1eαrl2)1r. (5.10)

    Proof. Using exponentially tgs-convexity of | Q|r, Lemma 5.2, and the well-known Hölder inequality, we have

    |(Q(l1)+Q(l2)2)ρδΓ(δ+1)2(l2l1)ρδ[Jρ,δl+1Q(l2)+Jρ,δl+2Q(l1)]|
    =| (l2l1)ρδ210[(1ϑρρ)δ(1(1ϑ)ρρ)δ]Q(ϑl1+(1ϑ)l2)dϑ
    (l2l1)ρδ2(10[(1ϑρρ)δ(1(1ϑ)ρρ)δ]dϑ)11r
    ×(10| Q(ϑl1+(1ϑ)l2)|rdϑ)1r
    (l2l1)ρδ2(10(1ϑρρ)δdϑ10(1(1ϑ)ρρ)δdϑ)11r
    ×(10ϑ(1ϑ)(| Q(l1)|reαrl1+| Q(l2)|reαrl2)dϑ)1r
    =(l2l1)ρδ2(1ρδ+1B(1ρ,δ+1)+1ρδ+2B(1ρ2,δ+1))11r(eαrl2|Q(l1)|r+eαrl1|Q(l2)|r6eαrl1eαrl2)1r,

    the required result.

    Let l1,l2>0 with l1l2. Then the arithmetic mean A(l1,l2), harmonic mean H(l1,l2), logarithmic mean L(l1,l2) and n-th generalized logarithmic mean Ln(l1,l2) are defined by

    A(l1,l2)=l1+l22,
    G(l1,l2)=l1l2,
    L(l1,l2)=l2l1lnl2lnl1

    and

    Ln(l1,l2)=[ln+12ln+11(n+1)(l2l1)]1n(n0,1),

    respectively. Recently, the bivariate means have attracted the attention of many researchers [47,48,49,50,51,52,53,54,55,56,57,58] due to their are closely related to the special functions.

    In this section, we use our obtained results in section 5 to provide several novel inequalities involving the special bivariate means mentioned above.

    Proposition 6.1. Let l1,l2>0 with l2>l1. Then

    |A(l21,l22)12L33(l1,l2)|l2l1(6)1reα(l1+l2)[(eαl2l1)r+(eαl1l2)r]1r.

    Proof. Let ρ=δ=1 and Q(z)=z2. Then the desired result follows from Theorem 5.3.

    Proposition 6.2. Let l1,l2>0 with l2>l1. Then

    |H1(l21,l22)12L1(l1,l2)|l2l12(6)1reα(l1+l2)[(eαl2l22)r+(eαl1l21)r(l1l2)2r]1r.

    Proof. Let ρ=δ=1 and Q(z)=1z. Then the desired result follows from Theorem 5.3.

    Proposition 6.3. Let l1,l2>0 with l2>l1. Then

    |A(ln1,ln2)12Lnn(l1,l2)|(l2l1)|n|2[(eαl2ln11)r+(eαl1ln12)r6eαr(l1+l2)]1r.

    Proof. Let ρ=δ=1 and Q(z)=zn. Then the desired result follows from Theorem 5.3.

    In this paper, we proposed a novel technique with two different approaches for deriving several generalizations for an exponentially tgs-convex function that accelerates with a conformable integral operator. We have generalized the Hermite-Hadamard type inequalities for exponentially tgs-convex functions. By choosing different parametric values ρ and δ, we analyzed the convergence behavior of our proposed methods in form of corollaries. Another aspect is that to show the effectiveness of our novel generalizations, our results have potential applications in fractional integrodifferential and fractional Schrödinger equations. Numerical applications show that our findings are consistent and efficient. Finally, we remark that the framework of the conformable fractional integral operator, it is of interest to further our results to the framework of Riemann-Liouville, Hadamard and Katugampola fractional integral operators. Our ideas and the approach may lead to a lot of follow-up research.

    The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.

    The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11971142, 11701176, 11626101, 11601485).

    The authors declare no conflict of interest.



    [1] C. Zhao, W. Zheng, A review for aqueous electrochemical supercapacitors, Front. Energy Res., 3 (2015). https://doi.org/10.3389/fenrg.2015.00023 doi: 10.3389/fenrg.2015.00023
    [2] L. Lai, H. Yang, L. Wang, B. K. Teh, J. Zhong, H. Chou, et al., Preparation of supercapacitor electrodes through selection of graphene surface functionalities, ACS Nano, 6 (2012), 5941–5951. https://doi.org/10.1021/nn3008096 doi: 10.1021/nn3008096
    [3] E. Frackowiak, Carbon materials for supercapacitor application, Phys. Chem. Chem. Phys., 9 (2007), 1774. https://doi.org/10.1039/b618139m doi: 10.1039/b618139m
    [4] M. Inagaki, H. Konno, O. Tanaike, Carbon materials for electrochemical capacitors, J. Power Sources, 195 (2010), 7880–7903. https://doi.org/10.1016/j.jpowsour.2010.06.036 doi: 10.1016/j.jpowsour.2010.06.036
    [5] Z. S. Wu, W. Ren, D. W. Wang, F. Li, B. Liu, H. M. Cheng, High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors, ACS Nano, 4 (2010), 5835–5842. https://doi.org/10.1021/nn101754k doi: 10.1021/nn101754k
    [6] P. Forouzandeh, V. Kumaravel, S. C. Pillai, Electrode materials for supercapacitors: a review of recent advances, Catalysts, 10 (2020), 969. https://doi.org/10.3390/catal10090969 doi: 10.3390/catal10090969
    [7] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, et al., Supercapacitor devices based on graphene materials, J. Phys. Chem. C, 113 (2009), 13103–13107. https://doi.org/10.1021/jp902214f doi: 10.1021/jp902214f
    [8] Y. Shabangoli, M. S. Rahmanifar, A. Noori, M. F. El-Kady, R. B. Kaner, M. F. Mousavi, Nile blue functionalized graphene aerogel as a pseudocapacitive negative electrode material across the full pH range, ACS Nano, 13 (2019), 12567–12576. https://doi.org/10.1021/acsnano.9b03351 doi: 10.1021/acsnano.9b03351
    [9] H. Ma, D. Kong, Y. Xu, X. Xie, Y. Tao, Z. Xiao, et al., Disassembly-reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor, Small, 13 (2017), 1701026. https://doi.org/10.1002/smll.201701026 doi: 10.1002/smll.201701026
    [10] N. Syarif, T. A. Ivandini, W. Wibowo, Direct synthesis carbon/metal oxide composites for electrochemical capacitors electrode, Int. Trans. J. Eng. Manage. Appl. Sci. Technol., 3 (2012), 21–34. Available from: https://tuengr.com/V03/21-34.pdf.
    [11] L. L. Zhang, X. S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev., 38 (2009), 2520–2531. https://doi.org/10.1039/b813846j doi: 10.1039/b813846j
    [12] E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39 (2001), 937–950. https://doi.org/10.1016/S0008-6223(00)00183-4 doi: 10.1016/S0008-6223(00)00183-4
    [13] P. Simon, A. Burke, Nanostructured carbons: double-layer capacitance and more, Electrochem. Soc. Interface, 17 (2008), 38–43. https://doi.org/10.1149/2.F05081IF doi: 10.1149/2.F05081IF
    [14] E. Frackowiak, K. Metenier, V. Bertagna, F. Beguin, Supercapacitor electrodes from multiwalled carbon nanotubes, Appl. Phys. Lett., 77 (2000), 2421–2423. https://doi.org/10.1063/1.1290146 doi: 10.1063/1.1290146
    [15] M. Pumera, Graphene-based nanomaterials and their electrochemistry, Chem. Soc. Rev., 39 (2010), 4146–4157. https://doi.org/10.1039/c002690p doi: 10.1039/c002690p
    [16] Y. B. Tan, J. M. Lee, Graphene for supercapacitor applications, J. Mater. Chem. A, 1 (2013), 14814–14843. https://doi.org/10.1039/c3ta12193c doi: 10.1039/c3ta12193c
    [17] T. Y. Kim, G. Jung, S. Yoo, K. S. Suh, R. S. Ruoff, Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores, ACS Nano, 7 (2013), 6899–6905. https://doi.org/10.1021/nn402077v doi: 10.1021/nn402077v
    [18] V. C. Lokhande, A. C. Lokhande, C. D. Lokhande, J. H. Kim, T. Ji, Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers, J Alloys Compd., 682 (2016), 381–403. https://doi.org/10.1016/j.jallcom.2016.04.242 doi: 10.1016/j.jallcom.2016.04.242
    [19] J. Y. Hwang, M. F. El-Kady, Y. Wang, L. Wang, Y. Shao, K. Marsh, et al., Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage, Nano Energy, 18 (2015), 57–70. https://doi.org/10.1016/j.nanoen.2015.09.009 doi: 10.1016/j.nanoen.2015.09.009
    [20] D. Zhao, X. Guo, Y. Gao, F. Gao, An electrochemical capacitor electrode based on porous carbon spheres hybrided with polyaniline and nanoscale ruthenium oxide, ACS Appl. Mater. Interfaces, 4 (2012), 5583–5589. https://doi.org/10.1021/am301484s doi: 10.1021/am301484s
    [21] I. Acznik, K. Lota, A. Sierczynska, G. Lota, Carbon-supported manganese dioxide as electrode material for asymmetric electrochemical capacitors, Int. J. Electrochem. Sci., 9 (2014), 2518–2534. Available from: http://www.electrochemsci.org/papers/vol9/90502518.pdf.
    [22] S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide-MnO2 nanocomposites for supercapacitors, ACS Nano, 4 (2010), 2822–2830. https://doi.org/10.1021/nn901311t doi: 10.1021/nn901311t
    [23] J. G. Wang, F. Kang, B. Wei, Engineering of MnO2-based nanocomposites for high-performance supercapacitors, Prog. Mater. Sci., 74 (2015), 51–124. https://doi.org/10.1016/j.pmatsci.2015.04.003 doi: 10.1016/j.pmatsci.2015.04.003
    [24] D. D. Zhao, M. W. Xu, W. J. Zhou, J. Zhang, H. L. Li, Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route, Electrochim. Acta, 53 (2008), 2699–2705. https://doi.org/10.1016/j.electacta.2007.07.053 doi: 10.1016/j.electacta.2007.07.053
    [25] Y. Wang, Y. Xia, Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15, Electrochim. Acta, 51 (2006), 3223–3227. https://doi.org/10.1016/j.electacta.2005.09.013 doi: 10.1016/j.electacta.2005.09.013
    [26] B. Li, M. Zheng, H. Xue, H. Pang, High performance electrochemical capacitor materials focusing on nickel based materials, Inorg. Chem. Front., 3 (2016), 175–202. https://doi.org/10.1039/C5QI00187K doi: 10.1039/C5QI00187K
    [27] S. R. Ede, S. Anantharaj, K. T. Kumaran, S. Mishrab, S. Kundu, One step synthesis of Ni/Ni(OH)2 nano sheets (NSs) and their application in asymmetric supercapacitors, RSC Adv., 7 (2017), 5898–5911. https://doi.org/10.1039/C6RA26584G doi: 10.1039/C6RA26584G
    [28] H. Wang, H. S. Casalongue, Y. Liang, H. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials, J. Am. Chem. Soc., 132 (2010), 7472–7477. https://doi.org/10.1021/ja102267j doi: 10.1021/ja102267j
    [29] Q. T. Qu, L. L. Liu, Y. P. Wu, R. Holze, Electrochemical behavior of V2O5·0.6H2O nanoribbons in neutral aqueous electrolyte solution, Electrochim. Acta, 96 (2013), 8–12. https://doi.org/10.1016/j.electacta.2013.02.078 doi: 10.1016/j.electacta.2013.02.078
    [30] V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7 (2014), 1597. https://doi.org/10.1039/c3ee44164d doi: 10.1039/c3ee44164d
    [31] Y. Liu, J. Zhou, J. Tang, W. Tang, Three-dimensional, chemically bonded polypyrrole/bacterial cellulose/graphene composites for high-performance supercapacitors, Chem. Mater., 27 (2015), 7034–7041. https://doi.org/10.1021/acs.chemmater.5b03060 doi: 10.1021/acs.chemmater.5b03060
    [32] G. A. Snook, P. Kao, A. S. Best, Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources, 196 (2011), 1–12. https://doi.org/10.1016/j.jpowsour.2010.06.084 doi: 10.1016/j.jpowsour.2010.06.084
    [33] C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@Polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor, Nano Lett., 13 (2013), 2078–2085. https://doi.org/10.1021/nl400378j doi: 10.1021/nl400378j
    [34] Poonam, K. Sharma, A. Arora, S. K. Tripathi, Review of supercapacitors: materials and devices, J. Energy Storage, 21 (2019), 801–825. https://doi.org/10.1016/j.est.2019.01.010 doi: 10.1016/j.est.2019.01.010
    [35] M. Mastragostino, Conducting polymers as electrode materials in supercapacitors, Solid State Ionics, 148 (2002), 493–498. https://doi.org/10.1016/S0167-2738(02)00093-0 doi: 10.1016/S0167-2738(02)00093-0
    [36] K. Xie, B. Wei, Materials and structures for stretchable energy storage and conversion devices, Adv. Mater., 26 (2014), 3592–3617. https://doi.org/10.1002/adma.201305919 doi: 10.1002/adma.201305919
    [37] I. I. Karayalcin, The analytic hierarchy process: planning, priority setting, resource allocation, Eur. J. Oper. Res., 9 (1982), 97–98. https://doi.org/10.1016/0377-2217(82)90022-4 doi: 10.1016/0377-2217(82)90022-4
    [38] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956
    [39] T. L. Saaty, The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation (Decision Making Series), McGraw-Hill, (1980), 1–287.
    [40] M. K. Ghorabaee, E. K. Zavadskas, L. Olfat, Z. Turskis, Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS), Informatica, 26 (2015), 435–451. https://doi.org/10.15388/Informatica.2015.57 doi: 10.15388/Informatica.2015.57
    [41] J. L. Deng, Introduction to Grey system theory, J. Grey Syst., 1 (1989), 1–24.
    [42] T. C. Chang, S. J. Lin, Grey relation analysis of carbon dioxide emissions from industrial production and energy uses in Taiwan, J. Environ. Manage., 56 (1999), 247–257. https://doi.org/10.1006/jema.1999.0288 doi: 10.1006/jema.1999.0288
    [43] L. Li, X. Wang, S. Wang, Z. Cao, Z. Wu, H. Wang, et al., Activated carbon prepared from lignite as supercapacitor electrode materials, Electroanalysis, 28 (2016), 243–248. https://doi.org/10.1002/elan.201500532 doi: 10.1002/elan.201500532
    [44] M. Zhang, J. Cheng, L. Zhang, Y. Li, M. S. Chen, Y. Chen, et al., Activated carbon by one-step calcination of deoxygenated agar for high voltage lithium ion supercapacitor, ACS Sustain. Chem. Eng., 8 (2020), 3637–3643. https://doi.org/10.1021/acssuschemeng.9b06347 doi: 10.1021/acssuschemeng.9b06347
    [45] F. Cheng, X. Yang, S. Zhang, W. Lu, Boosting the supercapacitor performances of activated carbon with carbon nanomaterials, J. Power Sources, 450 (2020), 227678. https://doi.org/10.1016/j.jpowsour.2019.227678 doi: 10.1016/j.jpowsour.2019.227678
    [46] Y. J. Hsiao, L. Y. Lin, Efficient pore engineering in carbonized zeolitic imidazolate Framework-8 via chemical and physical methods as active materials for supercapacitors, J. Power Sources, 486 (2021), 229370. https://doi.org/10.1016/j.jpowsour.2020.229370 doi: 10.1016/j.jpowsour.2020.229370
    [47] Y. H. Chiu, L. Y. Lin, Effect of activating agents for producing activated carbon using a facile one-step synthesis with waste coffee grounds for symmetric supercapacitors, J. Taiwan Inst. Chem. Eng., 101 (2019), 177–185. https://doi.org/10.1016/j.jtice.2019.04.050 doi: 10.1016/j.jtice.2019.04.050
    [48] Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinyaa, L. C. Qin, Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density, Phys. Chem. Chem. Phys., 13 (2011), 17615. https://doi.org/10.1039/c1cp21910c doi: 10.1039/c1cp21910c
    [49] Q. Liu, J. Yang, X. Luo, Y. Miao, Y. Zhang, W. Xu, et al., Fabrication of a fibrous MnO2@MXene/CNT electrode for high-performance flexible supercapacitor, Ceram. Int., 46 (2020), 11874–11881. https://doi.org/10.1016/j.ceramint.2020.01.222 doi: 10.1016/j.ceramint.2020.01.222
    [50] H. Kim, B. N. Popov, Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method, J. Power Sources, 104 (2002), 52–61. https://doi.org/10.1016/S0378-7753(01)00903-X doi: 10.1016/S0378-7753(01)00903-X
    [51] S. Kong, K. Cheng, T. Ouyang, Y. Gao, K. Ye, G. Wang, et al., Facile electrodepositing processed of RuO2-graphene nanosheets-CNT composites as a binder-free electrode for electrochemical supercapacitors, Electrochim. Acta, 246 (2017), 433–442. https://doi.org/10.1016/j.electacta.2017.06.019 doi: 10.1016/j.electacta.2017.06.019
    [52] O. Ghodbane, J. L. Pascal, F. Favier, Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors, ACS Appl. Mater. Interfaces, 1 (2009), 1130–1139. https://doi.org/10.1021/am900094e doi: 10.1021/am900094e
    [53] J. Dong, G. Lu, F. Wu, C. Xu, X. Kang, Z. Cheng, Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors, Appl. Surf. Sci., 427 (2018), 986–993. https://doi.org/10.1016/j.apsusc.2017.07.291 doi: 10.1016/j.apsusc.2017.07.291
    [54] Z. Lu, Z. Chang, J. Liu, X. Sun, Stable ultrahigh specific capacitance of NiO nanorod arrays, Nano Res., 4 (2011), 658–665. https://doi.org/10.1007/s12274-011-0121-1 doi: 10.1007/s12274-011-0121-1
    [55] P. Liu, M. Yang, S. Zhou, Y. Huang, Y. Zhu, Hierarchical shell-core structures of concave spherical NiO nanospines@carbon for high performance supercapacitor electrodes, Electrochim. Acta, 294 (2019), 383–390. https://doi.org/10.1016/j.electacta.2018.10.112 doi: 10.1016/j.electacta.2018.10.112
    [56] C. S. Kwak, T. H. Ko, J. H. Lee, H. Y. Kim, B. S. Kim, Flexible transparent symmetric solid-state supercapacitors based on NiO-decorated nanofiber-based composite electrodes with excellent mechanical flexibility and cyclability, ACS Appl. Energy Mater., 3 (2020), 2394–2403. https://doi.org/10.1021/acsaem.9b02073 doi: 10.1021/acsaem.9b02073
    [57] A. Ray, A. Roy, S. Saha, M. Ghosh, S. R. Chowdhury, T. Maiyalagan, et al., Electrochemical energy storage properties of Ni-Mn-Oxide electrodes for advance asymmetric supercapacitor application, Langmuir, 35 (2019), 8257–8267. https://doi.org/10.1021/acs.langmuir.9b00955 doi: 10.1021/acs.langmuir.9b00955
    [58] P. Y. Lee, L. Y. Lin, Developing zeolitic imidazolate frameworks 67-derived fluorides using 2-methylimidazole and ammonia fluoride for energy storage and electrocatalysis, Energy, 239 (2022), 122129. https://doi.org/10.1016/j.energy.2021.122129 doi: 10.1016/j.energy.2021.122129
    [59] K. L. Chiu, L. Y. Lin, Applied potential-dependent performance of the nickel cobalt oxysulfide nanotube/nickel molybdenum oxide nanosheet core–shell structure in energy storage and oxygen evolution, J. Mater. Chem. A, 7 (2019), 4626–4639. https://doi.org/10.1039/C8TA11471D doi: 10.1039/C8TA11471D
    [60] H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, et al., Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials, Nat. Commun., 4 (2013), 1894. https://doi.org/10.1038/ncomms2932 doi: 10.1038/ncomms2932
    [61] Z. Xiao, P. Liu, J. Zhang, H. Qi, J. Liu, B. Li, et al., Pillar-coordinated strategy to modulate phase transfer of α-Ni(OH)2 for enhanced supercapacitor application, ACS Appl. Energy Mater., 3 (2020), 5628–5636. https://doi.org/10.1021/acsaem.0c00596 doi: 10.1021/acsaem.0c00596
    [62] T. Xia, X. Zhang, J. Zhao, Q. Li, C. Ao, R. Hu, et al., Flexible and conductive carbonized cotton fabrics coupled with a nanostructured Ni(OH)2 coating for high performance aqueous symmetric supercapacitors, ACS Sustainable Chem. Eng., 7 (2019), 5231–5239. https://doi.org/10.1021/acssuschemeng.8b06150 doi: 10.1021/acssuschemeng.8b06150
    [63] M. J. Deng, L. H. Yeh, Y. H. Lin, J. M. Chen, T. H. Chou, 3D network V2O5 electrodes in a gel electrolyte for high-voltage wearable symmetric pseudocapacitors, ACS Appl. Mater. Interfaces, 11 (2019), 29838–29848. https://doi.org/10.1021/acsami.9b07845 doi: 10.1021/acsami.9b07845
    [64] H. C. Chen, Y. C. Lin, Y. L. Chen, C. J. Chen, Facile fabrication of three-dimensional hierarchical nanoarchitectures of VO2/Graphene@NiS2 hybrid aerogel for high-performance all-solid-state asymmetric supercapacitors with ultrahigh energy density, ACS Appl. Energy Mater., 2 (2019), 459–467. https://doi.org/10.1021/acsaem.8b01486 doi: 10.1021/acsaem.8b01486
    [65] W. Bi, Y. Wu, C. Liu, J. Wang, Y. Du, G. Gao, et al., Gradient oxygen vacancies in V2O5/PEDOT nanocables for high-performance supercapacitors, ACS Appl. Energy Mater., 2 (2019), 668–677. https://doi.org/10.1021/acsaem.8b01676 doi: 10.1021/acsaem.8b01676
    [66] K. Wang, J. Huang, Z. Wei, Conducting polyaniline nanowire arrays for high performance supercapacitors, J. Phys. Chem. C, 114 (2010), 8062–8067. https://doi.org/10.1021/jp9113255 doi: 10.1021/jp9113255
    [67] C. C. Hu, K. H. Chang, M. C. Lin, Y. T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, Nano Lett., 6 (2006), 2690–2695. https://doi.org/10.1021/nl061576a doi: 10.1021/nl061576a
    [68] Y. Shi, L. Pan, B. Liu, Y. Wang, Y. Cui, Z. Bao, et al., Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes, J. Mater. Chem. A, 2 (2014), 6086–6091. https://doi.org/10.1039/C4TA00484A doi: 10.1039/C4TA00484A
    [69] P. Bober, N. Gavrilov, A. Kovalcik, M. Mičušík, C. Unterweger, I. A. Pašti, et al., Electrochemical properties of lignin/polypyrrole composites and their carbonized analogues, Mater. Chem. Phys., 213 (2018), 352–361. https://doi.org/10.1016/j.matchemphys.2018.04.043 doi: 10.1016/j.matchemphys.2018.04.043
    [70] F. Zhang, J. Tang, N. Shinya, L. C. Qin, Hybrid graphene electrodes for supercapacitors of high energy density, Chem. Phys. Lett., 584 (2013), 124–129. https://doi.org/10.1016/j.cplett.2013.08.021 doi: 10.1016/j.cplett.2013.08.021
    [71] H. Wang, H. Yi, X. Chen, X. Wang, Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance, J. Mater. Chem. A, 2 (2014), 3223–3230. https://doi.org/10.1039/C3TA15046A doi: 10.1039/C3TA15046A
    [72] S. D. Perera, B. Patel, N. Nijem, K. Roodenko, O. Seitz, J. P. Ferraris, et al., Vanadium oxide nanowire-carbon nanotube binder-free flexible electrodes for supercapacitors, Adv. Energy Mater., 1 (2011), 936–945. https://doi.org/10.1002/aenm.201100221 doi: 10.1002/aenm.201100221
    [73] L. Hu, N. Yan, Q. Chen, P. Zhang, H. Zhong, X. Zheng, et al., Fabrication based on the kirkendall effect of Co3O4 porous nanocages with extraordinarily high capacity for lithium storage, Chem. - A Eur. J., 18 (2012), 8971–8977. https://doi.org/10.1002/chem.201200770 doi: 10.1002/chem.201200770
    [74] Y. Yang, Y. Xi, J. Li, G. Wei, N. I. Klyui, W. Han, Flexible supercapacitors based on polyaniline arrays coated graphene aerogel electrodes, Nanoscale Res. Lett., 12 (2017), 394. https://doi.org/10.1186/s11671-017-2159-9 doi: 10.1186/s11671-017-2159-9
    [75] J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, et al., Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors, J. Power Sources, 195 (2010), 3041–3045. https://doi.org/10.1016/j.jpowsour.2009.11.028 doi: 10.1016/j.jpowsour.2009.11.028
    [76] J. Jaidev, S. Ramaprabhu, Poly(p-phenylenediamine)/graphene nanocomposites for supercapacitor applications, J. Mater. Chem., 22 (2012), 18775–18783. https://doi.org/10.1039/C2JM33627H doi: 10.1039/C2JM33627H
    [77] M. S. Nam, U. Patil, B. Park, H. B. Sim, S. C. Jun, A binder free synthesis of 1D PANI and 2D MoS2 nanostructured hybrid composite electrodes by the electrophoretic deposition (EPD) method for supercapacitor application, RSC Adv., 6 (2016), 101592–101601. https://doi.org/10.1039/C6RA16078F doi: 10.1039/C6RA16078F
    [78] Y. Liu, B. Zhang, Y. Yang, Z. Chang, Z. Wen, Y. Wu, Polypyrrole-coated α-MoO3 nanobelts with good electrochemical performance as anode materials for aqueous supercapacitors, J. Mater. Chem. A, 1 (2013), 13582. https://doi.org/10.1039/c3ta12902k doi: 10.1039/c3ta12902k
    [79] R. P. Raj, P. Ragupathy, S. Mohan, Remarkable capacitive behavior of a Co3O4–polyindole composite as electrode material for supercapacitor applications, J. Mater. Chem. A, 3 (2015), 24338–24348. https://doi.org/10.1039/C5TA07046E doi: 10.1039/C5TA07046E
    [80] Z. S. Iro, C. Subramani, S. S. Dash, A brief review on electrode materials for supercapacitor, Int. J. Electrochem. Sci., 11 (2016), 10628–10643. https://doi.org/10.20964/2016.12.50 doi: 10.20964/2016.12.50
    [81] A. M. Al-Syadi, Electrochemical performance of Na2O–Li2O–P2S5–V2S5 glass–ceramic nanocomposites as electrodes for supercapacitors, Appl. Phys. A, 127 (2021), 755. https://doi.org/10.1007/s00339-021-04899-7 doi: 10.1007/s00339-021-04899-7
    [82] A. M. Al-Syadi, M. S. Al-Assiri, H. M. A. Hassan, G. E. Enany, M. M. El-Desoky, Effect of sulfur addition on the electrochemical performance of lithium‑vanadium-phosphate glasses as electrodes for energy storage devices, J. Electroanal. Chem., 804 (2017), 36–41. https://doi.org/10.1016/j.jelechem.2017.09.041 doi: 10.1016/j.jelechem.2017.09.041
    [83] M. M. El-Desoky, A. M. Al-Syadi, M. S. Al-Assiri, H. M. A. Hassan, G. E. Enany, Electrochemical performance of novel Li3V2(PO4)3 glass-ceramic nanocomposites as electrodes for energy storage devices, J. Solid State Electrochem., 20 (2016), 2663–2671. https://doi.org/10.1007/s10008-016-3267-7 doi: 10.1007/s10008-016-3267-7
    [84] M. M. El-Desoky, A. M. Al-Syadi, M. S. Al-Assiri, H. M. A. Hassan, Effect of sulfur addition and nanocrystallization on the transport properties of lithium–vanadium–phosphate glasses, J. Mater. Sci. Mater. Electron., 29 (2018), 968–977. https://doi.org/10.1007/s10854-017-7994-z doi: 10.1007/s10854-017-7994-z
  • This article has been cited by:

    1. Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu, Some New (p1p2,q1q2)-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity, 2020, 5, 2473-6988, 7122, 10.3934/math.2020456
    2. Thabet Abdeljawad, Saima Rashid, A. A. El-Deeb, Zakia Hammouch, Yu-Ming Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, 2020, 2020, 1687-1847, 10.1186/s13662-020-02935-z
    3. Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, İmdat İşcan, Yu-Ming Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02955-9
    4. Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451
    5. Shuang-Shuang Zhou, Saima Rashid, Saima Parveen, Ahmet Ocak Akdemir, Zakia Hammouch, New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators, 2021, 6, 2473-6988, 4507, 10.3934/math.2021267
    6. Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441
    7. Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, 2020, 5, 2473-6988, 6479, 10.3934/math.2020418
    8. Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Zakia Hammouch, Yu-Ming Chu, New fractional approaches for n-polynomial P-convexity with applications in special function theory, 2020, 2020, 1687-1847, 10.1186/s13662-020-03000-5
    9. Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03036-7
    10. Shyam S. Santra, Omar Bazighifan, Hijaz Ahmad, Yu-Ming Chu, Fateh Mebarek-Oudina, Second-Order Differential Equation: Oscillation Theorems and Applications, 2020, 2020, 1563-5147, 1, 10.1155/2020/8820066
    11. Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y
    12. Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, 2020, 5, 2473-6988, 6404, 10.3934/math.2020412
    13. Artion Kashuri, Sajid Iqbal, Saad Ihsan Butt, Jamshed Nasir, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Basil K. Papadopoulos, Trapezium-Type Inequalities for k -Fractional Integral via New Exponential-Type Convexity and Their Applications, 2020, 2020, 2314-4785, 1, 10.1155/2020/8672710
    14. Maysaa Al Qurashi, Saima Rashid, Sobia Sultana, Hijaz Ahmad, Khaled A. Gepreel, New formulation for discrete dynamical type inequalities via h-discrete fractional operator pertaining to nonsingular kernel, 2021, 18, 1551-0018, 1794, 10.3934/mbe.2021093
    15. Yu‐ming Chu, Saima Rashid, Jagdev Singh, A novel comprehensive analysis on generalized harmonically ψ ‐convex with respect to Raina's function on fractal set with applications , 2021, 0170-4214, 10.1002/mma.7346
    16. Chahn Yong Jung, Ghulam Farid, Hafsa Yasmeen, Yu-Pei Lv, Josip Pečarić, Refinements of some fractional integral inequalities for refined (α,hm)-convex function, 2021, 2021, 1687-1847, 10.1186/s13662-021-03544-0
    17. Mubashir Qayyum, Efaza Ahmad, Sidra Afzal, Tanveer Sajid, Wasim Jamshed, Awad Musa, El Sayed M. Tag El Din, Amjad Iqbal, Fractional analysis of unsteady squeezing flow of Casson fluid via homotopy perturbation method, 2022, 12, 2045-2322, 10.1038/s41598-022-23239-0
    18. Saima Rashid, Aasma Khalid, Omar Bazighifan, Georgia Irina Oros, New Modifications of Integral Inequalities via ℘-Convexity Pertaining to Fractional Calculus and Their Applications, 2021, 9, 2227-7390, 1753, 10.3390/math9151753
    19. Ahmed A. El‐Deeb, Novel dynamic Hardy‐type inequalities on time scales, 2023, 46, 0170-4214, 5299, 10.1002/mma.8834
    20. Ahmed A. El-Deeb, Dumitru Baleanu, Nehad Ali Shah, Ahmed Abdeldaim, On some dynamic inequalities of Hilbert's-type on time scales, 2023, 8, 2473-6988, 3378, 10.3934/math.2023174
    21. Naqash Sarfraz, Muhammad Aslam, Mir Zaman, Fahd Jarad, Estimates for p-adic fractional integral operator and its commutators on p-adic Morrey–Herz spaces, 2022, 2022, 1029-242X, 10.1186/s13660-022-02829-6
    22. Wei Liu, Fangfang Shi, Guoju Ye, Dafang Zhao, Some inequalities for cr-log-h-convex functions, 2022, 2022, 1029-242X, 10.1186/s13660-022-02900-2
    23. JIAN-GEN LIU, XIAO-JUN YANG, YI-YING FENG, LU-LU GENG, ON THE GENERALIZED WEIGHTED CAPUTO-TYPE DIFFERENTIAL OPERATOR, 2022, 30, 0218-348X, 10.1142/S0218348X22500323
    24. Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus, 2021, 9, 2227-7390, 1338, 10.3390/math9121338
    25. Shasha Li, Ghulam Farid, Atiq Ur Rehman, Hafsa Yasmeen, Ahmet Ocak Akdemir, Fractional Versions of Hadamard-Type Inequalities for Strongly Exponentially α , h − m -Convex Functions, 2021, 2021, 2314-4785, 1, 10.1155/2021/2555974
    26. Ahmed A. El-Deeb, On dynamic inequalities in two independent variables on time scales and their applications for boundary value problems, 2022, 2022, 1687-2770, 10.1186/s13661-022-01636-8
    27. Artion Kashuri, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Tariq, Ahmed A. Hamoud, Homan Emadifar, Faraidun K. Hamasalh, Nedal M. Mohammed, Masoumeh Khademi, Guotao Wang, Integral Inequalities of Integer and Fractional Orders for n –Polynomial Harmonically t g s –Convex Functions and Their Applications, 2022, 2022, 2314-4785, 1, 10.1155/2022/2493944
    28. MAYSAA AL-QURASHI, SAIMA RASHID, YELIZ KARACA, ZAKIA HAMMOUCH, DUMITRU BALEANU, YU-MING CHU, ACHIEVING MORE PRECISE BOUNDS BASED ON DOUBLE AND TRIPLE INTEGRAL AS PROPOSED BY GENERALIZED PROPORTIONAL FRACTIONAL OPERATORS IN THE HILFER SENSE, 2021, 29, 0218-348X, 2140027, 10.1142/S0218348X21400272
    29. Saima Rashid, Zakia Hammouch, Rehana Ashraf, Yu-Ming Chu, New Computation of Unified Bounds via a More General Fractional Operator Using Generalized Mittag–Leffler Function in the Kernel, 2021, 126, 1526-1506, 359, 10.32604/cmes.2021.011782
    30. YunPeng Chang, LiangJuan Yu, LinQi Sun, HuangZhi Xia, LlogL
    Type Estimates for Commutators of Fractional Integral Operators on the p-Adic Vector Space, 2024, 18, 1661-8254, 10.1007/s11785-024-01514-4
    31. Fangfang Shi, Guoju Ye, Wei Liu, Dafang Zhao, A class of nonconvex fuzzy optimization problems under granular differentiability concept, 2023, 211, 03784754, 430, 10.1016/j.matcom.2023.04.021
    32. Amit Prakash, Vijay Verma, Dumitru Baleanu, Two Novel Methods for Fractional Nonlinear Whitham–Broer–Kaup Equations Arising in Shallow Water, 2023, 9, 2349-5103, 10.1007/s40819-023-01497-4
    33. Umair Manzoor, Hassan Waqas, Taseer Muhammad, Hamzah Naeem, Ahmed Alshehri, Characteristics of hybrid nanofluid induced by curved surface with the consequences of thermal radiation: an entropy optimization, 2023, 1745-5030, 1, 10.1080/17455030.2023.2226251
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(12169) PDF downloads(63) Cited by(2)

Figures and Tables

Figures(4)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog