In this work, we deal with the initial boundary value problem of solutions for a class of linear strongly damped nonlinear wave equations $ u_{tt}-\Delta u -\alpha \Delta u_t = f(u) $ in the frame of a family of potential wells. For this strongly damped wave equation, we not only prove the global-in-time existence of the solution, but we also improve the decay rate of the solution from the polynomial decay rate to the exponential decay rate.
Citation: Yongbing Luo. Improved decay of solution for strongly damped nonlinear wave equations[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 4865-4876. doi: 10.3934/mbe.2023225
In this work, we deal with the initial boundary value problem of solutions for a class of linear strongly damped nonlinear wave equations $ u_{tt}-\Delta u -\alpha \Delta u_t = f(u) $ in the frame of a family of potential wells. For this strongly damped wave equation, we not only prove the global-in-time existence of the solution, but we also improve the decay rate of the solution from the polynomial decay rate to the exponential decay rate.
[1] | V. P. Maslov, P. P. Mosolov, Nonlinear Wave Equations Perturbed by Viscous Terms, Walter de Gruyter, Berlin, New York, 2000. |
[2] | W. N. Findleky, J. S. Lai, K. O. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials, North-Holland, Amsterdam, New York, 1976. |
[3] | J. B. V. D. Berg, S. A. V. Gils, T. P. P. Visser, Parameter dependence of homoclinic solutions in a single long Josephson junction, Nonlinearity, 16 (2003), 707–717. https://doi.org/10.1088/0951-7715/16/2/320 doi: 10.1088/0951-7715/16/2/320 |
[4] | W. X. Qin, P. L. Zhang, Discrete rotating waves in a ring of coupled mechanical oscillators with strong damping, J. Math. Phys., 50 (2009), 052701. https://doi.org/10.1063/1.3122772 doi: 10.1063/1.3122772 |
[5] | C. Dafermos, R. Diperna, The Riemann problem for certain classes of hyperbolic systems of conservation laws, J. Differ. Equations, 20 (1976), 90–114.https://doi.org/10.1016/0022-0396(76)90098-X doi: 10.1016/0022-0396(76)90098-X |
[6] | J. Greenberg, Smooth and time-periodic solutions to the quasilinear wave equation, Arch. Rational Mech. Anal., 60 (1975), 29–50. https://doi.org/10.1137/S0036141000369344 doi: 10.1137/S0036141000369344 |
[7] | J. Keller, On solutions of nonlinear wave equations, Comm. Pure Appl. Math., 10 (1957), 523–530. https://doi.org/10.1002/cpa.3160100404 doi: 10.1002/cpa.3160100404 |
[8] | T. Cazenave, Uniform estimates for solutions of nonlinear Klein-Gordon equations, J. Funct. Anal., 60 (1985), 36–55. https://doi.org/10.1016/0022-1236(85)90057-6 doi: 10.1016/0022-1236(85)90057-6 |
[9] | J. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31–52. https://doi.org/10.3934/dcds.2004.10.31 doi: 10.3934/dcds.2004.10.31 |
[10] | V. Georgiev, G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source term, J. Differ. Equations, 109 (1994), 295–308. https://doi.org/10.1006/jdeq.1994.1051 doi: 10.1006/jdeq.1994.1051 |
[11] | A. Haraux, M. A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var. Partial Differ. Equations, 9 (1999), 95–124. https://doi.org/10.1007/s005260050133 doi: 10.1007/s005260050133 |
[12] | P. Pucci, J. Serrin, Global nonexistence for abstract evolution equations with positive initial energy, J. Differ. Equations, 150 (1998), 203–214. https://doi.org/10.1006/jdeq.1998.3477 doi: 10.1006/jdeq.1998.3477 |
[13] | E. Vitillaro, Global existence theorems for a class of evolution equations with dissipation, Arch. Rational Mech. Anal., 149 (1999), 155–182. https://doi.org/10.1007/s002050050171 doi: 10.1007/s002050050171 |
[14] | G. F. Webb, Existence and asypmtotic behavior for a strongly damped nonlinear wave equation, Canad. J. Math., 32 (1980), 631–643. https://doi.org/10.4153/CJM-1980-049-5 doi: 10.4153/CJM-1980-049-5 |
[15] | D. D. Ang, A. P. N. Dinh, On the strongly damped wave equation $u_tt - \Delta u - \Delta u_t + f(u) = 0$, SIAM J. Math. Anal., 19 (1988), 1409–1417. https://doi.org/10.1137/0519103 doi: 10.1137/0519103 |
[16] | R. Z. Xu, Y. C. Liu, Asymptotic behavior of solutions for initial-boundary value problems for strongly damped nonlinear wave equations, Nonlinear Anal., 69 (2008), 2492–2495. https://doi.org/10.1016/j.na.2007.08.027 doi: 10.1016/j.na.2007.08.027 |
[17] | Y. Liu, P. Liu, On potential well and application to strongly damped nonlinear wave equations, Acta Math. Appl. Sin., 27 (2004). 710–722. https://doi.org/10.2116/analsci.20.717 |
[18] | V. Pata, M. Squassina, On the strongly damped wave equation, Comm. Math. Phys., 253 (2005), 511–533. https://doi.org/10.1007/S00220-004-1233-1 doi: 10.1007/S00220-004-1233-1 |
[19] | F. Gazzola, M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 185–207. https://doi.org/10.1016/j.anihpc.2005.02.007 doi: 10.1016/j.anihpc.2005.02.007 |
[20] | S. Gerbi, B. S. Houari, Exponential decay for solutions to semilinear damped wave equation, Discrete Contin. Dyn. Syst. Ser. S, 5 (2008), 559–566. https://doi.org/10.1002/mma.306 doi: 10.1002/mma.306 |
[21] | R. Z. Xu, Y. B. Yang, Global existence and asymptotic behaviour of solutions for a class of fourth order strongly damped nonlinear wave equations, Q. Appl. Math., 71 (2013), 401–415. https://doi.org/10.1090/s0033-569x-2012-01295-6 doi: 10.1090/s0033-569x-2012-01295-6 |
[22] | D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rat. Mech. Anal., 30 (1968), 148–172. https://doi.org/10.1007/BF00250942 doi: 10.1007/BF00250942 |
[23] | L. E. Payne, D. H. Sattinger, Sadle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273–303. https://doi.org/10.1007/bf02761595 doi: 10.1007/bf02761595 |
[24] | Y. C. Liu, On potential and vacuum isolating of solutions for semilinear wave equations, J. Differ. Equations, 192 (2003), 155–169. https://doi.org/10.1016/S0022-0396(02)00020-7 doi: 10.1016/S0022-0396(02)00020-7 |
[25] | R. Z. Xu, J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732–2763. https://doi.org/10.1016/j.jfa.2013.03.010 doi: 10.1016/j.jfa.2013.03.010 |
[26] | R. Z. Xu, W. Lian, Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 63 (2020), 321–356. https://doi.org/10.1007/s11425-017-9280-x doi: 10.1007/s11425-017-9280-x |
[27] | W. Lian, R. Z. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613–632. https://doi.org/10.1515/anona-2020-0016 doi: 10.1515/anona-2020-0016 |
[28] | W. Lian, J. Wang, R. Z. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differ. Equations, 269 (2020), 4914–4959. https://doi.org/10.1016/j.jde.2020.03.047 doi: 10.1016/j.jde.2020.03.047 |
[29] | C. Yao, V. D. Radulescu, R. Z. Xu, M. Y. Zhang, Global well-posedness analysis for the nonlinear extensible beam equations in a class of modified Woinowsky-Krieger models, Adv. Nonlinear Stud., 22 (2022), 436–468. https://doi.org/10.1515/ans-2022-0024 doi: 10.1515/ans-2022-0024 |
[30] | L. C. Evans, Partial Differential Equations, 2nd edition, American Mathematical Society, 2010. |