Research article Special Issues

Initial boundary value problem for fractional p-Laplacian Kirchhoff type equations with logarithmic nonlinearity

  • Received: 16 February 2021 Accepted: 15 March 2021 Published: 24 March 2021
  • In this paper, we study the initial boundary value problem for a class of fractional p-Laplacian Kirchhoff type diffusion equations with logarithmic nonlinearity. Under suitable assumptions, we obtain the extinction property and accurate decay estimates of solutions by virtue of the logarithmic Sobolev inequality. Moreover, we discuss the blow-up property and global boundedness of solutions.

    Citation: Peng Shi, Min Jiang, Fugeng Zeng, Yao Huang. Initial boundary value problem for fractional p-Laplacian Kirchhoff type equations with logarithmic nonlinearity[J]. Mathematical Biosciences and Engineering, 2021, 18(3): 2832-2848. doi: 10.3934/mbe.2021144

    Related Papers:

    [1] Fugeng Zeng, Yao Huang, Peng Shi . Initial boundary value problem for a class of $ p $-Laplacian equations with logarithmic nonlinearity. Mathematical Biosciences and Engineering, 2021, 18(4): 3957-3976. doi: 10.3934/mbe.2021198
    [2] Xiaolin Fan, Tingting Xue, Yongsheng Jiang . Dirichlet problems of fractional $ p $-Laplacian equation with impulsive effects. Mathematical Biosciences and Engineering, 2023, 20(3): 5094-5116. doi: 10.3934/mbe.2023236
    [3] Tingting Xue, Xiaolin Fan, Hong Cao, Lina Fu . A periodic boundary value problem of fractional differential equation involving $ p\left(t \right) $-Laplacian operator. Mathematical Biosciences and Engineering, 2023, 20(3): 4421-4436. doi: 10.3934/mbe.2023205
    [4] Peng Zeng, Dandan Li, Yuanfei Li . The growth or decay estimates for nonlinear wave equations with damping and source terms. Mathematical Biosciences and Engineering, 2023, 20(8): 13989-14004. doi: 10.3934/mbe.2023623
    [5] Yongbing Luo . Improved decay of solution for strongly damped nonlinear wave equations. Mathematical Biosciences and Engineering, 2023, 20(3): 4865-4876. doi: 10.3934/mbe.2023225
    [6] Xinmei Liu, Xinfeng Liang, Xianya Geng . Expected Value of Multiplicative Degree-Kirchhoff Index in Random Polygonal Chains. Mathematical Biosciences and Engineering, 2023, 20(1): 707-719. doi: 10.3934/mbe.2023032
    [7] Xiaohui Qiu, Baoqiang Yan . The existence and nonexistence of positive solutions for a singular Kirchhoff equation with convection term. Mathematical Biosciences and Engineering, 2022, 19(10): 10581-10601. doi: 10.3934/mbe.2022494
    [8] Huy Tuan Nguyen, Nguyen Van Tien, Chao Yang . On an initial boundary value problem for fractional pseudo-parabolic equation with conformable derivative. Mathematical Biosciences and Engineering, 2022, 19(11): 11232-11259. doi: 10.3934/mbe.2022524
    [9] Barbara Łupińska, Ewa Schmeidel . Analysis of some Katugampola fractional differential equations with fractional boundary conditions. Mathematical Biosciences and Engineering, 2021, 18(6): 7269-7279. doi: 10.3934/mbe.2021359
    [10] M. Botros, E. A. A. Ziada, I. L. EL-Kalla . Semi-analytic solutions of nonlinear multidimensional fractional differential equations. Mathematical Biosciences and Engineering, 2022, 19(12): 13306-13320. doi: 10.3934/mbe.2022623
  • In this paper, we study the initial boundary value problem for a class of fractional p-Laplacian Kirchhoff type diffusion equations with logarithmic nonlinearity. Under suitable assumptions, we obtain the extinction property and accurate decay estimates of solutions by virtue of the logarithmic Sobolev inequality. Moreover, we discuss the blow-up property and global boundedness of solutions.



    In this note we show that the result of Theorem 4.16 of [1] is false by constructing a sequence of simple predictable strategies achieving Free-Lunch-with-Vanishing-Risk (FLVR) whose existence contradicts the conclusions of the theorem. The fault in the proof in [1] comes from the improper use of a bound on the compensator αG. Indeed the bound holds only P-almost surely, that is not strong enough to assure the required Novikov condition.

    Using the notation introduced in [1], we consider the initial enlargement GF obtained by extending the natural filtration by the random variable

    (1)

    Assuming a constant proportional volatility ξ>0, it follows that

    ST=˜s0exp(ξBT) ,˜s0:=s0exp(T0(ηtξ2/2)dt) ,

    and the random variable G can be rewritten as , where ck:=˜s0eξk. The length of each interval is λk:=c2kc2k1=˜s0eξ2k(1eξ)>0. To simplify the computations, we assume that the interest rate r=0.

    Proposition 1. Let G be as in (1), the condition (FLVR)H(G) is satisfied.

    Proof. Without loss of generality, we assume that, for some t0<T there exists k0Z such that c2k0λk0/4St0c2k01+λk0/4. We reason for the case G=0, that in particular implies that ST(c2k01,c2k0), the case G=1 is equivalent by symmetry. We define the following finite sets

    Aδn:={c2k0λk04δ(k0)2n, c2k01+λk04+δ(k0)2n} ,n0 ,

    together with the following sequence of stopping times, τ0=t0 and for n1

    τ2n1:=inf{τ2n2t<T:Sτ2n2{c2k0, c2k01}, StAδ} ,τ2n:=inf{τ2n1t<T:St{c2k0, c2k01}Aδn} .

    where we define inf=T. With some abuse of notation, we construct a sequence of strategies {Θn}n with Θ0=0 and for n1, being Cn the following Fτ2n1-measurable random variable

    Cn:={+1 if Sτ2n1=c2k0λk0/41 if Sτ2n1=c2k01+λk0/4 .

    We prove that the sequence of strategies {Θn}n achieves a gain greater than λk04δ(k0), and by appropriately choosing δ(k0) we can get (FLVR)H(G). To short the notation, we introduce the family

    XΘmT=X0+mn=1HnCn(Sτ2nSτ2n1)=X0mn=1Hnδ(k0)2n+λk04(1Hm)X0δ(k0)(112m)+λk04(1Hm)X0δ(k0)+λk04(1Hm) .

    We need to verify that limmHm=0, P(|G=0)-a.s. By definition of convergence a.s., it is equivalent to

    limmP(Hm<ε|G=0)=1 ,ε>0 .

    The sequence of indicator functions is strictly decreasing by construction, so we need to check that

    1=limmP(Hm=0|G=0)=limmP(Sτ2n{c2k0,c2k01} for some n<m|G=0)=limmP(Sτ2n{c2k0,c2k01} for some n<m|ST(c2k01,c2k0)) ,

    where the last condition is satisfied.

    Remark. By using an analogous technique, it can be proved that any random variable generates (FLVR) when B is a subset of positive probability less than one.

    Since the result of Theorem 4.16 in [1] is false, we prove here a weaker result by showing that the strategies of type buy-and-hold do not generate arbitrage, (NA), as it is shown in the following proposition.

    Proposition 2. Let G be as in (1), the condition (NA)H(G) is satisfied with strategies of the type Θ= , being σ any G-stopping time and C a Gσ-measurable random variable not identically zero.

    Proof. We claim that there exists some achieving arbitrage and we look for a contradiction. We start by computing the following conditional probabilities

    P(ST<Sσ|Gσ,σ<T)=P(BT<Bσ|Gσ,σ<T)>0 ,P(ST>Sσ|Gσ,σ<T)=P(BT>Bσ|Gσ,σ<T)>0 . (2)

    We introduce the event A:={C(STSσ)<0}, by the definition of arbitrage we have P(A)=0 and jointly with the law of total probability we find the following contradiction,

    0=P(A)=P(C=0)P(A|C=0)+P(C<0)P(A|C<0)+P(C>0)P(A|C>0)=P(C<0)P(STSσ>0)+P(C>0)P(STSσ<0)=P(C<0)E[P(ST>Sσ|Gσ,σ<T)]+P(C>0)E[P(ST<Sσ|Gσ,σ<T)]>0 ,

    which is positive because P(C0)>0 and the conditional probabilities given by (2).

    The authors declare there is no conflict of interest.



    [1] M. Xiang, V. D. RaDulescu, B. Zhang, Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions, Nonlinearity, 31 (2018), 3228–3250. doi: 10.1088/1361-6544/aaba35
    [2] M. Kirkilionis, S. KraMker, R. Rannacher, Some nonclassical trends in parabolic and parabolic-like evolutions, Trends Nonlinear Anal., 3 (2003), 153–191.
    [3] L. Caffarelli, Nonlocal diffusions, drifts and games, Nonlinear Partial Differ. Equ., 7 (2012), 37–52. doi: 10.1007/978-3-642-25361-4_3
    [4] E. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 5 (2012), 521–573.
    [5] E. Lindgren, P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differ. Equ., 49 (2014), 795–826. doi: 10.1007/s00526-013-0600-1
    [6] H. Brezis, P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evolut. Equ., 4 (2001), 387–404.
    [7] E. Azroul, A. Benkirane, A. Boumazourh, M. Shimi, Exstence results for fractional p(x,)-Laplacian problem via the nehari manifold approach, Appl. Math. Optim., 50 (2020), 968–1007.
    [8] M. Xiang, V. D. RaDulescu, B. Zhang, A critical fractional Choquard-Kirchhoff problem with magnetic field, Commun. Contemp. Math., 21 (2019), 1850004. doi: 10.1142/S0219199718500049
    [9] L. X. Truong, The nehari manifold for a class of Schrdinger equation involving fractional p-Laplacian and sign-changing logarithmic nonlinearity, J. Math. Phys., 60 (2019), 111505. doi: 10.1063/1.5084062
    [10] L. X. Truong, The nehari manifold for fractional p-Laplacian equation with logarithmic nonlinearity on whole space, Comput. Math. Appl., 78 (2019), 3931–3940. doi: 10.1016/j.camwa.2019.06.024
    [11] M. Xiang, V. D. RaDulescu, B. Zhang, Combined effects for fracttonal Schrodinger-Kirchhoff systems with critical, Contr. Opti. Calc. Vari., 24 (2018), 1249–1273. doi: 10.1051/cocv/2017036
    [12] A. Ardila, H. Alex, Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity, Nonlinear Anal. Theor. Methods Appl., 4 (2017), 52–64.
    [13] Y. L. Li, D. B. Wang, J. L. Zhang, Sign-changing solutions for a class of p-Laplacian Kirchhoff-type problem with logarithmic nonlinearity, AIMS Math., 5(2020), 2100–2112. doi: 10.3934/math.2020139
    [14] T. Boudjeriou, Global existence and blow-up for the fractional p-Laplacian with logarithmic nonlinearity, Mediterr J. Math., 17 (2020), 1-24. doi: 10.1007/s00009-019-1430-y
    [15] T. Boudjeriou, Stability of solutions for a parabolic problem involving fractional p-Laplacian with logarithmic nonlinearity, Mediterr J. Math., 17 (2020), 27–51. doi: 10.1007/s00009-019-1442-7
    [16] P. Dai, C. Mu, G. Xu, Blow-up phenomena for a pseudo-parabolic equation with p-Laplacian and logarithmic nonlinearity terms, J. Math. Anal. Appl., 481 (2019), 123439.
    [17] W. Liu, Extinction properties of solutions for a class of fast diffusive p-Laplacian equations, Nonlinear Anal. Theory Meth. Appl., 74 (2011), 4520–4532. doi: 10.1016/j.na.2011.04.016
    [18] S. Toualbia, Z. Abderrahmane, S. Boulaaras, Decay estimate and non-extinction of solutions of p-Laplacian nonlocal heat equations, AIMS Math., 5 (2020), 1663–1679. doi: 10.3934/math.2020112
    [19] M. Xiang, D. Yang, Nonlocal Kirchhoff problems: Extinction and non-extinction of solutions, J. Math. Anal. Appl., 477 (2019), 133–152. doi: 10.1016/j.jmaa.2019.04.020
    [20] B. Guo, W. Gao, Non-extinction of solutions to a fast diffusive p-Laplace equation with Neumann boundary conditions, J. Math. Anal. Appl., 2 (2015), 1527–1531.
    [21] W. Gao, B. Guo, Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the p(x,t)-Laplace operator and a non-local term, Discrete Contin. Dyn. Syst., 36 (2015), 715–730. doi: 10.3934/dcds.2016.36.715
    [22] L. Yan, Z. Yang, Blow-up and non-extinction for a nonlocal parabolic equation with logarithmic nonlinearity, Bound. Value. Probl., 121 (2018), 1–11.
    [23] Y. Tian, C. Mu, Extinction and non-extinction for a p-Laplacian equation with nonlinear source, Nonlinear Anal., 69 (2008), 2422–2431. doi: 10.1016/j.na.2007.08.021
    [24] Y. Cao, C. Liu, Initial boundary value problem for a mixed pseudo-parabolic p-Laplacian type equation with logarithmic nonlinearity, Electron. J. Differ. Equ., 18 (2018), 1–19.
    [25] M. Xiang, D. Hu, D. Yang, Least energy solutions for fractional Kirchhoff problems with logarithmic nonlinearity, Nonlinear Anal., 198 (2020), 111899. doi: 10.1016/j.na.2020.111899
    [26] S. Chen, The extinction behavior of solutions for a class of reaction diffusion equations, Appl. Math. Mech., 22 (2001), 1352–1356.
    [27] M. Xiang, D. Yang, B. Zhang, Degenerate Kirchhoff-type fractional diffusion problem with logarithmic nonlinearity, Asympt. Anal., 188 (2019), 1–17.
    [28] H. Ding, J. Zhou, Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity, Appl. Math. Optim., 478 (2019), 393–420.
    [29] S. Boulaaras, Some existence results for elliptic Kirchhoff equation with changing sign data and a logarithmic nonlinearity, J. Intell. Fuzzy Syst., 42 (2019), 8335–8344.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3425) PDF downloads(202) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog