Research article Special Issues

Note on r-central Lah numbers and r-central Lah-Bell numbers

  • The r-Lah numbers generalize the Lah numbers to the r-Stirling numbers in the same sense. The Stirling numbers and the central factorial numbers are one of the important tools in enumerative combinatorics. The r-Lah number counts the number of partitions of a set with n+r elements into k+r ordered blocks such that r distinguished elements have to be in distinct ordered blocks. In this paper, the r-central Lah numbers and the r-central Lah-Bell numbers (rN) are introduced parallel to the r-extended central factorial numbers of the second kind and r-extended central Bell polynomials. In addition, some identities related to these numbers including the generating functions, explicit formulas, binomial convolutions are derived. Moreover, the r-central Lah numbers and the r-central Lah-Bell numbers are shown to be represented by Riemann integral, respectively.

    Citation: Hye Kyung Kim. Note on r-central Lah numbers and r-central Lah-Bell numbers[J]. AIMS Mathematics, 2022, 7(2): 2929-2939. doi: 10.3934/math.2022161

    Related Papers:

    [1] Jongkyum Kwon, Patcharee Wongsason, Yunjae Kim, Dojin Kim . Representations of modified type 2 degenerate poly-Bernoulli polynomials. AIMS Mathematics, 2022, 7(6): 11443-11463. doi: 10.3934/math.2022638
    [2] Aimin Xu . Some identities involving derangement polynomials and r-Bell polynomials. AIMS Mathematics, 2024, 9(1): 2051-2062. doi: 10.3934/math.2024102
    [3] Taekyun Kim, Dae San Kim, Dmitry V. Dolgy, Hye Kyung Kim, Hyunseok Lee . A new approach to Bell and poly-Bell numbers and polynomials. AIMS Mathematics, 2022, 7(3): 4004-4016. doi: 10.3934/math.2022221
    [4] Hye Kyung Kim, Dmitry V. Dolgy . Degenerate Catalan-Daehee numbers and polynomials of order r arising from degenerate umbral calculus. AIMS Mathematics, 2022, 7(3): 3845-3865. doi: 10.3934/math.2022213
    [5] Aimin Xu . Some identities connecting Stirling numbers, central factorial numbers and higher-order Bernoulli polynomials. AIMS Mathematics, 2025, 10(2): 3197-3206. doi: 10.3934/math.2025148
    [6] Feng Qi, Da-Wei Niu, Bai-Ni Guo . Simplifying coefficients in differential equations associated with higher order Bernoulli numbers of the second kind. AIMS Mathematics, 2019, 4(2): 170-175. doi: 10.3934/math.2019.2.170
    [7] Taekyun Kim, Dae San Kim, Jin-Woo Park . Degenerate r-truncated Stirling numbers. AIMS Mathematics, 2023, 8(11): 25957-25965. doi: 10.3934/math.20231322
    [8] Taekyun Kim, Dae San Kim, Hyunseok Lee, Lee-Chae Jang . A note on degenerate derangement polynomials and numbers. AIMS Mathematics, 2021, 6(6): 6469-6481. doi: 10.3934/math.2021380
    [9] S. Santhiya, K. Thilagavathi . Geometric properties of holomorphic functions involving generalized distribution with bell number. AIMS Mathematics, 2023, 8(4): 8018-8026. doi: 10.3934/math.2023405
    [10] Rashid Farooq, Laiba Mudusar . Non-self-centrality number of some molecular graphs. AIMS Mathematics, 2021, 6(8): 8342-8351. doi: 10.3934/math.2021483
  • The r-Lah numbers generalize the Lah numbers to the r-Stirling numbers in the same sense. The Stirling numbers and the central factorial numbers are one of the important tools in enumerative combinatorics. The r-Lah number counts the number of partitions of a set with n+r elements into k+r ordered blocks such that r distinguished elements have to be in distinct ordered blocks. In this paper, the r-central Lah numbers and the r-central Lah-Bell numbers (rN) are introduced parallel to the r-extended central factorial numbers of the second kind and r-extended central Bell polynomials. In addition, some identities related to these numbers including the generating functions, explicit formulas, binomial convolutions are derived. Moreover, the r-central Lah numbers and the r-central Lah-Bell numbers are shown to be represented by Riemann integral, respectively.



    For nk0, the Stirling numbers of the second kind S2(n,k) can be interpreted as the number of ways to partition a set with n elements into k non-empty subsets [7,19] and the n-th Bell number Bn(n0) as the number of ways to partition a set with n elements into non-empty subsets.

    As is known, the n-th Bell polynomial possess the following explicit formula and generating function

    Bn(x)=nk=0S2(n,k)xk,andex(et1)=n=0Bn(x)tnn!,(n0) (see [7,22,26]), (1.1)

    respectively.

    It is well-known that

    (1t)m=l=0(ml)(1)ltl=l=0<m>ltll!, (see [7]), (1.2)

    where <x>n=x(x+1)(x+2)(x+n1),  (n1) and <x>0=1.

    The central factorial numbers of the second kind T(n,k) are the coefficients in the expansion of xn in terms of central factorials given by

    xn=nk=0T(n,k)x[k],(nk0), (see [26]), (1.3)

    where x[n]=x(x+n21)(x+n22)(xn2+1),  (n1) and x[0]=1. From (1.3), it is easy to see that the generating function of T(n,k) is

    1k!(et2et2)k=n=kT(n,k)tnn!, (see [15, 17, 26]), (1.4)

    where k0.

    Throughout this section, let n,kN{0} with nk0 and rN.

    The r-Stirling numbers S(r)2(n,k) of the second kind are defined by the generating function

    1k!(et1)kert=n=kS(r)2(n+r,k+r)tnn!, (see [3]).

    and the r-Stirling numbers enumerate the numbers of partitions of the set {1,2,,n} into k nonempty disjoint subsets in such a way that 1,2,,r are in distinct subsets. The generating function of r-Bell polynomials B(r)n(x)=nk=1S(r)2(n,k) is given by

    ertex(et1)=n=0B(r)n(x)tnn!, (see [3]).

    In particular, when x=1, B(c,r)n=B(c,r)n(1), which are called the r-extended Bell numbers.

    Kim et al. [10] introduced the r-extended central factorial numbers of the second kind given by

    1k!ert(et2et2)k=n=kTr(n+r,k+r)tnn!,(k0) (1.5)

    and the r-extended central Bell polynomials B(c,r)n(x) given by

    ex(et2et2+rt)=n=0B(c,r)n(x)tnn!(rN0).

    The unsigned Lah-number L(n,k) counts the number of partitions of a set with n elements into k ordered blocks with no box left empty. Lah-numbers are rarely called Stirling numbers of the third kind. It is well known that the Lah number L(n,k) respectively possess the following explicit formula and generating function

    L(n,k)=n!k!(n1k1), (see [11,14,18]), (1.6)

    and

    1k!(t1t)k=n=kL(n,k)tnn!, (see [11,14,18]). (1.7)

    The r-Lah number Lr(n,k) counts the number of partitions of a set with n+r elements into k+r ordered blocks such that r distinguished elements have to be in distinct ordered blocks and Lr(n,k) respectively possess the following explicit formula and generating function

    Lr(n,k)=(n+2r1k+2r1)n!k! (k0),(see [14,15,23,24]), (1.8)

    and

    1k!(t1t)k(11t)2r=n=kLr(n,k)tnn!,(k0),(see [14,15,23,24]). (1.9)

    Kim-Kim introduced the r-extended Lah-Bell polynomials given by the generating function

    (11t)2rex(11t1)=n=kBLr,n(x)tnn!, (k0),(see [16]). (1.10)

    When x=1, BLn=BLn(1) and BLr,n=BLr,n(1), which are called the Lah-Bell numbers and r-extended Lah-Bell numbers, respectively.

    Recently, H. K. Kim introduced the central Lah numbers L(C)(n,k) and the central Lah-Bell numbers LB(C)n by means of the following generating functions

    1k!(2(12t12+t))k=n=kL(C)(n,k)tnn!, (see [13]), (1.11)

    and

    exp(2(12t12+t))=n=0LB(C)ntnn!, (see [13]), (1.12)

    respectively. Where LB(c)n=nk=0L(C)(n,k).

    Let f be a non-negative real-valued function on interval [a,b], and let R={(x,y)|axb,  0<y<f(x)} be the region of the plane under f(x) and above interval [a,b]. The Riemann integral

    baf(x) dx=limmaxxk0nk=1f(xk)xk

    is approximations for the area of R, where xk=(ba)kn and xk=(ba)k2n.

    The central factorials have been introduced and studied by Steffensen [27]. The central factorial numbers are at least as important as Stirling numbers, and often appear in their properties and applications to difference calculus, spline theory, and to approximation theory, etc [1,2,4,5,6,9,10,12,13,17,16]. Moreover, the Lah numbers appear in various fields of mathematics such as non-crossing partitions, Dyck paths, q-analogues as well as falling and rising factorials [7,8,10,13,14,16,18,20,21,23,25]. Recently, H.K. Kim introduced and studied the central Lah numbers and the central Lah-Bell numbers. In this paper, we consider the r-central Lah numbers and the r-central Lah-Bell numbers (rN), which generalize the central Lah numbers and the central Lah-Bell numbers. We derive the generating function, explicit formulas, binomial convolutions, and Riemann integral representations of the r-central Lah numbers and the r-central Lah-Bell numbers, respectively.

    In this section, we introduce the r-central Lah numbers and the r-central Lah-Bell numbers, respectively, which are "central" analogues for r-extended central factorial numbers of the second kind and r-extended central Bell polynomials. We investigate some properties of these numbers.

    Now, in view of (1.5) and (1.11), we introduce the following generating function that defines the r-central Lah numbers L(C)r(n,k)

    1k!(2(12t12+t))k(11t)2r=n=kL(C)r(n,k)tnn!,  (rN). (2.1)

    Theorem 1. For nk0, an explicit formula of the r-central Lah-numbers L(C)r(n,k) is

    L(C)r(n,k)=nm=kmq=iki=0(nm)(1)ki+mq2m<2r>nmL(q,i)L(mq,ki),

    where L(0,0)=1,L(n,0)=0, and L(n,k)=0 for all k>n.

    Proof. We observe that from (1.2), (1.11) and (2.1),

    n=kL(C)r(n,k)tnn!=n=kL(C)(n,k)tnn!(1t1)2r=1k!(12t112t12t1(12t))k(1t1)2r=1k!ki=0(ki)(12t112t)i(1)ki(12t1(12t))ki(1t1)2r=ki=0(1)ki1i!(12t112t)i1(ki)!(12t1(12t))ki(1t1)2r=ki=0(1)kiq=iL(q,i)(12t)qq!l=kiL(l,ki)(12t)ll!j=0<2r>jtjj!=ki=0(m=kmq=i(1)ki+mq2mL(q,i)L(mq,ki))tmm!j=0<2r>jtjj!=n=k(nm=kmq=iki=0(nm)(1)ki+mq2m<2r>nmL(q,i)L(mq,ki))tnn!. (2.2)

    By comparing the coefficients of both side of (2.2), we obtain the desired result.

    Theorem 2. For nk0, we have

    L(C)r(n,k)=nl=k(nl)<2r>nlL(C)(l,k),

    where L(C)(n,k) are the central Lah-numbers.

    Proof. From (1.2), (1.11) and (2.1), we observe that

    n=kL(C)r(n,k)tnn!=1k!(2(12t12+t))k(11t)2r=l=kL(C)(l,k)tll!m=0<2r>mtmm!=n=k(nl=k(nl)L(C)(l,k)<2r>nl)tnn!. (2.3)

    By comparing the coefficients of both sides of (2.3), we get the desired result.

    In view of (1.1), we define the r-central Lah-Bell polynomials LB(C)n,r(x) by

    LB(C)n,r(x)=nk=0L(C)r(n,k)xk,(n0), (2.4)

    when x=1, LB(C)n,r(1):=LB(C)n,r are the central r-Lah-Bell numbers.

    Theorem 3. For nk0, the generating function of the r-central Lah-Bell polynomials is

    exp(2x(12t12+t))(11t)2r=n=0LB(C)n,r(x)tnn!.

    Proof. From (2.1) and (2.4), we have

    n=0LB(C)n,r(x)tnn!=n=0(nk=0L(C)r(n,k)xk)tnn!=k=0xk(n=kL(C)r(n,k))tnn!=k=01k!(2(12t12+t))kxk(11t)2r=exp(2x(12t12+t))(11t)2r. (2.5)

    By (2.5), we get the desired result.

    Corollary 4. The generating function of the r-central Lah-Bell numbers LB(C)n,r is

    exp(2(12t12+t))(11t)2r=n=0LB(C)n,rtnn!.

    Lemma 5. For nk0, we have

    L(C)r(n,k)=1k!kj=0nl=0nld=0(kj)(nl)(nld)(1)j+nld2ln<j>nld<kj>d<2r>l.

    Proof. From (1.2) and (2.1), we observe that

    n=0L(C)r(n,k)tnn!=1k!(2(12t12+t))k(11t)2r=1k!2kkj=0(kj)(1)j(12+t)j(12t)kjl=0<2r>ltll!=1k!kj=0(kj)(1)jc=0<j>c(t2)cc!d=0<kj>d(t2)dd!l=0<2r>ltll!=1k!kj=0(kj)(1)jh=0hd=0(hd)2h(1)hd<j>hd<kj>dthh!l=0<2r>ltll!=1k!n=0(kj=0nl=0nld=0(kj)(nl)(nld)(1)j+nld2ln<j>nld<kj>d<2r>l)tnn!. (2.6)

    By comparing the coefficients of both side of (2.6), we have desired result.

    Theorem 6. For nk0, we have

    L(C)r(n,k)=2(n!)k!πImπ02k(12eiθ12+eiθ)k(11eiθ)2rsinnθdθ.

    Proof. For kj0,

    By using Lemma 5, we obtain

    1k!Imπ02k(12eiθ12+eiθ)k(11eiθ)2rsinnθdθ=1k!kj=0(kj)(1)jImπ02k(12+eiθ)j(12eiθ)kj(11eiθ)2rsinnθdθ=1k!kj=0(kj)(1)jImπ02k(121+eiθ2)j(121eiθ2)kj(11eiθ)2rsinnθdθ=1k!kj=0(kj)(1)jImπ0h=0hd=0(hd)(1)hd2h<j>hd<kj>d(eiθ)hh!×l=0<2r>l(eiθ)ll!sinnθdθ=1k!kj=0(kj)(1)jm=0ml=0mld=0(ml)(mld)2lm(1)mld×<j>mld<kj>d<2r>l1m!Imπ0sinmθsinnθdθ=1k!kj=0nl=0nld=0(kj)(nl)(nld)(1)j+nld2ln<j>nld<kj>d<2r>l1n!π2=L(C)r(n,k)1n!π2. (2.7)

    From (2.7), we have desired result.

    Theorem 7. For n1, we have

    LB(C)n,r=2(n!)πImπ0exp(2(12eiθ12+eiθ))(11eiθ)2rsinnθdθ.

    Proof. By (2.4), Theorem 3 and Theorem 6, we observe that

    Imπ0exp(2(12eiθ12+eiθ))k(11eiθ)2rsinnθdθ=k=01k!Imπ02k(12eiθ12+eiθ)(11eiθ)2rsinnθdθ=πn!2k=0L(C)r(n,k)=πn!2LB(C)n,r. (2.8)

    By (2.8), we have desired result.

    Remark.

    Corollary 8. For nk0, we have

    n=0nk=0L(C)r(n,k)x[k]tnn!=( 12t12+t+(12t12+t)2+1    )2x(11t)2r,

    and

    nk=0L(C)r(n,k)x[k]=m=0i=0j=0nd=0dl=0(nd)(2xm)(2xm+2ij)(mi)(dl)(1)j+dl×22xm+2in<2xm+2ij>l<j>dl<2r>nd.

    Proof. It is well known that the generating function of central factorial is given by

    ( t2+14t2+1   )2x=n=0x[n]tnn!, (see [15, 26]), (2.9)

    By replacing t with 2(12t12+t) in (2.9), we get

    ( 12t12+t+(12t12+t)2+1    )2x=n=0x[n]1n!(2(12t12+t) )n. (2.10)

    Combining with (2.1), (2.4) and (2.10), we obtain

    n=0nk=0L(C)r(n,k)x[k]tnn!=k=0x[k]n=kL(C)r(n,k)tnn!=k=0x[k]1k!(2(12t12+t) )k(11t)2r=( 12t12+t+(12t12+t)2+1    )2x(11t)2r=m=0(2xm)( 12t12+t)2xm((12t12+t)2+1)m2(11t)2r=m=0(2xm)i=0(m2i)(12t12+t)2xm+i(11t)2r=m=0i=0(2xm)(m2i)j=0(2xm+ij)(1)j(21(t2))j(21(t2))2xmij(11t)2r (2.11)
    =n=0(m=0i=0j=0nd=0dl=0(nd)(2xm)(2xm+ij)(mi)(dl)(1)j+dl×22xm+in<2xm+ij>l<j>dl<2r>nd)tnn!.

    By comparing the coefficients of both sides of (2.11), we attain the desired result.

    In this paper, we introduced the r-central Lah numbers and the r-central Lah numbers (rN), respectively. We derived the generating functions and combinatorial identities of the r-central Lah-Bell numbers and polynomials. Furthermore, by showing that each of these two numbers is expressed as Riemann integral in Theorems 6 and 7, respectively, we can infer approximate values for each of them. We also expressed the relation of the r-central Lah-numbers and the central factorials numbers in Corollary 8.

    As one of our next projects, we would like to find some interesting applications of the r-central Lah numbers and polynomials, and the r-central Lah-Bell numbers and polynomials introduced in this paper.

    The author thank Jangjeon Institute for Mathematical Science for the support of this research.

    This work was supported by research grants from Daegu Catholic University in 2021.

    The author declares no conflict of interest.



    [1] H. Belbachir, Y. Djemmada, On central Fubini-like numbers and polynomials, Miskolc Math. Notes, 22 (2021), 77–90. doi: 10.18514/MMN.2021.2809. doi: 10.18514/MMN.2021.2809
    [2] H. Belbachir, Y. Djemmada, Generalized geometric polynomials via Steffensen's generalized factorials and Tanny's operators, Indian J. Pure Appl. Math., 51 (2020), 1713–1727. doi: 10.1007/s13226-020-0491-8. doi: 10.1007/s13226-020-0491-8
    [3] A. Z. Broder, The r-Stirling numbers, Discrete Math., 49 (1984), 241–259. doi: 10.1016/0012-365X(84)90161-4.
    [4] P. L. Butzer, M. Schmidt, E. L. Stark, L. Vogt, Central factorial numbers; their main properties and some applications, Numer. Funct. Anal. Optim., 10 (1989), 419–488. doi: 10.1080/01630568908816313. doi: 10.1080/01630568908816313
    [5] C. A. Charalambides, Central factorial numbers and related expansions, Fibonacci Quart., 19 (1981), 451–456.
    [6] M. W. Coffet, A set of identites for a class of alternating binomial sums arising in computing applications, arXiv. Available from: https://arXiv.org/abs/math-ph/0608049.
    [7] L. Comtet, Advanced combinatorics: The art of finite and infinite expansions, Dordrecht: D. Reidel Publishing Company, 1974.
    [8] M. Eastwood, H. Goldschmidt, Zero-energy felds on complex projective space, J. Differ. Geom., 94 (2013), 129–157. doi: 10.4310/jdg/1361889063. doi: 10.4310/jdg/1361889063
    [9] D. S. Kim, D. V. Dolgy, D. Kim, T. Kim, Some identities on r-central factorial numbers and r-central Bell polynomials, Adv. Differ. Equ., 2019 (2019), 245. doi: 10.1186/s13662-019-2195-0. doi: 10.1186/s13662-019-2195-0
    [10] D. S. Kim, H. Y. Kim, D. Kim, T. Kim, On r-central incomplete and complete Bell polynomials, Symmetry, 11 (2019), 724. doi: 10.3390/sym11050724. doi: 10.3390/sym11050724
    [11] D. S. Kim, T. Kim, Lah-Bell numbers and polynomials, Proc. Jangjeon Math. Soc., 23 (2020), 577–586.
    [12] D. S. Kim, J. Kwon, D. V. Dolgy, T. Kim, On central Fubini polynomials associated with central factorial numbers of the second kind, Proc. Jangjeon Math. Soc., 21 (2018), 589–598.
    [13] H. K. Kim, Central Lah numbers and central Lah-Bell numbers, 2021. doi: 10.13140/RG.2.2.24556.08321/1.
    [14] H. K. Kim, D. S. Lee, Note on extended Lah-Bell polynomials and degenerate extended Lah-Bell polynomials. Adv. Stud. Contemp. Math., 30 (2020), 547–558.
    [15] T. Kim, A note on central factorial numbers, Proc. Jangjeon. Math. Soc., 21 (2018), 575–588.
    [16] T. Kim, D. S. Kim, r-extended Lah-Bell numbers and polynomials associated with r-Lah numbers, Proc. Jangjeon Math. Soc., 24 (2021), 507–514.
    [17] T. Kim, D. S. Kim, A note on central Bell numbers and polynomials. Russ. J. Math. Phys., 27 (2020), 76–81. doi: 10.1134/S1061920820010070.
    [18] I. Lah, A new kind of numbers and its application in the actuarial mathematics, Bol. Inst. Acyuar. Port., 9 (1954), 7–15.
    [19] A. F. Loureiro, New results on the Bochner condition about classical orthogonal polynomials, J. Math. Anal. Appl., 364 (2010), 307–323. doi: 10.1016/j.jmaa.2009.12.003. doi: 10.1016/j.jmaa.2009.12.003
    [20] Y. Ma, D. S. Kim, T. Kim, H. Kim, H. Lee, Some identities of Lah-Bell polynomials, Adv. Differ. Equ., 2020 (2020), 510. doi: 10.1186/s13662-020-02966-6. doi: 10.1186/s13662-020-02966-6
    [21] I. Martinjak, R. Skrekovski, Lah numbers and Lindstrom's lemma, C. R. Math., 356 (2018), 5–7. doi: 10.1016/j.crma.2017.11.010. doi: 10.1016/j.crma.2017.11.010
    [22] M. Mihoubi, Bell polynomials and binomial type sequences, Discrete Math., 308 (2008), 2450–2459. doi: 10.1016/j.disc.2007.05.010. doi: 10.1016/j.disc.2007.05.010
    [23] G. Nyul, G. Racz, The r-Lah numbers, Discrete Math., 338 (2015), 1660–1666, doi: 10.1016/j.disc.2014.03.029.
    [24] G. Nyul, G. Racz, Sums of r-Lah numbers and r-Lah polynomials, Ars Math. Contemp, 18 (2020), 211–222. doi: 10.26493/1855-3974.1793.c4d. doi: 10.26493/1855-3974.1793.c4d
    [25] C. Ramirez, M. Shattuck, A (p, q)-analogue of the r-Whitney-Lah numbers, J. Integer Seq., 19 (2016), 16.5.6.
    [26] J. Riordan, Combinatorial identities, New York: John Wiley and Sons, Inc., 1968.
    [27] J. F. Steffensen, Interpolation, Baltimore 1927.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2236) PDF downloads(78) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog