
A shift towards a "hydrogen economy" can reduce carbon emissions, increase penetration of variable renewable power generation into the grid, and improve energy security. The deployment of hydrogen technologies promises major contributions to fulfilling the economy's significant energy needs while also reducing urban pollution emissions and the overall carbon footprint and moving towards a circular economy. Using the Canadian province of Ontario as an example, this paper prioritizes certain recommendations for near-term policy actions, setting the stage for long-term progress to reach the zero-emissions target by 2050. To roll out hydrogen technologies in Ontario, we recommend promptly channeling efforts into deployment through several short-, mid-, and long-term strategies. Hydrogen refueling infrastructure on Highway 401 and 400 Corridors, electrolysis for the industrial sector, rail infrastructure and hydrogen locomotives, and hydrogen infrastructure for energy hubs and microgrids are included in strategies for the near term. With this infrastructure, more Class 8 large and heavy vehicles will be ready to be converted into hydrogen fuel cell power in the mid-term. Long-term actions such as Power-to-Gas, hydrogen-enriched natural gas, hydrogen as feedstock for products (e.g., ammonia and methanol), and seasonal and underground storage of hydrogen will require immediate financial and policy support for research and technology development.
Citation: Faris Elmanakhly, Andre DaCosta, Brittany Berry, Robert Stasko, Michael Fowler, Xiao-Yu Wu. Hydrogen economy transition plan: A case study on Ontario[J]. AIMS Energy, 2021, 9(4): 775-811. doi: 10.3934/energy.2021036
[1] | Jingqian Xu, Ma Zhu, Baojun Qi, Jiangshan Li, Chunfang Yang . AENet: attention efficient network for cross-view image geo-localization. Electronic Research Archive, 2023, 31(7): 4119-4138. doi: 10.3934/era.2023210 |
[2] | Rui Wang, Haiqiang Li, Chen Hu, Xiao-Jun Wu, Yingfang Bao . Deep Grassmannian multiview subspace clustering with contrastive learning. Electronic Research Archive, 2024, 32(9): 5424-5450. doi: 10.3934/era.2024252 |
[3] | Shuaiqun Wang, Huiqiu Chen, Wei Kong, Xinqi Wu, Yafei Qian, Kai Wei . A modified FGL sparse canonical correlation analysis for the identification of Alzheimer's disease biomarkers. Electronic Research Archive, 2023, 31(2): 882-903. doi: 10.3934/era.2023044 |
[4] | Zhongnian Li, Jiayu Wang, Qingcong Geng, Xinzheng Xu . Group-based siamese self-supervised learning. Electronic Research Archive, 2024, 32(8): 4913-4925. doi: 10.3934/era.2024226 |
[5] | Li Sun, Bing Song . Feature adaptive multi-view hash for image search. Electronic Research Archive, 2023, 31(9): 5845-5865. doi: 10.3934/era.2023297 |
[6] | Qianpeng Xiao, Changbin Shao, Sen Xu, Xibei Yang, Hualong Yu . CCkEL: Compensation-based correlated k-labelsets for classifying imbalanced multi-label data. Electronic Research Archive, 2024, 32(5): 3038-3058. doi: 10.3934/era.2024139 |
[7] | Jie Zheng, Yijun Li . Machine learning model of tax arrears prediction based on knowledge graph. Electronic Research Archive, 2023, 31(7): 4057-4076. doi: 10.3934/era.2023206 |
[8] | Bojian Chen, Wenbin Wu, Zhezhou Li, Tengfei Han, Zhuolei Chen, Weihao Zhang . Attention-guided cross-modal multiple feature aggregation network for RGB-D salient object detection. Electronic Research Archive, 2024, 32(1): 643-669. doi: 10.3934/era.2024031 |
[9] | Hui Jiang, Di Wu, Xing Wei, Wenhao Jiang, Xiongbo Qing . Discriminator-free adversarial domain adaptation with information balance. Electronic Research Archive, 2025, 33(1): 210-230. doi: 10.3934/era.2025011 |
[10] | Jicheng Li, Beibei Liu, Hao-Tian Wu, Yongjian Hu, Chang-Tsun Li . Jointly learning and training: using style diversification to improve domain generalization for deepfake detection. Electronic Research Archive, 2024, 32(3): 1973-1997. doi: 10.3934/era.2024090 |
A shift towards a "hydrogen economy" can reduce carbon emissions, increase penetration of variable renewable power generation into the grid, and improve energy security. The deployment of hydrogen technologies promises major contributions to fulfilling the economy's significant energy needs while also reducing urban pollution emissions and the overall carbon footprint and moving towards a circular economy. Using the Canadian province of Ontario as an example, this paper prioritizes certain recommendations for near-term policy actions, setting the stage for long-term progress to reach the zero-emissions target by 2050. To roll out hydrogen technologies in Ontario, we recommend promptly channeling efforts into deployment through several short-, mid-, and long-term strategies. Hydrogen refueling infrastructure on Highway 401 and 400 Corridors, electrolysis for the industrial sector, rail infrastructure and hydrogen locomotives, and hydrogen infrastructure for energy hubs and microgrids are included in strategies for the near term. With this infrastructure, more Class 8 large and heavy vehicles will be ready to be converted into hydrogen fuel cell power in the mid-term. Long-term actions such as Power-to-Gas, hydrogen-enriched natural gas, hydrogen as feedstock for products (e.g., ammonia and methanol), and seasonal and underground storage of hydrogen will require immediate financial and policy support for research and technology development.
Correlation analysis deals with data with cross-view feature representations. To handle such tasks, many correlation learning approaches have been proposed, among which canonical correlation analysis (CCA) [1,2,3,4,5] is a representative method and has been widely employed [6,7,8,9,10,11]. To be specific, given training data with two or more feature-view representations, the traditional CCA method comes to seek a projection vector for each of the views while maximizing the cross-view correlations. After the data are mapped along the projection directions, subsequent cross-view decisions can be made [4]. Although CCA yields good results, a performance room is left since the data labels are not incorporated in learning.
When class labels information is also provided or available, CCA can be remodeled to its discriminant form by making use of the labels. To this end, Sun et al. [12] proposed a discriminative variant of CCA (i.e., DCCA) by enlarging distances between dissimilar samples while reducing those of similar samples. Subsequently, Peng et al. [13] built a locally-discriminative version of CCA (i.e., LDCCA) based on the assumption that the data distributions follow low-dimensional manifold embedding. Besides, Su et al. [14] established a multi-patch embedding CCA (MPECCA) by developing multiple metrics rather than a single one to model within-class scatters. Afterwards, Sun et al. [15] built a generalized framework for CCA (GCCA). Ji et al. [16] remodeled the scatter matrices by deconstructing them into several fractional-order components and achieved performance improvements.
In addition to directly constructing a label-exploited version of CCA, the supervised labels can be utilized by embedding them as regularization terms. Along this direction, Zhou et al. [17] presented CECCA by embedding LDA-guided [18] feature combinations into the objective function of CCA. Furthermore, Zhao et al. [19] constructed HSL-CCA by reducing inter-class scatters within their local neighborhoods. Later, Haghighat et al. [20] proposed the DCA model by deconstructing the inter-class scatter matrix guided by class labels. Previous variants of CCA were designed to cater for two-view data and cannot be used directly to handle multi-view scenarios. To overcome this shortcoming, many CCA methods have been proposed, such as GCA [21], MULDA [22] and FMDA [23].
Although the aforementioned methods have achieved successful performances of varying extent, unfortunately, the objective functions of nearly all of them are not convex [14,24,25]. Although CDCA [26] yields closed-form solutions and better results than the previous methods.
To overcome these shortcomings, we firstly design a discriminative correlation learning with manifold preservation, coined as DCLMP, in which, not only the cross-view discriminative information but also the spatial structural information of training data is taken into account to enhance subsequent decision making. To pursue closed-form solutions, we remodel the objective of DCLMP from the Euclidean space to a geodesic space. In this way, we obtain a convex formulation of DCLMP (C-DCLMP). Finally, we comprehensively evaluated the proposed methods and demonstrated their superiority on both toy and real data sets. To summarize, our contributions are three-fold as follows:
1. A DCLMP is constructed by modelling both cross-view discriminative information and spatial structural information of training data.
2. The objective function of DCLMP is remodelled to obtain its convex formulation (C-DCLMP).
3. The proposed methods are evaluated with extensive experimental comparisons.
This paper is organized as follows. Section 2 reviews related theories of CCA. Section 3 presents models and their solving algorithms. Then, experiments and comparisons are reported to evaluate the methods in Section 4. Section 5 concludes and provides future directions.
In this section, we briefly review the works on multi-view learning, which aims to study how to establish constraints or dependencies between views by modeling and discovering the interrelations between views. There exist studies about multi-view learning. Tang et al. [27] proposed a multi-view feature selection method named CvLP-DCL, which divided the label space into a consensus part and a domain-specific part and explored the latent information between different views in the label space. Additionally, CvLP-DCL explored how to combine cross-domain similarity graph learning with matrix-induced regularization to boost the performance of the model. Tang et al. [28] also proposed UoMvSc for multi-view learning, which mined the value of view-specific graphs and embedding matrices by combining spectral clustering with k-means clustering. In addition, Wang et al.[29] proposed an effective framework for multi-view learning named E2OMVC, which constructed the latent feature representation based on anchor graphs and the clustering indicator matrix about multi-view data to obtain better clustering results.
We briefly review related theories of CCA [1,2]. Given two-view feature representations of training data, CCA seeks two projection matrices respectively for the two views, while preserving the cross-view correlations. To be specific, let X=[x1,...,xN]∈Rp×N and Y=[y1,...,yN]∈Rq×N be two view representations of N training samples, with xi and yi denoting normalized representations of the ith sample. Besides, let Wx∈Rp×r and Wy∈Rq×r denote the projection matrices mapping the training data from individual view spaces into a r-dimensional common space. Then, the correlation between WTxxi and WTyyi should be maximized. Consequently, the formal objective of CCA can be formulated as
max{Wx,Wy}WTxCxyWy√WTxCxxWxWTyCyyWy, | (2.1) |
where Cxx=1N∑Ni=1(xi−¯x)(xi−¯x)T, Cyy=1N∑Ni=1(yi−¯y)(yi−¯y)T, and Cxy=1N∑Ni=1(xi−¯x)(yi−¯y)T, where ¯x=1N∑Ni=1xi and ¯y=1N∑Ni=1yi respectively denote the sample means of the two views. The numerator describes the sample correlation in the projected space, while the denominator limits the scatter for each view. Typically, Eq (2.1) is converted to a generalized eigenvalue problem as
(XYTYXT)(WxWy)=λ(XXTYYT)(WxWy). | (2.2) |
Then, (WxWy) can be achieved by computing the largest r eigenvectors of
(XXTYYT)−1(XYTYXT). |
After Wx and Wy are obtained, xi and yi can be concatenated as WTxxi+WTyyi=(WxWy)T(xiyi). With the concatenated feature representations are achieved, subsequent classification or regression decisions can be made.
The most classic work of discriminative CCA is DCCA [12], which is shown as follows:
maxwx,wy(wTxCwwy−η⋅wTxCbwy) s.t. wTxXXTwx=1,wTyYYTwy=1 | (2.3) |
It is easy to find that DCCA is discriminative because DCCA needs instance labels to calculate the relationship between each class. Similar to DCCA, Peng et al. [13] proposed LDCCA which is shown as follows:
maxwx,wywTxCxywy√(wTx˜Cxxwx)(wTyCyywy) s.t. wTxXXTwx=1,wTyYYTwy=1 | (2.4) |
where ˜Cxy=Cw−ηCb⋅Cw. Compared with DCCA, LDCCA consider the local correlations of the within-class sets and the between-class sets. However, these methods do not consider the problem of multimodal recognition or feature level fusion. Haghighat et al. [20] proposed DCA which incorporates the class structure, i.e., memberships of the samples in classes, into the correlation analysis. Additionally, Su et al. [14] proposed MPECCA for multi-view feature learning, which is shown as follows:
maxu,v,w(χ)j,w(y)ruT(N∑i=1M∑j=1M∑r=1(w(x)jw(y)r)XS(x)ijLiS(y)TirYT)v s.t. uTSwxu=1,vTSwyv=1M∑j=1w(x)j=1,w(x)j⩾0M∑r=1w(y)r=1,w(y)r⩾0 | (2.5) |
where u and v means correlation projection matrices. Considering combining LDA and CCA, CECCA was proposed [17]. The optimization objective of CECCA was shown as follows:
maxwx,wywTxX(I+2A)YTwy+wTxXATTwx+wTyYAXTwy s. t. wTxXXTwx+wTyYYTwy=2 | (2.6) |
where A=2U−I, I means Identity matrix. On the basis of CCA, CECCA combined with discriminant analysis to realize the joint optimization of correlation and discriminant of combined features, which makes the extracted features more suitable for classification. However, these methods cannot achieve the closed form solution. CDCA [26] combined GMML and discrimative CCA and then achieve the closed form solution in Riemannian manifold space, the optimization objective was shown as follows:
minA≻0γtr(AC)+(1−γ)(tr(ASZ)+tr(A−1DZ))=tr(A(γC+(1−γ)SZ))+tr(A−1(1−γ)DZ) | (2.7) |
From Eq (2.7) and CDCA [26] we can find with the help of discrimative part and closed form solution, the multi-view learning will easily get the the global optimality of solutions and achieve a good result.
CCA suffer from three main problems: (1) the similarity and dissimilarity across views are not modeled; (2) although the data labels can be exploited by imposing supervised constraints, their objective functions are nonconvex; (3) the cross-view correlations are modeled in Euclidean space through RKHS kernel transformation [30,31] whose discriminating ability is obviously limited.
We present a novel cross-view learning model, called DCLMP, in which not only the with-class and between-class scatters are characterized, but also the similarity and dissimilarity of the training data across views are modelled for utilization. Although many preferable characteristics are incorporated in DCLMP, it still suffers from non-convexity for its objective function. To facilitate pursuing global optimal solutions, we further remodel DCLMP to the Riemannian manifold space to make the objective function convex. The proposed method is named as C-DCLMP.
Assume we are given N training instances sampled from K classes with two views of feature representations, i.e., X=[X1,X2,⋅⋅⋅,XK]∈Rp×N with Xk=[xk1,xk2,⋅⋅⋅,xkNk] being Nk x-view instances from the k-th class and Y=[Y1,Y2,⋅⋅⋅,YK]∈Rq×N with Yk=[yk1,yk2,⋅⋅⋅,ykNk] being Nk y-view instances from the k-th class, where yk1 and xk1 stand for two view representations from the same instance. In order to concatenate them for subsequent classification, we denote U∈Rp×r and V∈Rq×r as projection matrices for the two views to transform their representations to a r-dimensional common space.
To perform cross-view learning while exploring supervision knowledge in terms of similar and dissimilar relationships among instances in each view and across the views, as well as sample distribution manifolds, we construct DCLMP. To this end, we should construct the model by taking into account the following aspects: 1) distances between similar instances from the same class should be reduced while those among dissimilar from different classes should be enlarged, in levels of intra-view and inter-view; 2) manifold structures embedded in similar and dissimilar instances should be preserved. These modelling considerations are intuitively demonstrated in Figure 1.
Along this line, we construct the objective function of DCLMP as follows:
min{U,V}1NN∑i=11NN∑j=1‖ | (3.1) |
where {\textbf U} and {\textbf V} denote the projection matrices in the r -dimensional common space of two views and k_{n} denotes the k -nearest neighbors of an instance. {\textbf L} is the discriminative weighting matrix. {\textbf S}^{w_x} and {\textbf S}^{w_y} stand for the within-class manifold weighting matrices of two different views of feature representations, and {\textbf S}^{b_x} and {\textbf S}^{b_y} stand for the between-class manifold weighting matrices of two different views of feature representations. Their elements are defined as follows
\begin{equation} { \begin{split} & {\textbf L}_{ij} = \begin{cases} \frac{1}{N_k}& {\textbf x}_i \ \text{and}\ {\textbf y}_j \ \text{are from the same class}\\ 0& {\textbf x}_i\ \text{and}\ {\textbf y}_j\ \text{are from different classes} \end{cases} \end{split} } \end{equation} | (3.2) |
\begin{equation} { \begin{split} & {\textbf S}_{ij}^{w_x} = \begin{cases} exp\left(-\frac{\|{\textbf x}_i^k-{\textbf x}_j^k\|^2}{\sigma_x^2}\right)& { {\textbf x}_j^k \in {\rm{ KNN}} _{k_n} ( {\textbf x}_i^k ) }\\ 0 & { {\textbf x}_j^k \notin {\rm{KNN}} _{k_n} ( {\textbf x}_i^k ) } \end{cases} \end{split} } \end{equation} | (3.3) |
\begin{equation} { \begin{split} & {\textbf S}_{ij}^{w_y} = \begin{cases} exp\left(-\frac{\|{\textbf y}_i^k-{\textbf y}_j^k\|^2}{\sigma_y^2}\right)& { {\textbf y}_j^k \in {\rm{KNN}} _{k_n} ( {\textbf y}_i^k ) }\\ 0 & { {\textbf y}_j^k \notin {\rm{KNN}} _{k_n} ( {\textbf y}_i^k ) } \end{cases} \end{split} } \end{equation} | (3.4) |
\begin{equation} { \begin{split} & {\textbf S}_{ij}^{b_x} = \begin{cases} exp\left(-\frac{\|{\textbf x}_i^k-{\textbf x}_j^h\|^2}{\sigma_x^2}\right)& { {\textbf x}_j^h \in {\rm{KNN}} _{k_n} ( {\textbf x}_i^k ) }\\ 0 & { {\textbf x}_j^h \notin {\rm{KNN}} _{k_n} ( {\textbf x}_i^k ) } \end{cases} \end{split} } \end{equation} | (3.5) |
\begin{equation} { \begin{split} & {\textbf S}_{ij}^{b_y} = \begin{cases} exp\left(-\frac{\|{\textbf y}_i^k-{\textbf y}_j^h\|^2}{\sigma_y^2}\right)& { {\textbf y}_j^h \in {\rm{KNN}} _{k_n} ( {\textbf y}_i^k ) }\\ 0 & { {\textbf y}_j^h \notin {\rm{KNN}} _{k_n} ( {\textbf y}_i^k ) } \end{cases} \end{split} } \end{equation} | (3.6) |
where KNN _{k_n} denotes the k_n -nearest neighbors of an instance. \sigma_x and \sigma_y stand for width coefficients to normalize the weights.
In Eq (3.1), the first part characterizes the cross-view similarity and dissimilarity discriminations, the second part preserves the manifold relationships within each class scatters, while the third part magnifies the distribution margins for a dissimilar pair of instances. In this way, both the discriminative information and the manifold distributions can be modelled in a joint objective function.
For convenience of solving Eq (3.1), we transform it as the following concise form
\begin{equation} { \begin{split} & \min\limits_{{\textbf A} \succ 0} \; tr\big({\textbf A}({\textbf C}+\lambda_1 {\textbf S}_z - \lambda_2 {\textbf D}_z)\big) \end{split} } \end{equation} | (3.7) |
with
\begin{equation} { \begin{split} & {\textbf A} = \left[ \begin{aligned} {\textbf U} \\ {\textbf V} \end{aligned} \right] \left[ \begin{aligned} {\textbf U} \\ {\textbf V} \end{aligned} \right]^T \end{split} } \end{equation} | (3.8) |
\begin{equation} { \begin{split} & {\textbf C} = \left[ \begin{aligned} {\textbf 1}_{p\times p} \\ {\textbf 0}_{q\times p} \end{aligned} \right] {\textbf X}{\textbf M}^L{\textbf X}^T[{\textbf 0}_{p\times q}, {\textbf 1}_{q\times q}]+ \left[ \begin{aligned} {\textbf 0}_{p\times q} \\ {\textbf 1}_{q\times q} \end{aligned} \right] {\textbf Y}{\textbf M}^L{\textbf Y}^T[{\textbf 0}_{q\times p}, {\textbf 1}_{q\times q}]-\\ & \qquad \left[ \begin{aligned} {\textbf 1}_{p\times p} \\ {\textbf 0}_{q\times p} \end{aligned} \right] {\textbf X}{\textbf L}{\textbf Y}^T[{\textbf 0}_{q\times p}, {\textbf 1}_{q\times q}]- \left[ \begin{aligned} {\textbf 0}_{p\times q} \\ {\textbf 1}_{q\times q} \end{aligned} \right] {\textbf Y}{\textbf L}{\textbf X}^T[{\textbf 1}_{p\times p}, {\textbf 0}_{p\times q}] \end{split} } \end{equation} | (3.9) |
\begin{equation} { \begin{split} & {\textbf S}_z = \sum\limits_{k = 1}^{K}\Bigg\{\left[ \begin{aligned} {\textbf 1}_{p\times p} \\ {\textbf 0}_{q\times p} \end{aligned} \right]{\textbf X}^k\left({\textbf M}^{w_x}+{{\textbf M}^{w_x}}^T-{\textbf S}^{w_x}-{{\textbf S}^{w_x}}^T\right){{\textbf X}^k}^T[{\textbf 1}_{p\times p}, {\textbf 0}_{p\times q}]\\ & \qquad + \left[ \begin{aligned} {\textbf 0}_{p\times q} \\ {\textbf 1}_{q\times q} \end{aligned} \right]{\textbf Y}^k\left({\textbf M}^{w_y}+{{\textbf M}^{w_y}}^T-{\textbf S}^{w_y}-{{\textbf S}^{w_y}}^T\right){{\textbf Y}^k}^T[{\textbf 0}_{q\times p}, {\textbf 1}_{q\times q}] \Bigg\} \end{split} } \end{equation} | (3.10) |
\begin{equation} { \begin{split} & {\textbf D}_z = \Bigg\{\left[ \begin{aligned} {\textbf 1}_{p\times p} \\ {\textbf 0}_{q\times p} \end{aligned} \right]{\textbf X}\left({\textbf M}^{b_x}+{{\textbf M}^{b_x}}^T-{\textbf S}^{b_x}-{{\textbf S}^{b_x}}^T\right){\textbf X}^T[{\textbf 1}_{p\times p}, {\textbf 0}_{p\times q}]\\ & \qquad + \left[ \begin{aligned} {\textbf 0}_{p\times q} \\ {\textbf 1}_{q\times q} \end{aligned} \right]{\textbf Y}\left({\textbf M}^{b_y}+{{\textbf M}^{b_y}}^T-{\textbf S}^{b_y}-{{\textbf S}^{b_y}}^T\right){\textbf Y}^T[{\textbf 0}_{q\times p}, {\textbf 1}_{q\times q}] \Bigg\} \end{split} } \end{equation} | (3.11) |
where {\textbf M}^{w_x}_{ii} = \sum_{j = 1}^{N}{\textbf S}_{ij}^{w_x} , {\textbf M}^{w_y}_{ii} = \sum_{j = 1}^{N}{\textbf S}_{ij}^{w_y} , {\textbf M}^{b_x}_{ii} = \sum_{j = 1}^{N}{\textbf S}_{ij}^{b_x} , {\textbf M}^{b_y}_{ii} = \sum_{j = 1}^{N}{\textbf S}_{ij}^{b_y} , and {\textbf M}^{L}_{ii} = \sum_{j = 1}^{N}{\textbf L}_{ij} .
We let \mathcal{J} record the objective function value of Eq (3.7) and introduce {\textbf Q}^T{\textbf Q} = {\textbf I} to replace {\textbf A} and {\Lambda} to rewrite Eq (3.7) as
\begin{equation} { \begin{split} & \mathcal{J}_{\{{\textbf Q}, {\Lambda}\}} = tr\big({\textbf Q}^T\left({\textbf C}+\lambda_1 {\textbf S}_z - \lambda_2 {\textbf D}_z\right){\textbf Q}\big) - tr\big({\Lambda}({\textbf Q}^T{\textbf Q} - {\textbf I})\big). \end{split} } \end{equation} | (3.12) |
Calculating the partial derivative of \mathcal{J}_{\{{\textbf Q}, {\Lambda}\}} with regard to Q and making it to zero yields
\begin{equation} { \begin{split} & ({\textbf C}+\lambda_1 {\textbf S}_z - \lambda_2 {\textbf D}_z){\textbf Q} = {\textbf Q}{\Lambda}, \end{split} } \end{equation} | (3.13) |
The projection matrix {\textbf Q} can be obtained by calculating a required number of smallest eigenvectors of {\textbf C}+\lambda_1 {\textbf S}_z - \lambda_2 {\textbf D}_z . Finally, we can recover {\textbf A} = {\textbf Q}{\textbf Q}^T . Then, {\textbf U} and {\textbf V} can be obtained through Eq (3.8).
We find that such a objective function may be not convex [32,33]. The separability of nonlinear data patterns in the geodesic space can be significantly improved and thus benefits their subsequent recognitions. Referring to \min_{{\textbf A}\succ 0} \; tr({\textbf A}^{-1}\bullet) \Leftrightarrow \max_{{\textbf A} \succ 0} \; tr({\textbf A}\bullet) [34], we reformulate DCLMP in (3.7) equivalently as
\begin{equation} { \begin{split} & \min\limits_{{\textbf A} \succ 0} \; tr\big({\textbf A}{\textbf C}+\lambda_1 {\textbf A}{\textbf S}_z + \lambda_2{\textbf A}^{-1}{\textbf D}_z\big) \Leftrightarrow \min\limits_{{\textbf A} \succ 0} \; tr({\textbf A}{\textbf C})+\lambda_1tr({\textbf A}{\textbf S}_z) + \lambda_2tr({\textbf A}^{-1}{\textbf D}_z), \end{split} } \end{equation} | (3.14) |
Minimizing the third term \lambda_1 tr({\textbf A}^{-1}{\textbf D}_z) is equivalent to minimizing -\lambda_1 tr\left({\textbf AD}_z\right) of Eq (3.7). Although the last term is nonlinear, it is defined in the convex cone space [35] and thus is still convex. As a result, Eq (3.14) is entirely convex regarding A . It enjoys closed-form solution [36,37,38]. To distinguish Eq (3.14) from DCLMP, we call it C-DCLMP.
For convenience of deriving the closed-form solution, we reformulate Eq (3.14) as
\begin{equation} { \begin{split} & \min\limits_{{\textbf A} \succ 0} \; \gamma tr({\textbf A}^{-1}{\textbf D}_z) + (1-\gamma)\left(tr({\textbf AS}_z\right) + \alpha tr\left({\textbf AC})\right), \end{split} } \end{equation} | (3.15) |
where we set \gamma \in (0, 1) [34]. Let J({\textbf A}): = \gamma tr({\textbf A}^{-1}{\textbf D}_z) + (1-\gamma)\left(tr\left({\textbf AS}_z\right) + \alpha tr\left({\textbf AC}\right)\right) .
\begin{equation} { \begin{split} & (1-\gamma){\textbf A}({\textbf S}_z+\alpha{\textbf C}){\textbf A} = \gamma {\textbf D}_z, \\ \end{split} } \end{equation} | (3.16) |
whose solution is the midpoint of the geodesic jointing ((1-\gamma)({\textbf S}_z+\alpha{\textbf C}))^{-1} and \gamma{\textbf D}_z , that is
\begin{equation} { \begin{split} & {\textbf A} = \big((1-\gamma)({\textbf S}_z+\alpha{\textbf C})\big)^{-1}\sharp_{1/2}(\gamma {\textbf D}_z), \\ \end{split} } \end{equation} | (3.17) |
(\cdot)\sharp_{1/2}(\cdot) denotes the midpoint. We extend the geodesic mean solution (3.17) to the geodesic space by replacing (\cdot)\sharp_{1/2}(\cdot) with (\cdot)\sharp_{t}(\cdot) , 0\leqslant t\leqslant 1 .
We add a regularizer with prior knowledge to (3.15). Here, we incorporate symmetrized LogDet divergence and consequently (3.15) becomes
\begin{equation} { \begin{split} & \min\limits_{{\textbf A}\succ 0} \; \gamma tr({\textbf A}^{-1}{\textbf D}_z) + (1-\gamma)(tr\left({\textbf AS}_z\right) + \alpha tr\left({\textbf AC}\right)) \\ & \qquad + \lambda D_{sld}({\textbf A}, {\textbf A}_0), \end{split} } \end{equation} | (3.18) |
\begin{equation} { \begin{split} & D_{sld}({\textbf A}, {\textbf A}_0) \; = tr({\textbf AA}_0^{-1})+tr({\textbf A}^{-1}{\textbf A}_0)-2(p+q), \end{split} } \end{equation} | (3.19) |
where (p + q) is the dimension of the data. Fortunately, complying with the definition of geometric mean [36], Eq (3.18) is still convex. We let G({\textbf A}): = \gamma tr({\textbf A}^{-1}{\textbf D}_z) + (1-\gamma)(tr\left({\textbf AS}_z\right) + \alpha tr\left({\textbf AC}\right)) + \lambda D_{sld}({\textbf A}, {\textbf A}_0) . Then we set the gradient of G({\textbf A}) regarding to {\textbf A} to zero and obtain the equation as
\begin{equation} { \begin{split} & (1-\gamma){\textbf A}({\textbf S}_z+\alpha{\textbf C}){\textbf A}+\lambda {\textbf A}{\textbf A}_0^{-1}{\textbf A} = \gamma {\textbf D}_z+\lambda {\textbf A}_0, \\ \end{split} } \end{equation} | (3.20) |
we calculate the closed-form solution as
\begin{equation} { \begin{split} & {\textbf A} = ((1-\gamma)({\textbf S}_z+\alpha{\textbf C})+\lambda {\textbf A}_0^{-1})^{-1}\sharp_{t}(\gamma {\textbf D}_z+\lambda {\textbf A}_0).\\ \end{split} } \end{equation} | (3.21) |
More precisely, according to the definition of (\cdot)\sharp_{t}(\cdot) , namely the geodesic mean jointing two matrices, we can directly expand the final solution of our C-DCLMP in Eq (3.18) as
\begin{equation} { \begin{split} & {\textbf A} = ((1-\gamma)({\textbf S}_z+\alpha{\textbf C})+\lambda {\textbf A}_0^{-1})^{-1}\sharp_{t}(\gamma {\textbf D}_z+\lambda {\textbf A}_0)\\ & \; \; = \left((1-\gamma)({\textbf S}_z+\alpha{\textbf C})+\lambda {\textbf A}_0^{-1}\right)^{1/2}\\ & \quad \Big(\left((1-\gamma)({\textbf S}_z+\alpha{\textbf C})+\lambda {\textbf A}_0^{-1}\right)^{-1/2}(\gamma {\textbf D}_z+\lambda {\textbf A}_0)\\ & \quad \left((1-\gamma)({\textbf S}_z+\alpha{\textbf C})+\lambda {\textbf A}_0^{-1}\right)^{-1/2}\Big)^{t}\\ & \quad \left((1-\gamma)({\textbf S}_z+\alpha{\textbf C})+\lambda {\textbf A}_0^{-1}\right)^{1/2}. \end{split} } \end{equation} | (3.22) |
where we set {\textbf A}_0 to be a (p + q) -order identity matrix {\textbf I}_{p+q} . When obtaining {\textbf A} , {\textbf U} and {\textbf V} are recovered.
Its concatenated representation can be generated by {\textbf U}^T{\textbf x}+{\textbf V}^T{\textbf y} = \left[\begin{aligned} {\textbf U} \\ {\textbf V} \end{aligned} \right]^T\left[\begin{aligned} {\textbf x}\\ {\textbf y} \end{aligned} \right] and the classification decision using a classifier (e.g., KNN) can be made on this fused representation.
To comprehensively evaluate the proposed methods, we first performed comparative experiments on several benchmark and real face datasets. Besides, we also performed sensibility analysis on the model parameters.
For evaluation and comparisons, CCA [1], DCCA [12], MPECCA [14], CECCA [17], DCA [20] and CDCA [26] were implemented. All hyper-parameters were cross-validated in the range of [0, 0.1, ..., 1] for t and \gamma , and [1e-7, 1e-6, ..., 1e3] for \alpha and \lambda . For concatenated cross-view representations, a 5 -nearest-neighbors classifier was employed for classification. Additionally, recognition accuracy (%, higher is better) and mean absolute errors (MAE, lower is better) were adopted as performance measures.
We first performed experiments on several widely used non-face multi-view datasets, i.e., MFD [39] and USPS [40], AWA [41] and ADNI [42]. We report the results in Table 1.
Dataset | View Represenations | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) | |
MFD | fac | fou | 80.22 \pm 0.9 | 80.00 \pm 0.2 | 90.64 \pm 1.3 | 95.15 \pm 0.9 | 96.46 \pm 2.4 | 98.11 \pm 0.3 | 94.49 \pm 1.7 | 98.03 \pm 0.3 |
fac | kar | 92.12 \pm 0.5 | 90.10 \pm 0.8 | 95.39 \pm 0.6 | 95.33 \pm 0.7 | 96.52 \pm 1.2 | 97.06 \pm 0.4 | 96.86 \pm 0.5 | 97.93 \pm 0.6 | |
fac | mor | 78.22 \pm 0.8 | 63.22 \pm 4.3 | 72.32 \pm 2.4 | 95.22 \pm 0.9 | 94.23 \pm 1.0 | 98.13 \pm 0.3 | 90.97 \pm 2.5 | 97.63 \pm 0.3 | |
fac | pix | 83.02 \pm 1.2 | 90.20 \pm 0.5 | 94.65 \pm 0.5 | 65.60 \pm 1.1 | 93.67 \pm 2.9 | 97.52 \pm 0.4 | 97.45 \pm 0.5 | 97.21 \pm 0.4 | |
fac | zer | 84.00 \pm 0.6 | 71.50 \pm 2.2 | 93.79 \pm 0.7 | 96.00 \pm 0.6 | 97.04 \pm 0.6 | 97.03 \pm 0.4 | 95.98 \pm 0.3 | 97.75 \pm 0.4 | |
fou | kar | 90.11 \pm 1.0 | 75.42 \pm 5.6 | 93.98 \pm 0.4 | 89.12 \pm 4.3 | 96.90 \pm 0.5 | 97.19 \pm 0.6 | 97.45 \pm 0.4 | 97.45 \pm 0.3 | |
fou | mor | 70.22 \pm 0.4 | 55.82 \pm 4.6 | 60.62 \pm 1.6 | 82.30 \pm 0.9 | 78.25 \pm 0.6 | 83.81 \pm 0.7 | 82.09 \pm 1.0 | 84.80 \pm 0.6 | |
fou | pix | 68.44 \pm 0.4 | 76.10 \pm 4.7 | 78.24 \pm 1.1 | 90.41 \pm 3.2 | 76.28 \pm 1.3 | 96.11 \pm 0.5 | 97.62 \pm 0.4 | 97.74 \pm 0.3 | |
fou | zer | 74.10 \pm 0.9 | 62.80 \pm 4.1 | 79.38 \pm 1.2 | 79.53 \pm 4.5 | 83.16 \pm 1.4 | 85.98 \pm 0.9 | 85.33 \pm 1.1 | 86.56 \pm 1.0 | |
kar | mor | 64.09 \pm 0.6 | 82.00 \pm 1.6 | 72.92 \pm 2.7 | 91.95 \pm 2.8 | 91.89 \pm 0.6 | 97.28 \pm 0.5 | 96.83 \pm 0.5 | 97.14 \pm 0.4 | |
kar | pix | 88.37 \pm 0.9 | 88.85 \pm 0.8 | 95.07 \pm 0.6 | 92.59 \pm 2.0 | 95.98 \pm 0.3 | 94.68 \pm 0.5 | 97.54 \pm 0.4 | 97.31 \pm 0.5 | |
kar | zer | 90.77 \pm 1.0 | 75.97 \pm 2.8 | 94.17 \pm 0.6 | 88.47 \pm 2.9 | 93.57 \pm 0.9 | 96.69 \pm 0.4 | 96.98 \pm 0.4 | 97.42 \pm 0.4 | |
mor | pix | 68.66 \pm 1.5 | 82.01 \pm 2.1 | 67.21 \pm 2.3 | 93.04 \pm 0.7 | 90.08 \pm 1.0 | 96.89 \pm 0.4 | 97.20 \pm 0.5 | 97.19 \pm 0.4 | |
mor | zer | 73.22 \pm 0.6 | 50.35 \pm 1.8 | 60.95 \pm 1.4 | 84.55 \pm 0.9 | 80.59 \pm 0.9 | 84.19 \pm 0.8 | 81.75 \pm 1.1 | 84.29 \pm 0.7 | |
pix | zer | 82.46 \pm 0.6 | 71.16 \pm 2.8 | 82.81 \pm 1.2 | 91.67 \pm 2.1 | 91.81 \pm 1.2 | 96.30 \pm 0.5 | 97.35 \pm 0.5 | 97.30 \pm 0.5 | |
AWA | cq | lss | 73.11 \pm 2.1 | 62.08 \pm 0.3 | 76.19 \pm 1.0 | 70.51 \pm 1.3 | 77.53 \pm 1.7 | 87.80 \pm 2.8 | 89.03 \pm 1.4 | 89.80 \pm 1.2 |
cq | phog | 65.21 \pm 1.4 | 73.10 \pm 1.2 | 72.42 \pm 1.6 | 70.15 \pm 0.9 | 74.51 \pm 2.1 | 85.58 \pm 2.7 | 86.71 \pm 2.3 | 86.81 \pm 1.2 | |
cq | rgsift | 60.22 \pm 1.3 | 61.40 \pm 1.7 | 78.04 \pm 1.3 | 82.87 \pm 2.4 | 82.83 \pm 1.4 | 90.99 \pm 3.0 | 93.44 \pm 0.6 | 94.34 \pm 0.8 | |
cq | sift | 74.33 \pm 1.3 | 61.28 \pm 1.9 | 77.85 \pm 1.4 | 83.19 \pm 2.1 | 80.05 \pm 1.7 | 81.59 \pm 5.2 | 87.17 \pm 0.8 | 90.68 \pm 0.8 | |
cq | surf | 75.86 \pm 1.7 | 69.30 \pm 2.1 | 79.07 \pm 0.8 | 73.55 \pm 2.3 | 81.59 \pm 1.5 | 93.58 \pm 1.1 | 94.36 \pm 1.0 | 95.35 \pm 0.5 | |
lss | phog | 69.96 \pm 1.7 | 59.72 \pm 0.2 | 68.12 \pm 1.2 | 64.86 \pm 2.6 | 71.36 \pm 1.4 | 80.48 \pm 2.0 | 81.76 \pm 1.1 | 81.62 \pm 1.1 | |
lss | rgsift | 78.65 \pm 0.9 | 63.21 \pm 1.3 | 73.64 \pm 1.0 | 78.28 \pm 2.8 | 77.28 \pm 1.4 | 87.38 \pm 4.3 | 90.13 \pm 0.7 | 89.95 \pm 1.0 | |
lss | sift | 73.49 \pm 1.0 | 65.72 \pm 2.1 | 73.12 \pm 1.4 | 66.21 \pm 1.6 | 76.69 \pm 1.7 | 81.56 \pm 2.4 | 84.05 \pm 0.9 | 84.07 \pm 1.9 | |
lss | surf | 76.30 \pm 1.4 | 65.33 \pm 1.8 | 74.84 \pm 1.6 | 79.06 \pm 2.8 | 78.52 \pm 1.3 | 89.81 \pm 2.5 | 89.75 \pm 0.8 | 91.12 \pm 0.7 | |
phog | rgsift | 68.18 \pm 1.1 | 48.38 \pm 1.0 | 69.49 \pm 2.3 | 77.37 \pm 1.5 | 74.41 \pm 1.5 | 82.76 \pm 1.1 | 83.57 \pm 1.6 | 83.68 \pm 1.2 | |
phog | sift | 68.26 \pm 1.1 | 70.24 \pm 1.1 | 68.97 \pm 1.3 | 63.16 \pm 1.3 | 72.14 \pm 1.5 | 80.50 \pm 1.2 | 83.57 \pm 1.1 | 83.75 \pm 1.5 | |
phog | surf | 64.57 \pm 1.4 | 56.94 \pm 0.5 | 71.55 \pm 1.4 | 75.68 \pm 1.9 | 74.43 \pm 2.1 | 84.97 \pm 2.6 | 88.02 \pm 1.8 | 87.34 \pm 0.8 | |
rgsift | sift | 71.35 \pm 1.3 | 58.56 \pm 2.3 | 72.85 \pm 1.1 | 75.28 \pm 2.5 | 76.69 \pm 1.7 | 90.76 \pm 2.2 | 93.44 \pm 0.4 | 93.79 \pm 1.0 | |
rgsift | surf | 75.55 \pm 1.3 | 67.22 \pm 1.6 | 76.94 \pm 2.2 | 84.10 \pm 2.4 | 80.46 \pm 1.7 | 93.25 \pm 1.2 | 92.82 \pm 0.8 | 93.66 \pm 0.8 | |
sift | surf | 75.33 \pm 1.3 | 63.36 \pm 1.6 | 74.27 \pm 1.2 | 82.14 \pm 2.7 | 75.51 \pm 1.1 | 90.07 \pm 3.4 | 90.67 \pm 1.0 | 91.69 \pm 1.1 | |
ADNI | AV | FDG | 65.47 \pm 1.8 | 73.28 \pm 2.1 | 75.28 \pm 2.6 | 76.25 \pm 2.1 | 76.26 \pm 2.5 | 79.59 \pm 1.9 | 68.64 \pm 3.3 | 80.86 \pm 2.1 |
AV | VBM | 71.02 \pm 2.4 | 71.02 \pm 2.8 | 73.24 \pm 3.1 | 63.47 \pm 2.1 | 60.67 \pm 2.7 | 81.59 \pm 2.5 | 78.38 \pm 2.5 | 80.70 \pm 2.8 | |
FDG | VBM | 61.37 \pm 1.2 | 65.28 \pm 1.6 | 70.37 \pm 2.6 | 64.05 \pm 1.6 | 70.95 \pm 1.8 | 80.12 \pm 2.0 | 74.97 \pm 2.9 | 80.21 \pm 1.7 | |
USPS | left | right | 62.14 \pm 0.6 | 80.11 \pm 1.2 | 66.67 \pm 0.9 | 63.96 \pm 2.0 | 82.89 \pm 1.9 | 89.76 \pm 0.3 | 96.19 \pm 0.7 | 96.03 \pm 0.6 |
The proposed DCLMP method yielded the second-lowest estimation errors in most cases, slightly higher than the proposed C-DCLMP. The improvement achieved by C-DCLMP method is significant, especially on AWA and USPS datasets.
We also conducted age estimation experiments on AgeDB [43], CACD [44] and IMDB-WIKI [45]. These three databases are illustrated in Figure 2.
We extracted BIF [46] and HoG [47] feature vectors and reduced dimensions to 200 by PCA as two view representations. We randomly chose 50,100,150 samples for training. Also, we use VGG19 [48] and Resnet50 [45] to extract deep feature vectors from AgeDB, CACD and IMDB-WIKI databases. We report results in Tables 3, 5 and 6.
training samples | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) |
50 | 17.70 \pm 0.5 | 17.78 \pm 0.5 | 16.10 \pm 0.4 | 15.93 \pm 0.4 | 15.62 \pm 0.5 | 15.48 \pm 0.2 | 15.59 \pm 0.1 | 15.16 \pm 0.4 |
100 | 16.81 \pm 0.5 | 17.23 \pm 0.6 | 14.74 \pm 0.5 | 14.79 \pm 0.5 | 14.67 \pm 0.4 | 14.57 \pm 0.2 | 14.60 \pm 0.2 | 14.13 \pm 0.2 |
150 | 15.43 \pm 0.5 | 16.25 \pm 0.6 | 13.83 \pm 0.5 | 13.49 \pm 0.4 | 13.43 \pm 0.4 | 13.21 \pm 0.2 | 13.48 \pm 0.2 | 13.19 \pm 0.3 |
training samples | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) |
50 | 16.17 \pm 0.5 | 16.27 \pm 0.46 | 15.42 \pm 0.5 | 15.09 \pm 0.5 | 14.78 \pm 0.5 | 14.67 \pm 0.3 | 14.75 \pm 0.2 | 14.52 \pm 0.2 |
100 | 15.86 \pm 0.5 | 15.79 \pm 0.6 | 14.89 \pm 0.8 | 14.23 \pm 0.4 | 14.09 \pm 0.4 | 13.78 \pm 0.3 | 14.07 \pm 0.3 | 13.68 \pm 0.2 |
150 | 15.09 \pm 0.5 | 14.81 \pm 0.3 | 13.97 \pm 0.5 | 13.41 \pm 0.6 | 13.34 \pm 0.5 | 13.16 \pm 0.3 | 13.46 \pm 0.3 | 13.15 \pm 0.3 |
training samples | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) |
50 | 16.28 \pm 0.5 | 16.78 \pm 0.4 | 15.79 \pm 0.4 | 14.98 \pm 0.4 | 14.38 \pm 0.4 | 14.28 \pm 0.4 | 14.10 \pm 0.3 | 13.95 \pm 0.3 |
100 | 15.45 \pm 0.4 | 16.52 \pm 0.5 | 15.04 \pm 0.5 | 14.44 \pm 0.4 | 13.99 \pm 0.4 | 13.98 \pm 0.3 | 13.85 \pm 0.2 | 13.74 \pm 0.2 |
150 | 15.20 \pm 0.5 | 15.41 \pm 0.5 | 14.79 \pm 0.4 | 14.02 \pm 0.5 | 13.73 \pm 0.5 | 13.79 \pm 0.2 | 13.67 \pm 0.1 | 13.63 \pm 0.3 |
training samples | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) |
50 | 16.07 \pm 0.6 | 16.27 \pm 0.4 | 15.35 \pm 0.4 | 14.21 \pm 0.6 | 13.39 \pm 0.4 | 13.49 \pm 0.3 | 13.52 \pm 0.3 | 13.27 \pm 0.2 |
100 | 15.69 \pm 0.5 | 15.75 \pm 0.3 | 14.65 \pm 0.5 | 14.17 \pm 0.5 | 13.28 \pm 0.3 | 13.26 \pm 0.3 | 13.24 \pm 0.2 | 12.97 \pm 0.4 |
150 | 15.22 \pm 0.4 | 15.32 \pm 0.4 | 14.45 \pm 0.3 | 14.01 \pm 0.6 | 13.01 \pm 0.3 | 12.94 \pm 0.3 | 12.91 \pm 0.3 | 12.76 \pm 0.4 |
training samples | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) |
50 | 14.29 \pm 0.5 | 14.39 \pm 0.5 | 13.49 \pm 0.3 | 13.04 \pm 0.5 | 12.26 \pm 0.4 | 12.37 \pm 0.3 | 11.84 \pm 0.3 | 11.65 \pm 0.3 |
100 | 13.97 \pm 0.5 | 13.87 \pm 0.4 | 12.79 \pm 0.5 | 12.35 \pm 0.3 | 11.96 \pm 0.3 | 11.86 \pm 0.3 | 11.53 \pm 0.2 | 11.13 \pm 0.3 |
150 | 13.43 \pm 0.5 | 13.56 \pm 0.5 | 12.48 \pm 0.3 | 12.26 \pm 0.4 | 11.66 \pm 0.3 | 11.65 \pm 0.3 | 11.45 \pm 0.2 | 10.98 \pm 0.3 |
The estimation errors (MAEs) of all the methods reduced monotonically. The age MAEs of DCLMP are the second lowest, demonstrating the solidness of our modelling cross-view discriminative knowledge and data manifold structures. We can also observe that C-DCLMP yields the lowest estimation errors, demonstrating its effectiveness and superiority.
For the proposed methods, we performed parameter analysis t , \gamma and \lambda involved in (3.21), respectively. Specifically, we conducted age estimation experiments on both AgeDB and CACD. The results are plotted in Figures 3–5.
Geometric weighting parameter t of C-DCLMP: We find some interesting observations from Figure 3. That is, with t increasing from 0 to 1, the estimation error descended first and then rose again. It shows that the similar manifolds within class and the inter-class data distributions are helpful in regularizing the model solution space.
Metric balance parameter \gamma of C-DCLMP: We can observe from Figure 4 that, the age estimation error (MAE) achieved the lowest values when 0.1 < \gamma < 0.9 . This observation illustrates that preserving the data cross-view discriminative knowledge and the manifold distributions is useful and helps improve the estimation precision.
Metric prior parameter \lambda of C-DCLMP: Figure 5 shows that, with increased \lambda value, age estimation error descended to its lowest around \lambda = 1e-1 and then increased steeply. It demonstrates that incorporating moderate metric prior knowledge can regularize the model solution positively, but excess prior knowledge may dominate the entire data rule and mislead the training of the model.
For the proposed methods and the comparison methods mentioned above, we performed time complexity analysis. Specifically, we conducted age estimation experiments on both AgeDB and CACD by choosing 100 samples from each class for training while taking the rest for testing, respectively. We reported the averaged results in Table 7.
Dataset | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) |
AgeDB | 0.10 \pm 0.12 | 0.06 \pm 0.05 | 0.41 \pm 0.03 | 0.18 \pm 0.03 | 0.52 \pm 0.02 | 0.11 \pm 0.10 | 57.74 \pm 0.71 | 54.94 \pm 0.32 |
CACD | 0.09 \pm 0.13 | 0.06 \pm 0.10 | 0.38 \pm 0.09 | 0.15 \pm 0.04 | 0.47 \pm 0.03 | 0.07 \pm 0.01 | 30.86 \pm 0.61 | 31.04 \pm 0.68 |
For the proposed methods, we performed ablation experiments. Specifically, we conducted age estimation experiments on both AgeDB and CACD. We repeated the experiment 10 times with random data partitions and reported the averaged results in Table 8. In Table 8, each referred part corresponds to Eq (3.7).
Dataset | First part | Second part | Third part | C-DCLMP (ours)(ours) |
AgeDB | \checkmark | \checkmark | 14.49 \pm 0.16 | |
\checkmark | \checkmark | 14.51 \pm 0.10 | ||
\checkmark | \checkmark | 14.47 \pm 0.22 | ||
\checkmark | \checkmark | \checkmark | 14.18 \pm 0.32 | |
CACD | \checkmark | \checkmark | 14.07 \pm 0.25 | |
\checkmark | \checkmark | 14.08 \pm 0.32 | ||
\checkmark | \checkmark | 14.04 \pm 0.21 | ||
\checkmark | \checkmark | \checkmark | 13.73 \pm 0.24 |
In this paper, we proposed a DCLMP, in which both the cross-view discriminative information and the spatial structural information of training data is taken into consideration to enhance subsequent decision making. To pursue closed-form solutions, we remodeled the objective of DCLMP to nonlinear geodesic space and consequently achieved its convex formulation (C-DCLMP). Finally, we evaluated the proposed methods and demonstrated their superiority on various benchmark and real face datasets. In the future, we will consider exploring the latent information of the unlabeled data from the feature and label level, and study how to combine related advanced multi-view learning methods to reduce the computational consumption of the model and further improve the generalization ability of the model in various scenarios.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported by the National Natural Science Foundation of China under Grant 62176128, the Open Projects Program of State Key Laboratory for Novel Software Technology of Nanjing University under Grant KFKT2022B06, the Fundamental Research Funds for the Central Universities No. NJ2022028, the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) fund, as well as the Qing Lan Project of the Jiangsu Province.
[1] | Butterworth S, Hill N, Kallamthodi S (2005) Feasibility Study Into The Use Of Hydrogen Fuel. Rail Safety & Standards Board. |
[2] | Ellen MacArthur Foundation, What is a circular economy? Ellen MacArthur Foundation, 2019. Available from: https://www.ellenmacarthurfoundation.org/circular-economy/concept. |
[3] |
Kirchherr J, Piscicelli L, Bour R, et al. (2018) Barriers to the circular economy: Evidence from the European Union (EU). Ecol Econ 150: 264-272. doi: 10.1016/j.ecolecon.2018.04.028
![]() |
[4] | Falcone PM (2019) Tourism-Based circular economy in Salento (South Italy): A SWOT-ANP Analysis. Soc Sci, 8. |
[5] |
Bartolacci F, Paolini A, Quaranta AG, et al. (2018) Assessing factors that influence waste management financial sustainability. Waste Manag 79: 571-579. doi: 10.1016/j.wasman.2018.07.050
![]() |
[6] |
De Gioannis G, Muntoni A, Polettini A, et al. (2013) A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manag 33: 1345-1361. doi: 10.1016/j.wasman.2013.02.019
![]() |
[7] |
Wu C, Williams PT (2010) Pyrolysis-gasification of post-consumer municipal solid plastic waste for hydrogen production. Int J Hydrogen Energy 35: 949-957. doi: 10.1016/j.ijhydene.2009.11.045
![]() |
[8] |
Andika R, Nandiyanto ABD, Putra ZA, et al. (2018) Co-electrolysis for power-to-methanol applications. Renew Sustain Energy Rev 95: 227-241. doi: 10.1016/j.rser.2018.07.030
![]() |
[9] | Ranisau J, Barbouti M, Trainor A, et al. (2017) Power-to-gas implementation for a polygeneration system in southwestern ontario. Sustainability, 9. |
[10] |
Valente A, Iribarren D, Dufour J (2019) End of life of fuel cells and hydrogen products: From technologies to strategies. Int J Hydrogen Energy 44: 20965-20977. doi: 10.1016/j.ijhydene.2019.01.110
![]() |
[11] | United Nations, The 17 Goals. United Nations Department of Economic and Social Affairs, 2018. Available from: https://sdgs.un.org/goals. |
[12] |
Falcone PM, Hiete M, Sapio A (2021) Hydrogen economy and sustainable development goals: Review and policy insights. Curr Opin Green Sustain Chem 31: 100506. doi: 10.1016/j.cogsc.2021.100506
![]() |
[13] | Australian Government Department of Industry, Science, Energy, and Resources, Australia's National Hydrogen Strategy. COAG Energy Council Hydrogen Working Group, 2019. Available from: https://www.industry.gov.au/sites/default/files/2019-11/australias-national-hydrogen-strategy.pdf. |
[14] | Deutsche Energie-Agentur, The role of clean hydrogen in the future energy systems of Japan and Germany. Jensterle M, Narita J, Piria R, et al., 2019. Available from: https://www.dena.de/fileadmin/dena/Publikationen/PDFs/2019/The_role_of_clean_hydrogen_in_the_future_energy_systems.pdf. |
[15] | Climate Change Act 2008, c. 27. 2008. Available from: https://www.legislation.gov.uk/ukpga/2008/27/contents. |
[16] | Climate Change Committee, Hydrogen in a low-carbon economy. Joffe D, Livermore S, Hemsley M, et al., 2018. Available from: https://www.theccc.org.uk/wp-content/uploads/2018/11/Hydrogen-in-a-low-carbon-economy.pdf. |
[17] | Energy Independence Now, Renewable Hydrogen Roadmap, 2018. Available from: https://einow.org/rh2roadmap. |
[18] | Government of Canada, 2019 Hydrogen Pathways—Enabling a clean growth future for Canadians. Natural Resources Canada, 2019. Available from: https://www.nrcan.gc.ca/energy-efficiency/transportation-alternative-fuels/resource-library/2019-hydrogen-pathways-enabling-clean-growth-future-for-canadians/21961. |
[19] | Natural Resources Canada, Hydrogen strategy for Canada: Seizing the opportunities for hydrogen. Natural Resources Canada, 2020. Available from: https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/environment/hydrogen/NRCan_Hydrogen-Strategy-Canada-na-en-v3.pdf. |
[20] | Independent Electricity System Operator, 2020 Year in Review. IESO, 2020. Available from: https://www.ieso.ca/en/Corporate-IESO/Media/Year-End-Data. |
[21] | Orecchini F, Naso V (2012) Energy systems in the era of energy vectors, Springer US. |
[22] | Zhao W, Stasko R (2019) The Present Status of Hydrogen Technologies and Project Deployments in Ontario and Canada with an Overview of Global H2 Activities. |
[23] |
Shamsi H, Tran M-K, Akbarpour S, et al. (2021) Macro-Level optimization of hydrogen infrastructure and supply chain for zero-emission vehicles on a canadian corridor. J Clean Prod 289: 125163. doi: 10.1016/j.jclepro.2020.125163
![]() |
[24] | Maroufmashat A, Fowler M (2017) Low-carbon transportation pathways through power-to-gas. 2017 5th IEEE Int Conf Smart Energy Grid Eng SEGE 2017, 353-356. |
[25] | Wu XY, Luo Y, Hess F, et al. (2021) Editorial: Sustainable Hydrogen for energy, fuel and commodity applications. Front Energy Res 9: 231. |
[26] |
Ludwig M, Haberstroh C, Hesse U (2015) Exergy and cost analyses of hydrogen-based energy storage pathways for residual load management. Int J Hydrogen Energy 40: 11348-11355. doi: 10.1016/j.ijhydene.2015.03.018
![]() |
[27] |
Mukherjee U, Elsholkami M, Walker S, et al. (2015) Optimal sizing of an electrolytic hydrogen production system using an existing natural gas infrastructure. Int J Hydrogen Energy 40: 9760-9772. doi: 10.1016/j.ijhydene.2015.05.102
![]() |
[28] | National Renewable Energy Laboratory, Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues. Melaina M, Antonia O, Penev M, 2013. Available from: https://www.nrel.gov/docs/fy13osti/51995.pdf. |
[29] |
Ramachandran R, Menon RK (1998) An overview of industrial uses of hydrogen. Int J Hydrogen Energy 23: 593-598. doi: 10.1016/S0360-3199(97)00112-2
![]() |
[30] | Maroufmashat A, Fowler M (2017) Transition of future energy system infrastructure; through power-to-gas pathways. Energies, 10. |
[31] |
Luo Y, Wu XY, Shi Y, et al. (2018) Exergy analysis of an integrated solid oxide electrolysis cell-methanation reactor for renewable energy storage. Appl Energy 215: 371-383. doi: 10.1016/j.apenergy.2018.02.022
![]() |
[32] |
Yao Y, Sempuga BC, Liu X, et al. (2020) Production of Fuels and Chemicals from a CO2/H2 Mixture. Reactions 1: 130-146. doi: 10.3390/reactions1020011
![]() |
[33] | Statista, Natural gas consumption worldwide from 1998 to 2019 (in billion cubic meters). Sö nnichsen N, 2021. Available from: https://www.statista.com/statistics/282717/global-natural-gas-consumption/. |
[34] | Washington Post, Global greenhouse gas emissions will hit yet another record high this year, experts project. Dennis B, Mooney C, 2019. Available from: https://www.washingtonpost.com/climate-environment/2019/12/03/global-greenhouse-gas-emissions-will-hit-yet-another-record-high-this-year-experts-project/. |
[35] | Pembina Institute, Hydrogen on the path to net-zero emissions Costs and climate benefits. Ewing M, Israel B, Jutt T, et al., 2020. Available from: https://www.pembina.org/reports/hydrogen-climate-primer-2020.pdf. |
[36] | Alberta, Natural Gas Vision and Strategy. Alberta Energy, 2020. Available from: https://www.alberta.ca/natural-gas-vision-and-strategy.aspx. |
[37] |
Koumi Ngoh S, Njomo D (2012) An overview of hydrogen gas production from solar energy. Renew Sustain Energy Rev 16: 6782-6792. doi: 10.1016/j.rser.2012.07.027
![]() |
[38] | IEA, The clean hydrogen future has already begun. van Hulst, 2019. Available from: https://www.iea.org/commentaries/the-clean-hydrogen-future-has-already-begun. |
[39] |
Wu XY, Ghoniem AF (2019) Mixed ionic-electronic conducting (MIEC) membranes for thermochemical reduction of CO2: A review. Prog Energy Combust Sci 74: 1-30. doi: 10.1016/j.pecs.2019.04.003
![]() |
[40] |
Soltani R, Rosen MA, Dincer I (2014) Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production. Int J Hydrogen Energy 39: 20266-20275. doi: 10.1016/j.ijhydene.2014.09.161
![]() |
[41] | Government of the Netherlands, Government Strategy on Hydrogen. Ministry of Economic Affairs and Climate Policy, 2020. Available from: https://www.government.nl/documents/publications/2020/04/06/government-strategy-on-hydrogen. |
[42] |
Yan J (2018) Negative-emissions hydrogen energy. Nat Clim Chang 8: 560-561. doi: 10.1038/s41558-018-0215-9
![]() |
[43] | Noussan M, Raimondi PP, Scita R, et al. (2021) The role of green and blue hydrogen in the energy transition—a technological and geopolitical perspective. Sustainability 13: 1-26. |
[44] |
Naterer GF, Suppiah S, Stolberg L, et al. (2011) Clean hydrogen production with the Cu-Cl cycle-Progress of international consortium, I: Experimental unit operations. Int J Hydrogen Energy 36: 15472-15485. doi: 10.1016/j.ijhydene.2011.08.012
![]() |
[45] |
Walker SB, Mukherjee U, Fowler M, et al. (2016) Benchmarking and selection of Power-to-Gas utilizing electrolytic hydrogen as an energy storage alternative. Int J Hydrogen Energy 41: 7717-7731. doi: 10.1016/j.ijhydene.2015.09.008
![]() |
[46] |
Buttler A, Spliethoff H (2018) Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renew Sustain Energy Rev 82: 2440-2454. doi: 10.1016/j.rser.2017.09.003
![]() |
[47] |
Carmo M, Fritz DL, Mergel J, et al. (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38: 4901-4934. doi: 10.1016/j.ijhydene.2013.01.151
![]() |
[48] |
Barbir F (2005) PEM electrolysis for production of hydrogen from renewable energy sources. Sol Energy 78: 661-669. doi: 10.1016/j.solener.2004.09.003
![]() |
[49] | United States Department of Energy, 2017 DOE Hydrogen and Fuel Cells Program Review: Renewable Electrolysis Integrated System Development & Testing. Peters M, Harrison K, Dinh H, et al., 2017. Available from: https://www.hydrogen.energy.gov/pdfs/review17/pd031_peters_2017_o.pdf. |
[50] | Cummins, In its second year, North America's first multi-megawatt power-to-gas facility shows hydrogen's potential. Cummins Inc., 2020. Available from: https://www.cummins.com/news/2020/11/12/its-second-year-north-americas-first-multi-megawatt-power-gas-facility-shows. |
[51] |
Hubert M, Laurencin J, Cloetens P, et al. (2018) Impact of Nickel agglomeration on Solid Oxide Cell operated in fuel cell and electrolysis modes. J Power Sources 397: 240-251. doi: 10.1016/j.jpowsour.2018.06.097
![]() |
[52] | Hossain E, Faruque HMR, Sunny MSH, et al. (2020) A comprehensive review on energy storage systems: Types, comparison, current scenario, applications, barriers, and potential solutions, policies, and future prospects. Energies 13: 1-127. |
[53] |
Boudghene Stambouli A, Traversa E (2002) Fuel cells, an alternative to standard sources of energy. Renew Sustain Energy Rev 6: 295-304. doi: 10.1016/S1364-0321(01)00015-6
![]() |
[54] |
Chen M, Sun X, Chatzichristodoulou C, et al. (2017) Thermoneutral operation of solid oxide electrolysis cells in potentiostatic mode. ECS Trans 78: 3077-3088. doi: 10.1149/07801.3077ecst
![]() |
[55] |
Schefold J, Brisse A, Poepke H (2015) Long-term steam electrolysis with electrolyte-supported solid oxide cells. Electrochim Acta 179: 161-168. doi: 10.1016/j.electacta.2015.04.141
![]() |
[56] |
Al-Subaie A, Maroufmashat A, Elkamel A, et al. (2017) Presenting the implementation of power-to-gas to an oil refinery as a way to reduce carbon intensity of petroleum fuels. Int J Hydrogen Energy 42: 19376-19388. doi: 10.1016/j.ijhydene.2017.06.067
![]() |
[57] | United States Department of Energy, Hydrogen Production: Natural Gas Reforming. Office of Energy Efficiency and Renewable Energy, 2016. Available from: https://www.energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming. |
[58] | United States Department of Energy, Hydrogen Production: Coal Gasification. Office of Energy Efficiency and Renewable Energy, 2016. Available from: https://www.energy.gov/eere/fuelcells/hydrogen-production-coal-gasification. |
[59] | Ghazvini M, Sadeghzadeh M, Ahmadi MH, et al. (2019) Geothermal energy use in hydrogen production: A review. Int J Energy Res 43: 7823-7851. |
[60] | Chen L, Qi Z, Zhang S, et al. (2020) Catalytic hydrogen production from methane: A review on recent progress and prospect. Catalysts 10. |
[61] | Rethwisch DG, Dumesic JA (1986) The effects of metal-oxygen bond strength on properties of oxides: Ⅱ. Water-gas shift over bulk oxides. Appl Catal 21: 97-109. |
[62] | Grenoble DC, Estadt MM, Ollis DF (1981) The chemistry and catalysis of the water gas shift reaction: 1. The kinetics over supported metal catalysts. J Catal 67: 90-102. |
[63] |
Boudjemaa A, Auroux A, Boumaza S, et al. (2009) Hydrogen production on iron-magnesium oxide in the high-temperature water-gas shift reaction. React Kinet Catal Lett 98: 319-325. doi: 10.1007/s11144-009-0084-3
![]() |
[64] |
Amadeo NE, Laborde MA (1995) Hydrogen production from the low-temperature water-gas shift reaction: Kinetics and simulation of the industrial reactor. Int J Hydrogen Energy 20: 949-956. doi: 10.1016/0360-3199(94)00130-R
![]() |
[65] |
Bouarab R, Bennici S, Mirodatos C, et al. (2014) Hydrogen Production from the Water-Gas Shift Reaction on Iron Oxide Catalysts. J Catal 2014: 1-6. doi: 10.1155/2014/612575
![]() |
[66] |
Yamashita K, Barreto L (2005) Energyplexes for the 21st century: Coal gasification for co-producing hydrogen, electricity and liquid fuels. Energy 30: 2453-2473. doi: 10.1016/j.energy.2004.12.002
![]() |
[67] |
Higman C, Tam S (2014) Advances in coal gasification, hydrogenation, and gas treating for the production of chemicals and fuels. Chem Rev 114: 1673-1708. doi: 10.1021/cr400202m
![]() |
[68] |
Rezaee P, Naeij HR (2020) A new approach to separate hydrogen from carbon dioxide using graphdiyne-like membrane. Sci Rep 10: 1-13. doi: 10.1038/s41598-020-69933-9
![]() |
[69] | Wu XY, Cai L, Zhu X, et al. (2020) A high-efficiency novel IGCC-OTM carbon capture power plant design. J Adv Manuf Process 2: e10059. |
[70] | Cai L, Wu XY, Zhu X, et al. (2020) High-performance oxygen transport membrane reactors integrated with IGCC for carbon capture. AIChE J 66. |
[71] |
Locatelli G, Mancini M, Todeschini N (2013) Generation IV nuclear reactors: Current status and future prospects. Energy Policy 61: 1503-1520. doi: 10.1016/j.enpol.2013.06.101
![]() |
[72] |
Lewis MA, Masin JG (2009) The evaluation of alternative thermochemical cycles—Part Ⅱ: The down-selection process. Int J Hydrogen Energy 34: 4125-4135. doi: 10.1016/j.ijhydene.2008.07.085
![]() |
[73] |
Naterer GF, Suppiah S, Stolberg L, et al. (2013) Progress of international hydrogen production network for the thermochemical Cu-Cl cycle. Int J Hydrogen Energy 38: 740-759. doi: 10.1016/j.ijhydene.2012.10.023
![]() |
[74] |
Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sustain Energy Rev 67: 597-611. doi: 10.1016/j.rser.2016.09.044
![]() |
[75] |
Bartels JR, Pate MB, Olson NK (2010) An economic survey of hydrogen production from conventional and alternative energy sources. Int J Hydrogen Energy 35: 8371-8384. doi: 10.1016/j.ijhydene.2010.04.035
![]() |
[76] |
Orhan MF, Dincer I, Naterer GF (2008) Cost analysis of a thermochemical Cu-Cl pilot plant for nuclear-based hydrogen production. Int J Hydrogen Energy 33: 6006-6020. doi: 10.1016/j.ijhydene.2008.05.038
![]() |
[77] |
Cetinkaya E, Dincer I, Naterer GF (2012) Life cycle assessment of various hydrogen production methods. Int J Hydrogen Energy 37: 2071-2080. doi: 10.1016/j.ijhydene.2011.10.064
![]() |
[78] |
Tarkowski R (2019) Underground hydrogen storage: Characteristics and prospects. Renew Sustain Energy Rev 105: 86-94. doi: 10.1016/j.rser.2019.01.051
![]() |
[79] |
Lemieux A, Sharp K, Shkarupin A (2019) Preliminary assessment of underground hydrogen storage sites in Ontario, Canada. Int J Hydrogen Energy 44: 15193-15204. doi: 10.1016/j.ijhydene.2019.04.113
![]() |
[80] |
Haghi E, Kong Q, Fowler M, et al. (2019) Assessing the potential of surplus clean power in reducing GHG emissions in the building sector using game theory; a case study of Ontario, Canada. IET Energy Syst Integr 1: 184-193. doi: 10.1049/iet-esi.2019.0019
![]() |
[81] | United States Department of Energy, Hydrogen Storage. Office of Energy Efficiency and Renewable Energy, 2020. Available from: https://www.energy.gov/eere/fuelcells/hydrogen-storage. |
[82] | Olabi AG, Wilberforce T, Sayed ET, et al. (2020) Prospects of fuel cell combined heat and power systems. Energies, 13. |
[83] | The Canadian Hydrogen and Fuel Cell Association, Fuel Cells - The Sustainable Power Source. Canadian Hydrogen and Fuel Cell Association, 2016. Available from: http://www.chfca.ca/fuel-cells-hydrogen/about-fuel-cells/. |
[84] | Fuel Cell Store, Direct Methanol Fuel Cell Improvements. Spiegel C, 2018. Available from: https://www.fuelcellstore.com/blog-section/direct-methanol-fuel-cell-improvements. |
[85] | Joghee P, Malik JN, Pylypenko S, et al. (2015) A review on direct methanol fuel cells—In the perspective of energy and sustainability. MRS Energy Sustain 2: E3. |
[86] | NBC News, US Nissan plant to use methanol to cut costs. Poovey B, 2009. Available from: https://www.nbcnews.com/id/wbna32553892. |
[87] |
Sammes N, Bove R, Stahl K (2004) Phosphoric acid fuel cells: Fundamentals and applications. Curr Opin Solid State Mater Sci 8: 372-378. doi: 10.1016/j.cossms.2005.01.001
![]() |
[88] | Leo T (2012) Molten carbonate fuel cells: theory and application. Comprehensive Renewable Energy, 247-259. |
[89] |
Dwivedi S (2020) Solid oxide fuel cell: Materials for anode, cathode and electrolyte. Int J Hydrogen Energy 45: 23988-24013. doi: 10.1016/j.ijhydene.2019.11.234
![]() |
[90] |
Abdelkareem MA, Elsaid K, Wilberforce T, et al. (2021) Environmental aspects of fuel cells: A review. Sci Total Environ 752: 141803. doi: 10.1016/j.scitotenv.2020.141803
![]() |
[91] |
Kirubakaran A, Jain S, Nema RK (2009) A review on fuel cell technologies and power electronic interface. Renew Sustain Energy Rev 13: 2430-2440. doi: 10.1016/j.rser.2009.04.004
![]() |
[92] | Bagotskii VS, Skundin AM, Volfkovich YM (2014) Electrochemical Power Sources—Batteries, Fuel Cells, and Supercapacitors—18. Proton-Exchange Membrane Fuel Cells (PEMFC), John Wiley & Sons, Ltd. |
[93] | Government of Canada, Canadian Environmental Sustainability Indicators: Greenhouse gas emissions. Environment and Climate Change Canada, 2020. Available from: www.canada.ca/en/environment-climate-change/services/environmental-indicators/greenhouse-gas-emissions.html. |
[94] | United States Environmental Protection Agency, National Air Quality: Status and Trends Through 2007. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Air Quality Assessment Division, 2008. Available from: epa.gov/sites/production/files/2017-11/documents/trends_brochure_2007.pdf. |
[95] | Government of Canada, Air pollution from cars, trucks, vans and SUVs. Environment and Climate Change Canada, 2017. Available from: https://www.canada.ca/en/environment-climate-change/services/air-pollution/sources/transportation/cars-trucks-vans-suvs.html. |
[96] | Government of Canadian Environmental Sustainability Indicators: Air pollutant emissions. Environment and Climate Change Canada, 2019. Available from: https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/air-pollutant-emissions.html. |
[97] | City of Toronto, Path To Healthier Air: Toronto Air Pollution Burden of Illness Update. Toronto Public Health, 2014. Available from: https://www.toronto.ca/wp-content/uploads/2017/11/9190-tph-Air-Pollution-Burden-of-Illness-2014.pdf. |
[98] |
Mohankumar S, Senthilkumar P (2017) Particulate matter formation and its control methodologies for diesel engine: A comprehensive review. Renew Sustain Energy Rev 80: 1227-1238. doi: 10.1016/j.rser.2017.05.133
![]() |
[99] | Canada Energy Regulator, Provincial and Territorial Energy Profiles—Ontario. Canada Energy Regulator, 2020. Available from: https://www.cer-rec.gc.ca/en/data-analysis/energy-markets/provincial-territorial-energy-profiles/provincial-territorial-energy-profiles-ontario.html. |
[100] | Office of the Auditor General of Ontario, 2015 Annual Report—3.05 Electricity Power System Planning. Office of the Auditor General of Ontario, 2015. Available from: https://www.auditor.on.ca/en/content/annualreports/arbyyear/ar2015.html. |
[101] | Green Ribbon Panel, 2020 Green Ribbon Panel Report: Clean Air, Climate Change and Practical, Innovative Solutions—Policy Enabled Competitive Advantages Tuned for Growth. Green Ribbon Panel, 2020. Available from: http://www.greenribbonpanel.com/reports-and-publications/. |
[102] | Bruce Power, History: 2010s. Available from: https://www.brucepower.com/about-us/history/#twentyten. |
[103] | Probe International, Power Exports at What Cost? How Ontario Electricity Customers Are Paying More to Dump the Province's Excess Power. Yauch B, Mitchnick S, 2016. Available from: http://probeinternational.org/library/wp-content/uploads/2016/09/power-exports-at-what-cost.pdf. |
[104] | Bird L, Cochran J, Wang X (2014) Wind and solar energy curtailment: Experience and practices in the United States. Natl Renew Energy Lab 58. |
[105] |
Rose S, Apt J (2014) The cost of curtailing wind turbines for secondary frequency regulation capacity. Energy Syst 5: 407-422. doi: 10.1007/s12667-013-0093-1
![]() |
[106] | Independent Electricity System Operator, 2019 Year in Review. IESO, 2019. Available from: https://www.ieso.ca/en/Sector-Participants/IESO-News/2020/01/2019-year-in-review. |
[107] | Ontario Society of Professional Engineers, Ontario Wasted More Than $1 Billion Worth of Clean Energy in 2016. OSPE, 2017. Available from: https://ospe.on.ca/advocacy/ontario-wasted-more-than-1-billion-worth-of-clean-energy-in-2016-enough-to-power-760000-homes/. |
[108] | Fraser Institute, Auditor general report sheds more light on Ontario's soaring electricity costs. Eisen B, Jackson T, 2015. Available from: https://www.fraserinstitute.org/blogs/auditor-general-report-sheds-more-light-on-ontarios-soaring-electricity-costs. |
[109] | Mukherjee U, Walker S, Maroufmashat A, et al. (2016) Power-to-gas to meet transportation demand while providing ancillary services to the electrical grid. 2016 4th IEEE Int Conf Smart Energy Grid Eng SEGE 2016, 221-225. |
[110] | Sperling D (1988) New transportation fuels: a strategic approach to technological change, Berkeley: University of California Press. |
[111] | Canadian Urban Transit Research & Innovation Consortium, Pan-Canadian Hydrogen Fuel Cell Electric Bus Demonstration and Integration Trial. CUTRIC, 2020. Available from: https://cutric-crituc.org/project/pan-canadian-hydrogen-fuel-cell-vehicle-demonstration-integration-trial. |
[112] | Al-Subaie A, Elkamel A, Mukherjee U, et al. (2017) Exploring the potential of power-to-gas concept to meet Ontario's industrial demand of hydrogen. 2017 5th IEEE Int Conf Smart Energy Grid Eng SEGE 2017, 336-340. |
[113] | The Essential Chemical Industry - online, Hydrogen. Lazonby J, Waddington D, 2016. Available from: https://www.essentialchemicalindustry.org/chemicals/hydrogen.html. |
[114] |
Akhoundzadeh MH, Raahemifar K, Panchal S, et al. (2019) A conceptualized hydrail powertrain: A case study of the Union Pearson Express route. World Electr Veh J 10: 1-14. doi: 10.3390/wevj10010001
![]() |
[115] | Metrolinx, Hydrail Feasibility Study: Fact Sheet. Metrolinx, 2018. Available from: http://www.metrolinx.com/en/news/announcements/hydrail-resources/HydrailFactsheet_Feb21.pdf. |
[116] |
Mukherjee U, Maroufmashat A, Ranisau J, et al. (2017) Techno-economic, environmental, and safety assessment of hydrogen powered community microgrids; case study in Canada. Int J Hydrogen Energy 42: 14333-14349. doi: 10.1016/j.ijhydene.2017.03.083
![]() |
[117] | Ontario Power Generation, Community micro grid project now online. Ontario Power Generation, 2019. Available from: https://www.opg.com/media_release/community-micro-grid-project-now-online/. |
[118] |
Maroufmashat A, Fowler M, Sattari Khavas S, et al. (2016) Mixed integer linear programing based approach for optimal planning and operation of a smart urban energy network to support the hydrogen economy. Int J Hydrogen Energy 41: 7700-7716. doi: 10.1016/j.ijhydene.2015.08.038
![]() |
[119] | Government of Canada, Businesses—Canadian Industry Statistics. Statistics Canada, 2019. Available from: https://www.ic.gc.ca/app/scr/app/cis/businesses-entreprises/48-49. |
[120] |
van Lanen D, Walker SB, Fowler M, et al. (2016) Market mechanisms in power-to-gas systems. Int J Environ Stud 73: 379-389. doi: 10.1080/00207233.2016.1165475
![]() |
[121] | Thiel GP, Stark AK (2021) To decarbonize industry, we must decarbonize heat. Joule. |
[122] | Enbridge Gas, Enbridge Gas announces a $5.2M Hydrogen Blending Pilot Project to further explore greening of the natural gas grid. Enbridge Gas Inc., 2020. Available from: https://www.newswire.ca/news-releases/enbridge-gas-announces-a-5-2m-hydrogen-blending-pilot-project-to-further-explore-greening-of-the-natural-gas-grid-849137548.html. |
[123] |
Nicita A, Maggio G, Andaloro APF, et al. (2020) Green hydrogen as feedstock: Financial analysis of a photovoltaic-powered electrolysis plant. Int J Hydrogen Energy 45: 11395-11408. doi: 10.1016/j.ijhydene.2020.02.062
![]() |
[124] |
Eliezer D, Eliaz N, Senkov ON, et al. (2000) Positive effects of hydrogen in metals. Mater Sci Eng A 280: 220-224. doi: 10.1016/S0921-5093(99)00670-X
![]() |
[125] |
Gielen D, Saygin D, Taibi E, et al. (2020) Renewables-based decarbonization and relocation of iron and steel making: A case study. J Ind Ecol 24: 1113-1125. doi: 10.1111/jiec.12997
![]() |
[126] |
Ikäheimo J, Kiviluoma J, Weiss R, et al. (2018) Power-to-ammonia in future North European 100 % renewable power and heat system. Int J Hydrogen Energy 43: 17295-17308. doi: 10.1016/j.ijhydene.2018.06.121
![]() |
[127] |
Valera-Medina A, Xiao H, Owen-Jones M, et al. (2018) Ammonia for power. Prog Energy Combust Sci 69: 63-102. doi: 10.1016/j.pecs.2018.07.001
![]() |
[128] |
Hogerwaard J, Dincer I (2016) Comparative efficiency and environmental impact assessments of a hydrogen assisted hybrid locomotive. Int J Hydrogen Energy 41: 6894-6904. doi: 10.1016/j.ijhydene.2016.01.118
![]() |
[129] | Dalena F, Senatore A, Marino A, et al. (2018) Methanol Production and Applications: An Overview. Methanol Sci Eng, 3-28. |
[130] | Steynberg AP (2004) Chapter 1 - Introduction to Fischer-Tropsch Technology, In: Steynberg A, Dry MBT-S in SS and C (Eds.), Fischer-Tropsch Technology, Elsevier, 1-63. |
[131] |
Xu H, Maroto-Valer MM, Ni M, et al. (2019) Low carbon fuel production from combined solid oxide CO2 co-electrolysis and Fischer-Tropsch synthesis system: A modelling study. Appl Energy 242: 911-918. doi: 10.1016/j.apenergy.2019.03.145
![]() |
[132] |
Peng DD, Fowler M, Elkamel A, et al. (2016) Enabling utility-scale electrical energy storage by a power-to-gas energy hub and underground storage of hydrogen and natural gas. J Nat Gas Sci Eng 35: 1180-1199. doi: 10.1016/j.jngse.2016.09.045
![]() |
Dataset | View Represenations | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) | |
MFD | fac | fou | 80.22 \pm 0.9 | 80.00 \pm 0.2 | 90.64 \pm 1.3 | 95.15 \pm 0.9 | 96.46 \pm 2.4 | 98.11 \pm 0.3 | 94.49 \pm 1.7 | 98.03 \pm 0.3 |
fac | kar | 92.12 \pm 0.5 | 90.10 \pm 0.8 | 95.39 \pm 0.6 | 95.33 \pm 0.7 | 96.52 \pm 1.2 | 97.06 \pm 0.4 | 96.86 \pm 0.5 | 97.93 \pm 0.6 | |
fac | mor | 78.22 \pm 0.8 | 63.22 \pm 4.3 | 72.32 \pm 2.4 | 95.22 \pm 0.9 | 94.23 \pm 1.0 | 98.13 \pm 0.3 | 90.97 \pm 2.5 | 97.63 \pm 0.3 | |
fac | pix | 83.02 \pm 1.2 | 90.20 \pm 0.5 | 94.65 \pm 0.5 | 65.60 \pm 1.1 | 93.67 \pm 2.9 | 97.52 \pm 0.4 | 97.45 \pm 0.5 | 97.21 \pm 0.4 | |
fac | zer | 84.00 \pm 0.6 | 71.50 \pm 2.2 | 93.79 \pm 0.7 | 96.00 \pm 0.6 | 97.04 \pm 0.6 | 97.03 \pm 0.4 | 95.98 \pm 0.3 | 97.75 \pm 0.4 | |
fou | kar | 90.11 \pm 1.0 | 75.42 \pm 5.6 | 93.98 \pm 0.4 | 89.12 \pm 4.3 | 96.90 \pm 0.5 | 97.19 \pm 0.6 | 97.45 \pm 0.4 | 97.45 \pm 0.3 | |
fou | mor | 70.22 \pm 0.4 | 55.82 \pm 4.6 | 60.62 \pm 1.6 | 82.30 \pm 0.9 | 78.25 \pm 0.6 | 83.81 \pm 0.7 | 82.09 \pm 1.0 | 84.80 \pm 0.6 | |
fou | pix | 68.44 \pm 0.4 | 76.10 \pm 4.7 | 78.24 \pm 1.1 | 90.41 \pm 3.2 | 76.28 \pm 1.3 | 96.11 \pm 0.5 | 97.62 \pm 0.4 | 97.74 \pm 0.3 | |
fou | zer | 74.10 \pm 0.9 | 62.80 \pm 4.1 | 79.38 \pm 1.2 | 79.53 \pm 4.5 | 83.16 \pm 1.4 | 85.98 \pm 0.9 | 85.33 \pm 1.1 | 86.56 \pm 1.0 | |
kar | mor | 64.09 \pm 0.6 | 82.00 \pm 1.6 | 72.92 \pm 2.7 | 91.95 \pm 2.8 | 91.89 \pm 0.6 | 97.28 \pm 0.5 | 96.83 \pm 0.5 | 97.14 \pm 0.4 | |
kar | pix | 88.37 \pm 0.9 | 88.85 \pm 0.8 | 95.07 \pm 0.6 | 92.59 \pm 2.0 | 95.98 \pm 0.3 | 94.68 \pm 0.5 | 97.54 \pm 0.4 | 97.31 \pm 0.5 | |
kar | zer | 90.77 \pm 1.0 | 75.97 \pm 2.8 | 94.17 \pm 0.6 | 88.47 \pm 2.9 | 93.57 \pm 0.9 | 96.69 \pm 0.4 | 96.98 \pm 0.4 | 97.42 \pm 0.4 | |
mor | pix | 68.66 \pm 1.5 | 82.01 \pm 2.1 | 67.21 \pm 2.3 | 93.04 \pm 0.7 | 90.08 \pm 1.0 | 96.89 \pm 0.4 | 97.20 \pm 0.5 | 97.19 \pm 0.4 | |
mor | zer | 73.22 \pm 0.6 | 50.35 \pm 1.8 | 60.95 \pm 1.4 | 84.55 \pm 0.9 | 80.59 \pm 0.9 | 84.19 \pm 0.8 | 81.75 \pm 1.1 | 84.29 \pm 0.7 | |
pix | zer | 82.46 \pm 0.6 | 71.16 \pm 2.8 | 82.81 \pm 1.2 | 91.67 \pm 2.1 | 91.81 \pm 1.2 | 96.30 \pm 0.5 | 97.35 \pm 0.5 | 97.30 \pm 0.5 | |
AWA | cq | lss | 73.11 \pm 2.1 | 62.08 \pm 0.3 | 76.19 \pm 1.0 | 70.51 \pm 1.3 | 77.53 \pm 1.7 | 87.80 \pm 2.8 | 89.03 \pm 1.4 | 89.80 \pm 1.2 |
cq | phog | 65.21 \pm 1.4 | 73.10 \pm 1.2 | 72.42 \pm 1.6 | 70.15 \pm 0.9 | 74.51 \pm 2.1 | 85.58 \pm 2.7 | 86.71 \pm 2.3 | 86.81 \pm 1.2 | |
cq | rgsift | 60.22 \pm 1.3 | 61.40 \pm 1.7 | 78.04 \pm 1.3 | 82.87 \pm 2.4 | 82.83 \pm 1.4 | 90.99 \pm 3.0 | 93.44 \pm 0.6 | 94.34 \pm 0.8 | |
cq | sift | 74.33 \pm 1.3 | 61.28 \pm 1.9 | 77.85 \pm 1.4 | 83.19 \pm 2.1 | 80.05 \pm 1.7 | 81.59 \pm 5.2 | 87.17 \pm 0.8 | 90.68 \pm 0.8 | |
cq | surf | 75.86 \pm 1.7 | 69.30 \pm 2.1 | 79.07 \pm 0.8 | 73.55 \pm 2.3 | 81.59 \pm 1.5 | 93.58 \pm 1.1 | 94.36 \pm 1.0 | 95.35 \pm 0.5 | |
lss | phog | 69.96 \pm 1.7 | 59.72 \pm 0.2 | 68.12 \pm 1.2 | 64.86 \pm 2.6 | 71.36 \pm 1.4 | 80.48 \pm 2.0 | 81.76 \pm 1.1 | 81.62 \pm 1.1 | |
lss | rgsift | 78.65 \pm 0.9 | 63.21 \pm 1.3 | 73.64 \pm 1.0 | 78.28 \pm 2.8 | 77.28 \pm 1.4 | 87.38 \pm 4.3 | 90.13 \pm 0.7 | 89.95 \pm 1.0 | |
lss | sift | 73.49 \pm 1.0 | 65.72 \pm 2.1 | 73.12 \pm 1.4 | 66.21 \pm 1.6 | 76.69 \pm 1.7 | 81.56 \pm 2.4 | 84.05 \pm 0.9 | 84.07 \pm 1.9 | |
lss | surf | 76.30 \pm 1.4 | 65.33 \pm 1.8 | 74.84 \pm 1.6 | 79.06 \pm 2.8 | 78.52 \pm 1.3 | 89.81 \pm 2.5 | 89.75 \pm 0.8 | 91.12 \pm 0.7 | |
phog | rgsift | 68.18 \pm 1.1 | 48.38 \pm 1.0 | 69.49 \pm 2.3 | 77.37 \pm 1.5 | 74.41 \pm 1.5 | 82.76 \pm 1.1 | 83.57 \pm 1.6 | 83.68 \pm 1.2 | |
phog | sift | 68.26 \pm 1.1 | 70.24 \pm 1.1 | 68.97 \pm 1.3 | 63.16 \pm 1.3 | 72.14 \pm 1.5 | 80.50 \pm 1.2 | 83.57 \pm 1.1 | 83.75 \pm 1.5 | |
phog | surf | 64.57 \pm 1.4 | 56.94 \pm 0.5 | 71.55 \pm 1.4 | 75.68 \pm 1.9 | 74.43 \pm 2.1 | 84.97 \pm 2.6 | 88.02 \pm 1.8 | 87.34 \pm 0.8 | |
rgsift | sift | 71.35 \pm 1.3 | 58.56 \pm 2.3 | 72.85 \pm 1.1 | 75.28 \pm 2.5 | 76.69 \pm 1.7 | 90.76 \pm 2.2 | 93.44 \pm 0.4 | 93.79 \pm 1.0 | |
rgsift | surf | 75.55 \pm 1.3 | 67.22 \pm 1.6 | 76.94 \pm 2.2 | 84.10 \pm 2.4 | 80.46 \pm 1.7 | 93.25 \pm 1.2 | 92.82 \pm 0.8 | 93.66 \pm 0.8 | |
sift | surf | 75.33 \pm 1.3 | 63.36 \pm 1.6 | 74.27 \pm 1.2 | 82.14 \pm 2.7 | 75.51 \pm 1.1 | 90.07 \pm 3.4 | 90.67 \pm 1.0 | 91.69 \pm 1.1 | |
ADNI | AV | FDG | 65.47 \pm 1.8 | 73.28 \pm 2.1 | 75.28 \pm 2.6 | 76.25 \pm 2.1 | 76.26 \pm 2.5 | 79.59 \pm 1.9 | 68.64 \pm 3.3 | 80.86 \pm 2.1 |
AV | VBM | 71.02 \pm 2.4 | 71.02 \pm 2.8 | 73.24 \pm 3.1 | 63.47 \pm 2.1 | 60.67 \pm 2.7 | 81.59 \pm 2.5 | 78.38 \pm 2.5 | 80.70 \pm 2.8 | |
FDG | VBM | 61.37 \pm 1.2 | 65.28 \pm 1.6 | 70.37 \pm 2.6 | 64.05 \pm 1.6 | 70.95 \pm 1.8 | 80.12 \pm 2.0 | 74.97 \pm 2.9 | 80.21 \pm 1.7 | |
USPS | left | right | 62.14 \pm 0.6 | 80.11 \pm 1.2 | 66.67 \pm 0.9 | 63.96 \pm 2.0 | 82.89 \pm 1.9 | 89.76 \pm 0.3 | 96.19 \pm 0.7 | 96.03 \pm 0.6 |
training samples | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) |
50 | 17.70 \pm 0.5 | 17.78 \pm 0.5 | 16.10 \pm 0.4 | 15.93 \pm 0.4 | 15.62 \pm 0.5 | 15.48 \pm 0.2 | 15.59 \pm 0.1 | 15.16 \pm 0.4 |
100 | 16.81 \pm 0.5 | 17.23 \pm 0.6 | 14.74 \pm 0.5 | 14.79 \pm 0.5 | 14.67 \pm 0.4 | 14.57 \pm 0.2 | 14.60 \pm 0.2 | 14.13 \pm 0.2 |
150 | 15.43 \pm 0.5 | 16.25 \pm 0.6 | 13.83 \pm 0.5 | 13.49 \pm 0.4 | 13.43 \pm 0.4 | 13.21 \pm 0.2 | 13.48 \pm 0.2 | 13.19 \pm 0.3 |
training samples | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) |
50 | 16.17 \pm 0.5 | 16.27 \pm 0.46 | 15.42 \pm 0.5 | 15.09 \pm 0.5 | 14.78 \pm 0.5 | 14.67 \pm 0.3 | 14.75 \pm 0.2 | 14.52 \pm 0.2 |
100 | 15.86 \pm 0.5 | 15.79 \pm 0.6 | 14.89 \pm 0.8 | 14.23 \pm 0.4 | 14.09 \pm 0.4 | 13.78 \pm 0.3 | 14.07 \pm 0.3 | 13.68 \pm 0.2 |
150 | 15.09 \pm 0.5 | 14.81 \pm 0.3 | 13.97 \pm 0.5 | 13.41 \pm 0.6 | 13.34 \pm 0.5 | 13.16 \pm 0.3 | 13.46 \pm 0.3 | 13.15 \pm 0.3 |
training samples | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) |
50 | 16.28 \pm 0.5 | 16.78 \pm 0.4 | 15.79 \pm 0.4 | 14.98 \pm 0.4 | 14.38 \pm 0.4 | 14.28 \pm 0.4 | 14.10 \pm 0.3 | 13.95 \pm 0.3 |
100 | 15.45 \pm 0.4 | 16.52 \pm 0.5 | 15.04 \pm 0.5 | 14.44 \pm 0.4 | 13.99 \pm 0.4 | 13.98 \pm 0.3 | 13.85 \pm 0.2 | 13.74 \pm 0.2 |
150 | 15.20 \pm 0.5 | 15.41 \pm 0.5 | 14.79 \pm 0.4 | 14.02 \pm 0.5 | 13.73 \pm 0.5 | 13.79 \pm 0.2 | 13.67 \pm 0.1 | 13.63 \pm 0.3 |
training samples | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) |
50 | 16.07 \pm 0.6 | 16.27 \pm 0.4 | 15.35 \pm 0.4 | 14.21 \pm 0.6 | 13.39 \pm 0.4 | 13.49 \pm 0.3 | 13.52 \pm 0.3 | 13.27 \pm 0.2 |
100 | 15.69 \pm 0.5 | 15.75 \pm 0.3 | 14.65 \pm 0.5 | 14.17 \pm 0.5 | 13.28 \pm 0.3 | 13.26 \pm 0.3 | 13.24 \pm 0.2 | 12.97 \pm 0.4 |
150 | 15.22 \pm 0.4 | 15.32 \pm 0.4 | 14.45 \pm 0.3 | 14.01 \pm 0.6 | 13.01 \pm 0.3 | 12.94 \pm 0.3 | 12.91 \pm 0.3 | 12.76 \pm 0.4 |
training samples | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) |
50 | 14.29 \pm 0.5 | 14.39 \pm 0.5 | 13.49 \pm 0.3 | 13.04 \pm 0.5 | 12.26 \pm 0.4 | 12.37 \pm 0.3 | 11.84 \pm 0.3 | 11.65 \pm 0.3 |
100 | 13.97 \pm 0.5 | 13.87 \pm 0.4 | 12.79 \pm 0.5 | 12.35 \pm 0.3 | 11.96 \pm 0.3 | 11.86 \pm 0.3 | 11.53 \pm 0.2 | 11.13 \pm 0.3 |
150 | 13.43 \pm 0.5 | 13.56 \pm 0.5 | 12.48 \pm 0.3 | 12.26 \pm 0.4 | 11.66 \pm 0.3 | 11.65 \pm 0.3 | 11.45 \pm 0.2 | 10.98 \pm 0.3 |
Dataset | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) |
AgeDB | 0.10 \pm 0.12 | 0.06 \pm 0.05 | 0.41 \pm 0.03 | 0.18 \pm 0.03 | 0.52 \pm 0.02 | 0.11 \pm 0.10 | 57.74 \pm 0.71 | 54.94 \pm 0.32 |
CACD | 0.09 \pm 0.13 | 0.06 \pm 0.10 | 0.38 \pm 0.09 | 0.15 \pm 0.04 | 0.47 \pm 0.03 | 0.07 \pm 0.01 | 30.86 \pm 0.61 | 31.04 \pm 0.68 |
Dataset | First part | Second part | Third part | C-DCLMP (ours)(ours) |
AgeDB | \checkmark | \checkmark | 14.49 \pm 0.16 | |
\checkmark | \checkmark | 14.51 \pm 0.10 | ||
\checkmark | \checkmark | 14.47 \pm 0.22 | ||
\checkmark | \checkmark | \checkmark | 14.18 \pm 0.32 | |
CACD | \checkmark | \checkmark | 14.07 \pm 0.25 | |
\checkmark | \checkmark | 14.08 \pm 0.32 | ||
\checkmark | \checkmark | 14.04 \pm 0.21 | ||
\checkmark | \checkmark | \checkmark | 13.73 \pm 0.24 |
Dataset | View Represenations | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) | |
MFD | fac | fou | 80.22 \pm 0.9 | 80.00 \pm 0.2 | 90.64 \pm 1.3 | 95.15 \pm 0.9 | 96.46 \pm 2.4 | 98.11 \pm 0.3 | 94.49 \pm 1.7 | 98.03 \pm 0.3 |
fac | kar | 92.12 \pm 0.5 | 90.10 \pm 0.8 | 95.39 \pm 0.6 | 95.33 \pm 0.7 | 96.52 \pm 1.2 | 97.06 \pm 0.4 | 96.86 \pm 0.5 | 97.93 \pm 0.6 | |
fac | mor | 78.22 \pm 0.8 | 63.22 \pm 4.3 | 72.32 \pm 2.4 | 95.22 \pm 0.9 | 94.23 \pm 1.0 | 98.13 \pm 0.3 | 90.97 \pm 2.5 | 97.63 \pm 0.3 | |
fac | pix | 83.02 \pm 1.2 | 90.20 \pm 0.5 | 94.65 \pm 0.5 | 65.60 \pm 1.1 | 93.67 \pm 2.9 | 97.52 \pm 0.4 | 97.45 \pm 0.5 | 97.21 \pm 0.4 | |
fac | zer | 84.00 \pm 0.6 | 71.50 \pm 2.2 | 93.79 \pm 0.7 | 96.00 \pm 0.6 | 97.04 \pm 0.6 | 97.03 \pm 0.4 | 95.98 \pm 0.3 | 97.75 \pm 0.4 | |
fou | kar | 90.11 \pm 1.0 | 75.42 \pm 5.6 | 93.98 \pm 0.4 | 89.12 \pm 4.3 | 96.90 \pm 0.5 | 97.19 \pm 0.6 | 97.45 \pm 0.4 | 97.45 \pm 0.3 | |
fou | mor | 70.22 \pm 0.4 | 55.82 \pm 4.6 | 60.62 \pm 1.6 | 82.30 \pm 0.9 | 78.25 \pm 0.6 | 83.81 \pm 0.7 | 82.09 \pm 1.0 | 84.80 \pm 0.6 | |
fou | pix | 68.44 \pm 0.4 | 76.10 \pm 4.7 | 78.24 \pm 1.1 | 90.41 \pm 3.2 | 76.28 \pm 1.3 | 96.11 \pm 0.5 | 97.62 \pm 0.4 | 97.74 \pm 0.3 | |
fou | zer | 74.10 \pm 0.9 | 62.80 \pm 4.1 | 79.38 \pm 1.2 | 79.53 \pm 4.5 | 83.16 \pm 1.4 | 85.98 \pm 0.9 | 85.33 \pm 1.1 | 86.56 \pm 1.0 | |
kar | mor | 64.09 \pm 0.6 | 82.00 \pm 1.6 | 72.92 \pm 2.7 | 91.95 \pm 2.8 | 91.89 \pm 0.6 | 97.28 \pm 0.5 | 96.83 \pm 0.5 | 97.14 \pm 0.4 | |
kar | pix | 88.37 \pm 0.9 | 88.85 \pm 0.8 | 95.07 \pm 0.6 | 92.59 \pm 2.0 | 95.98 \pm 0.3 | 94.68 \pm 0.5 | 97.54 \pm 0.4 | 97.31 \pm 0.5 | |
kar | zer | 90.77 \pm 1.0 | 75.97 \pm 2.8 | 94.17 \pm 0.6 | 88.47 \pm 2.9 | 93.57 \pm 0.9 | 96.69 \pm 0.4 | 96.98 \pm 0.4 | 97.42 \pm 0.4 | |
mor | pix | 68.66 \pm 1.5 | 82.01 \pm 2.1 | 67.21 \pm 2.3 | 93.04 \pm 0.7 | 90.08 \pm 1.0 | 96.89 \pm 0.4 | 97.20 \pm 0.5 | 97.19 \pm 0.4 | |
mor | zer | 73.22 \pm 0.6 | 50.35 \pm 1.8 | 60.95 \pm 1.4 | 84.55 \pm 0.9 | 80.59 \pm 0.9 | 84.19 \pm 0.8 | 81.75 \pm 1.1 | 84.29 \pm 0.7 | |
pix | zer | 82.46 \pm 0.6 | 71.16 \pm 2.8 | 82.81 \pm 1.2 | 91.67 \pm 2.1 | 91.81 \pm 1.2 | 96.30 \pm 0.5 | 97.35 \pm 0.5 | 97.30 \pm 0.5 | |
AWA | cq | lss | 73.11 \pm 2.1 | 62.08 \pm 0.3 | 76.19 \pm 1.0 | 70.51 \pm 1.3 | 77.53 \pm 1.7 | 87.80 \pm 2.8 | 89.03 \pm 1.4 | 89.80 \pm 1.2 |
cq | phog | 65.21 \pm 1.4 | 73.10 \pm 1.2 | 72.42 \pm 1.6 | 70.15 \pm 0.9 | 74.51 \pm 2.1 | 85.58 \pm 2.7 | 86.71 \pm 2.3 | 86.81 \pm 1.2 | |
cq | rgsift | 60.22 \pm 1.3 | 61.40 \pm 1.7 | 78.04 \pm 1.3 | 82.87 \pm 2.4 | 82.83 \pm 1.4 | 90.99 \pm 3.0 | 93.44 \pm 0.6 | 94.34 \pm 0.8 | |
cq | sift | 74.33 \pm 1.3 | 61.28 \pm 1.9 | 77.85 \pm 1.4 | 83.19 \pm 2.1 | 80.05 \pm 1.7 | 81.59 \pm 5.2 | 87.17 \pm 0.8 | 90.68 \pm 0.8 | |
cq | surf | 75.86 \pm 1.7 | 69.30 \pm 2.1 | 79.07 \pm 0.8 | 73.55 \pm 2.3 | 81.59 \pm 1.5 | 93.58 \pm 1.1 | 94.36 \pm 1.0 | 95.35 \pm 0.5 | |
lss | phog | 69.96 \pm 1.7 | 59.72 \pm 0.2 | 68.12 \pm 1.2 | 64.86 \pm 2.6 | 71.36 \pm 1.4 | 80.48 \pm 2.0 | 81.76 \pm 1.1 | 81.62 \pm 1.1 | |
lss | rgsift | 78.65 \pm 0.9 | 63.21 \pm 1.3 | 73.64 \pm 1.0 | 78.28 \pm 2.8 | 77.28 \pm 1.4 | 87.38 \pm 4.3 | 90.13 \pm 0.7 | 89.95 \pm 1.0 | |
lss | sift | 73.49 \pm 1.0 | 65.72 \pm 2.1 | 73.12 \pm 1.4 | 66.21 \pm 1.6 | 76.69 \pm 1.7 | 81.56 \pm 2.4 | 84.05 \pm 0.9 | 84.07 \pm 1.9 | |
lss | surf | 76.30 \pm 1.4 | 65.33 \pm 1.8 | 74.84 \pm 1.6 | 79.06 \pm 2.8 | 78.52 \pm 1.3 | 89.81 \pm 2.5 | 89.75 \pm 0.8 | 91.12 \pm 0.7 | |
phog | rgsift | 68.18 \pm 1.1 | 48.38 \pm 1.0 | 69.49 \pm 2.3 | 77.37 \pm 1.5 | 74.41 \pm 1.5 | 82.76 \pm 1.1 | 83.57 \pm 1.6 | 83.68 \pm 1.2 | |
phog | sift | 68.26 \pm 1.1 | 70.24 \pm 1.1 | 68.97 \pm 1.3 | 63.16 \pm 1.3 | 72.14 \pm 1.5 | 80.50 \pm 1.2 | 83.57 \pm 1.1 | 83.75 \pm 1.5 | |
phog | surf | 64.57 \pm 1.4 | 56.94 \pm 0.5 | 71.55 \pm 1.4 | 75.68 \pm 1.9 | 74.43 \pm 2.1 | 84.97 \pm 2.6 | 88.02 \pm 1.8 | 87.34 \pm 0.8 | |
rgsift | sift | 71.35 \pm 1.3 | 58.56 \pm 2.3 | 72.85 \pm 1.1 | 75.28 \pm 2.5 | 76.69 \pm 1.7 | 90.76 \pm 2.2 | 93.44 \pm 0.4 | 93.79 \pm 1.0 | |
rgsift | surf | 75.55 \pm 1.3 | 67.22 \pm 1.6 | 76.94 \pm 2.2 | 84.10 \pm 2.4 | 80.46 \pm 1.7 | 93.25 \pm 1.2 | 92.82 \pm 0.8 | 93.66 \pm 0.8 | |
sift | surf | 75.33 \pm 1.3 | 63.36 \pm 1.6 | 74.27 \pm 1.2 | 82.14 \pm 2.7 | 75.51 \pm 1.1 | 90.07 \pm 3.4 | 90.67 \pm 1.0 | 91.69 \pm 1.1 | |
ADNI | AV | FDG | 65.47 \pm 1.8 | 73.28 \pm 2.1 | 75.28 \pm 2.6 | 76.25 \pm 2.1 | 76.26 \pm 2.5 | 79.59 \pm 1.9 | 68.64 \pm 3.3 | 80.86 \pm 2.1 |
AV | VBM | 71.02 \pm 2.4 | 71.02 \pm 2.8 | 73.24 \pm 3.1 | 63.47 \pm 2.1 | 60.67 \pm 2.7 | 81.59 \pm 2.5 | 78.38 \pm 2.5 | 80.70 \pm 2.8 | |
FDG | VBM | 61.37 \pm 1.2 | 65.28 \pm 1.6 | 70.37 \pm 2.6 | 64.05 \pm 1.6 | 70.95 \pm 1.8 | 80.12 \pm 2.0 | 74.97 \pm 2.9 | 80.21 \pm 1.7 | |
USPS | left | right | 62.14 \pm 0.6 | 80.11 \pm 1.2 | 66.67 \pm 0.9 | 63.96 \pm 2.0 | 82.89 \pm 1.9 | 89.76 \pm 0.3 | 96.19 \pm 0.7 | 96.03 \pm 0.6 |
training samples | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) |
50 | 17.70 \pm 0.5 | 17.78 \pm 0.5 | 16.10 \pm 0.4 | 15.93 \pm 0.4 | 15.62 \pm 0.5 | 15.48 \pm 0.2 | 15.59 \pm 0.1 | 15.16 \pm 0.4 |
100 | 16.81 \pm 0.5 | 17.23 \pm 0.6 | 14.74 \pm 0.5 | 14.79 \pm 0.5 | 14.67 \pm 0.4 | 14.57 \pm 0.2 | 14.60 \pm 0.2 | 14.13 \pm 0.2 |
150 | 15.43 \pm 0.5 | 16.25 \pm 0.6 | 13.83 \pm 0.5 | 13.49 \pm 0.4 | 13.43 \pm 0.4 | 13.21 \pm 0.2 | 13.48 \pm 0.2 | 13.19 \pm 0.3 |
training samples | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) |
50 | 16.17 \pm 0.5 | 16.27 \pm 0.46 | 15.42 \pm 0.5 | 15.09 \pm 0.5 | 14.78 \pm 0.5 | 14.67 \pm 0.3 | 14.75 \pm 0.2 | 14.52 \pm 0.2 |
100 | 15.86 \pm 0.5 | 15.79 \pm 0.6 | 14.89 \pm 0.8 | 14.23 \pm 0.4 | 14.09 \pm 0.4 | 13.78 \pm 0.3 | 14.07 \pm 0.3 | 13.68 \pm 0.2 |
150 | 15.09 \pm 0.5 | 14.81 \pm 0.3 | 13.97 \pm 0.5 | 13.41 \pm 0.6 | 13.34 \pm 0.5 | 13.16 \pm 0.3 | 13.46 \pm 0.3 | 13.15 \pm 0.3 |
training samples | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) |
50 | 16.28 \pm 0.5 | 16.78 \pm 0.4 | 15.79 \pm 0.4 | 14.98 \pm 0.4 | 14.38 \pm 0.4 | 14.28 \pm 0.4 | 14.10 \pm 0.3 | 13.95 \pm 0.3 |
100 | 15.45 \pm 0.4 | 16.52 \pm 0.5 | 15.04 \pm 0.5 | 14.44 \pm 0.4 | 13.99 \pm 0.4 | 13.98 \pm 0.3 | 13.85 \pm 0.2 | 13.74 \pm 0.2 |
150 | 15.20 \pm 0.5 | 15.41 \pm 0.5 | 14.79 \pm 0.4 | 14.02 \pm 0.5 | 13.73 \pm 0.5 | 13.79 \pm 0.2 | 13.67 \pm 0.1 | 13.63 \pm 0.3 |
training samples | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) |
50 | 16.07 \pm 0.6 | 16.27 \pm 0.4 | 15.35 \pm 0.4 | 14.21 \pm 0.6 | 13.39 \pm 0.4 | 13.49 \pm 0.3 | 13.52 \pm 0.3 | 13.27 \pm 0.2 |
100 | 15.69 \pm 0.5 | 15.75 \pm 0.3 | 14.65 \pm 0.5 | 14.17 \pm 0.5 | 13.28 \pm 0.3 | 13.26 \pm 0.3 | 13.24 \pm 0.2 | 12.97 \pm 0.4 |
150 | 15.22 \pm 0.4 | 15.32 \pm 0.4 | 14.45 \pm 0.3 | 14.01 \pm 0.6 | 13.01 \pm 0.3 | 12.94 \pm 0.3 | 12.91 \pm 0.3 | 12.76 \pm 0.4 |
training samples | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) |
50 | 14.29 \pm 0.5 | 14.39 \pm 0.5 | 13.49 \pm 0.3 | 13.04 \pm 0.5 | 12.26 \pm 0.4 | 12.37 \pm 0.3 | 11.84 \pm 0.3 | 11.65 \pm 0.3 |
100 | 13.97 \pm 0.5 | 13.87 \pm 0.4 | 12.79 \pm 0.5 | 12.35 \pm 0.3 | 11.96 \pm 0.3 | 11.86 \pm 0.3 | 11.53 \pm 0.2 | 11.13 \pm 0.3 |
150 | 13.43 \pm 0.5 | 13.56 \pm 0.5 | 12.48 \pm 0.3 | 12.26 \pm 0.4 | 11.66 \pm 0.3 | 11.65 \pm 0.3 | 11.45 \pm 0.2 | 10.98 \pm 0.3 |
Dataset | CCA | DCA | MPECCA | DCCA | CECCA | CDCA | DCLMP (ours) | C-DCLMP (ours) |
AgeDB | 0.10 \pm 0.12 | 0.06 \pm 0.05 | 0.41 \pm 0.03 | 0.18 \pm 0.03 | 0.52 \pm 0.02 | 0.11 \pm 0.10 | 57.74 \pm 0.71 | 54.94 \pm 0.32 |
CACD | 0.09 \pm 0.13 | 0.06 \pm 0.10 | 0.38 \pm 0.09 | 0.15 \pm 0.04 | 0.47 \pm 0.03 | 0.07 \pm 0.01 | 30.86 \pm 0.61 | 31.04 \pm 0.68 |
Dataset | First part | Second part | Third part | C-DCLMP (ours)(ours) |
AgeDB | \checkmark | \checkmark | 14.49 \pm 0.16 | |
\checkmark | \checkmark | 14.51 \pm 0.10 | ||
\checkmark | \checkmark | 14.47 \pm 0.22 | ||
\checkmark | \checkmark | \checkmark | 14.18 \pm 0.32 | |
CACD | \checkmark | \checkmark | 14.07 \pm 0.25 | |
\checkmark | \checkmark | 14.08 \pm 0.32 | ||
\checkmark | \checkmark | 14.04 \pm 0.21 | ||
\checkmark | \checkmark | \checkmark | 13.73 \pm 0.24 |