The aim of this study is to obtain the analytical solutions of some prominent differential equations including the generalized Laplace, heat and wave equations by using the quadratic-phase Fourier transform. To facilitate the narrative, we formulate the preliminary results vis-a-vis the differentiation properties of the quadratic-phase Fourier transform. The obtained results are reinforced with illustrative examples.
Citation: Firdous A. Shah, Waseem Z. Lone, Kottakkaran Sooppy Nisar, Amany Salah Khalifa. Analytical solutions of generalized differential equations using quadratic-phase Fourier transform[J]. AIMS Mathematics, 2022, 7(2): 1925-1940. doi: 10.3934/math.2022111
The aim of this study is to obtain the analytical solutions of some prominent differential equations including the generalized Laplace, heat and wave equations by using the quadratic-phase Fourier transform. To facilitate the narrative, we formulate the preliminary results vis-a-vis the differentiation properties of the quadratic-phase Fourier transform. The obtained results are reinforced with illustrative examples.
[1] | L. Debnath, F. A. Shah, Wavelet transforms and their applications, Boston: Birkhäuser, 2015. |
[2] | L. Debnath, F. A. Shah, Lecture notes on wavelet transforms, Boston: Birkhäuser, 2017. doi: 10.1007/978-3-319-59433-0. |
[3] | S. Saitoh, Theory of reproducing kernels: Applications to approximate solutions of bounded linear operator functions on Hilbert spaces, In: Selected papers on analysis and differential equations, American Mathematical Society Translations: Series 2, 2010. doi: 10.1090/trans2/230. |
[4] | L. P. Castro, M. R. Haque, M. M. Murshed, S. Saitoh, N. M. Tuan, Quadratic Fourier transforms, Ann. Funct. Anal., 5 (2014), 10–23. doi: 10.15352/afa/1391614564. |
[5] | L. P. Castro, L. T. Minh, N. Tuan, New convolutions for quadratic-phase Fourier integral operators and their applications, Mediterr. J. Math., 15 (2018), 1–13. doi: 10.1007/s00009-017-1063-y. doi: 10.1007/s00009-017-1063-y |
[6] | F. A. Shah, K. S. Nisar, W. Z. Lone, A. Y. Tantary, Uncertainty principles for the quadratic-phase Fourier transforms, Math. Method. Appl. Sci., 44 (2021), 10416–10431. doi: 10.1002/mma.7417. doi: 10.1002/mma.7417 |
[7] | F. A. Shah, W. Z. Lone, Quadratic-phase wavelet transform with applications to generalized differential equations, Math. Method. Appl. Sci., 2021. doi: 10.1002/mma.7842. |
[8] | L. Debnath, D. Bhatta, Integral transforms and their applications, New York: Chapman and Hall/CRC Press, 2006. doi: 10.1201/9781420010916. |
[9] | J. J. Healy, M. A. Kutay, H. M. Ozaktas, J. T. Sheridan, Linear canonical transforms$: $ Theory and applications, New York: Springer, 2016. doi: 10.1007/978-1-4939-3028-9. |
[10] | T. C. Mahor, R. Mishra, R. Jain, Analytical solutions of linear fractional partial differential equations using fractional Fourier transform, J. Comput. Appl. Math., 385 (2021), 113202. doi: 10.1016/j.cam.2020.113202. doi: 10.1016/j.cam.2020.113202 |
[11] | M. Bahri, R. Ashino, Solving generalized wave and heat equations using linear canonical transform and sampling formulae, Abstr. Appl. Anal., 2020 (2020), 1273194. doi: 10.1155/2020/1273194. doi: 10.1155/2020/1273194 |
[12] | Z. C. Zhang, Linear canonical transform's differentiation properties and their application in solving generalized differential equations, Optik, 188 (2019), 287–293. doi: 10.1016/j.ijleo.2019.05.036. doi: 10.1016/j.ijleo.2019.05.036 |
[13] | H. Ahmad, T. A. Khan, Variational iteration algorithm-I with an auxiliary parameter for wave-like vibration equations, J. Low Freq. Noise V. A., 38 (2019), 1113–1124. doi: 10.1177/1461348418823126. doi: 10.1177/1461348418823126 |
[14] | H. Ahmad, T. A. Khan, I. Ahmad, P. S. Stanimirović, Y. M. Chu, A new analyzing technique for non linear time fractional Cauchy reaction-diffusion model equations, Results Phys., 19 (2020), 103462. doi: 10.1016/j.rinp.2020.103462. doi: 10.1016/j.rinp.2020.103462 |
[15] | H. K. Barman, M. S. Aktar, M. H. Uddin, M. A. Akbar, D. Baleanue, M. S. Osman, Physically significant wave solutions to the Riemann wave equations and the Landau-Ginsburg-Higgs equation, Results Phys., 27 (2021), 104517. doi: 10.1016/j.rinp.2021.104517. doi: 10.1016/j.rinp.2021.104517 |