Research article

Analytical solutions of generalized differential equations using quadratic-phase Fourier transform

  • Received: 05 September 2021 Accepted: 28 October 2021 Published: 04 November 2021
  • MSC : 35K05, 35L05, 42C20, 83C15

  • The aim of this study is to obtain the analytical solutions of some prominent differential equations including the generalized Laplace, heat and wave equations by using the quadratic-phase Fourier transform. To facilitate the narrative, we formulate the preliminary results vis-a-vis the differentiation properties of the quadratic-phase Fourier transform. The obtained results are reinforced with illustrative examples.

    Citation: Firdous A. Shah, Waseem Z. Lone, Kottakkaran Sooppy Nisar, Amany Salah Khalifa. Analytical solutions of generalized differential equations using quadratic-phase Fourier transform[J]. AIMS Mathematics, 2022, 7(2): 1925-1940. doi: 10.3934/math.2022111

    Related Papers:

  • The aim of this study is to obtain the analytical solutions of some prominent differential equations including the generalized Laplace, heat and wave equations by using the quadratic-phase Fourier transform. To facilitate the narrative, we formulate the preliminary results vis-a-vis the differentiation properties of the quadratic-phase Fourier transform. The obtained results are reinforced with illustrative examples.



    加载中


    [1] L. Debnath, F. A. Shah, Wavelet transforms and their applications, Boston: Birkhäuser, 2015.
    [2] L. Debnath, F. A. Shah, Lecture notes on wavelet transforms, Boston: Birkhäuser, 2017. doi: 10.1007/978-3-319-59433-0.
    [3] S. Saitoh, Theory of reproducing kernels: Applications to approximate solutions of bounded linear operator functions on Hilbert spaces, In: Selected papers on analysis and differential equations, American Mathematical Society Translations: Series 2, 2010. doi: 10.1090/trans2/230.
    [4] L. P. Castro, M. R. Haque, M. M. Murshed, S. Saitoh, N. M. Tuan, Quadratic Fourier transforms, Ann. Funct. Anal., 5 (2014), 10–23. doi: 10.15352/afa/1391614564.
    [5] L. P. Castro, L. T. Minh, N. Tuan, New convolutions for quadratic-phase Fourier integral operators and their applications, Mediterr. J. Math., 15 (2018), 1–13. doi: 10.1007/s00009-017-1063-y. doi: 10.1007/s00009-017-1063-y
    [6] F. A. Shah, K. S. Nisar, W. Z. Lone, A. Y. Tantary, Uncertainty principles for the quadratic-phase Fourier transforms, Math. Method. Appl. Sci., 44 (2021), 10416–10431. doi: 10.1002/mma.7417. doi: 10.1002/mma.7417
    [7] F. A. Shah, W. Z. Lone, Quadratic-phase wavelet transform with applications to generalized differential equations, Math. Method. Appl. Sci., 2021. doi: 10.1002/mma.7842.
    [8] L. Debnath, D. Bhatta, Integral transforms and their applications, New York: Chapman and Hall/CRC Press, 2006. doi: 10.1201/9781420010916.
    [9] J. J. Healy, M. A. Kutay, H. M. Ozaktas, J. T. Sheridan, Linear canonical transforms$: $ Theory and applications, New York: Springer, 2016. doi: 10.1007/978-1-4939-3028-9.
    [10] T. C. Mahor, R. Mishra, R. Jain, Analytical solutions of linear fractional partial differential equations using fractional Fourier transform, J. Comput. Appl. Math., 385 (2021), 113202. doi: 10.1016/j.cam.2020.113202. doi: 10.1016/j.cam.2020.113202
    [11] M. Bahri, R. Ashino, Solving generalized wave and heat equations using linear canonical transform and sampling formulae, Abstr. Appl. Anal., 2020 (2020), 1273194. doi: 10.1155/2020/1273194. doi: 10.1155/2020/1273194
    [12] Z. C. Zhang, Linear canonical transform's differentiation properties and their application in solving generalized differential equations, Optik, 188 (2019), 287–293. doi: 10.1016/j.ijleo.2019.05.036. doi: 10.1016/j.ijleo.2019.05.036
    [13] H. Ahmad, T. A. Khan, Variational iteration algorithm-I with an auxiliary parameter for wave-like vibration equations, J. Low Freq. Noise V. A., 38 (2019), 1113–1124. doi: 10.1177/1461348418823126. doi: 10.1177/1461348418823126
    [14] H. Ahmad, T. A. Khan, I. Ahmad, P. S. Stanimirović, Y. M. Chu, A new analyzing technique for non linear time fractional Cauchy reaction-diffusion model equations, Results Phys., 19 (2020), 103462. doi: 10.1016/j.rinp.2020.103462. doi: 10.1016/j.rinp.2020.103462
    [15] H. K. Barman, M. S. Aktar, M. H. Uddin, M. A. Akbar, D. Baleanue, M. S. Osman, Physically significant wave solutions to the Riemann wave equations and the Landau-Ginsburg-Higgs equation, Results Phys., 27 (2021), 104517. doi: 10.1016/j.rinp.2021.104517. doi: 10.1016/j.rinp.2021.104517
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1922) PDF downloads(88) Cited by(7)

Article outline

Figures and Tables

Figures(6)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog