
Citation: Thomas P. Witelski. Nonlinear dynamics of dewetting thin films[J]. AIMS Mathematics, 2020, 5(5): 4229-4259. doi: 10.3934/math.2020270
[1] | Shikai Wang, Heming Jia, Xiaoxu Peng . Modified salp swarm algorithm based multilevel thresholding for color image segmentation. Mathematical Biosciences and Engineering, 2020, 17(1): 700-724. doi: 10.3934/mbe.2020036 |
[2] | Shikai Wang, Kangjian Sun, Wanying Zhang, Heming Jia . Multilevel thresholding using a modified ant lion optimizer with opposition-based learning for color image segmentation. Mathematical Biosciences and Engineering, 2021, 18(4): 3092-3143. doi: 10.3934/mbe.2021155 |
[3] | Xiaoxu Peng, Heming Jia, Chunbo Lang . Modified dragonfly algorithm based multilevel thresholding method for color images segmentation. Mathematical Biosciences and Engineering, 2019, 16(6): 6467-6511. doi: 10.3934/mbe.2019324 |
[4] | Nilkanth Mukund Deshpande, Shilpa Gite, Biswajeet Pradhan, Ketan Kotecha, Abdullah Alamri . Improved Otsu and Kapur approach for white blood cells segmentation based on LebTLBO optimization for the detection of Leukemia. Mathematical Biosciences and Engineering, 2022, 19(2): 1970-2001. doi: 10.3934/mbe.2022093 |
[5] | Hong Qi, Guanglei Zhang, Heming Jia, Zhikai Xing . A hybrid equilibrium optimizer algorithm for multi-level image segmentation. Mathematical Biosciences and Engineering, 2021, 18(4): 4648-4678. doi: 10.3934/mbe.2021236 |
[6] | Shenghan Li, Linlin Ye . Multi-level thresholding image segmentation for rubber tree secant using improved Otsu's method and snake optimizer. Mathematical Biosciences and Engineering, 2023, 20(6): 9645-9669. doi: 10.3934/mbe.2023423 |
[7] | Yating Fang, Baojiang Zhong . Cell segmentation in fluorescence microscopy images based on multi-scale histogram thresholding. Mathematical Biosciences and Engineering, 2023, 20(9): 16259-16278. doi: 10.3934/mbe.2023726 |
[8] | Jiande Zhang, Chenrong Huang, Ying Huo, Zhan Shi, Tinghuai Ma . Multi-population cooperative evolution-based image segmentation algorithm for complex helical surface image. Mathematical Biosciences and Engineering, 2020, 17(6): 7544-7561. doi: 10.3934/mbe.2020385 |
[9] | Yijun Yin, Wenzheng Xu, Lei Chen, Hao Wu . CoT-UNet++: A medical image segmentation method based on contextual transformer and dense connection. Mathematical Biosciences and Engineering, 2023, 20(5): 8320-8336. doi: 10.3934/mbe.2023364 |
[10] | Xueyuan Li, MiaoYu, Xiaoling Zhou, Yi Li, Hong Chen, Liping Wang, Jianghui Dong . A method of ultrasound diagnosis for unilateral peripheral entrapment neuropathy based on multilevel side-to-side image contrast. Mathematical Biosciences and Engineering, 2019, 16(4): 2250-2265. doi: 10.3934/mbe.2019111 |
Image segmentation is an important connection from image handling to image investigation, and the intention is to segment a provided image into multiple and unique regions and extricate the objects of interest according to characteristic, color, grain, histogram, grayscale and margin [1,2,3,4,5]. The quality of image segmentation is critical for the accuracy of target feature extraction and target detection, and the processing quality required in image investigation, target identification and machine vision is high. The main image segmentation strategies include thresholding, region, edge, clustering and graphs [6,7,8,9,10]. Compared with other image segmentation strategies, thresholding has the advantages of simple operation, high computational productivity, small capacity space and strong robustness, which have been utilized to illuminate image segmentation. Many algorithms have been applied to settle image segmentation, including the bat algorithm (BA) [11], flower pollination algorithm (FPA) [12], moth swarm algorithm (MSA) [13], particle swarm algorithm (PSO) [14] and water wave optimization (WWO) [15].
Yan et al. designed an improved water wave optimization algorithm to solve the underwater image segmentation, the proposed algorithm had a better segmentation performance [16]. Li et al. presented a fuzzy c-means method to clarify the image segmentation, the algorithm was practical and efficacious [17]. Bao et al. introduced an alternative crossover algorithm to illuminate the color image segmentation, the proposed algorithm had a better segmentation effect [18]. Gao et al. conducted a study on an improved artificial bee colony algorithm based on the Otsu segmentation method for multi-level threshold image segmentation, the results have demonstrated the productiveness and feasibleness of the method [19]. Akay et al. combined the particle swarm optimization with the artificial bee colony algorithm for multilevel thresholding, the mixed algorithm contained higher calculation precision and better segmentation effect [20]. Pare et al. proposed the cuckoo search algorithm to puzzle out the color image thresholding, the proposed algorithm produced a high feature of the segmented images [21]. Lu et al. designed a neutrosophic C-means clustering method to explain the image segmentation, the algorithm had an excellent effect [22]. Galdran et al. presented a red channel approach to resolve the underwater image restoration, the method handled smoothly falsely enlightened zones and achieved a characteristic color adjustment [23]. Vasamsetti et al. proposed a variational improvement mechanism to unravel the underwater image, the algorithm captured the better segmentation result [24]. Bohat et al. proposed novel thresholding heuristic algorithms to settle the multilevel thresholding of images, these algorithms obtained better fitness value and segmentation effect [25]. Ouadfel et al. applied the blended method to resolve the multilevel thresholding, the proposed algorithm was powerful and achievable [26]. Pare et al. designed the Lévy flight firefly algorithm to perform the color image segmentation, the algorithm had better optimization execution in terms of distinctive constancy parameters and estimation time [27]. Satapathy et al. combined the chaotic bat algorithm with the Otsu method to clarify the image thresholding, the algorithm obtained the optimum thresholds [28]. Emberton et al. recommended a novel algorithm to improve permeability by recognizing and portioning image districts, and the algorithm achieved better optimization execution [29]. Sambandam et al. introduced a self-adaptive dragonfly algorithm to perform the digital image multilevel segmentation, the algorithm gained the threshold values [30]. Sun et al. presented a novel compound algorithm to settle the multi-level thresholding, the proposed algorithm significantly reduced the computational complexity of the given segmented images [31]. Díaz-Cortés et al. employed the dragonfly algorithm to calculate the best thresholds of the segmented image, and the proposed algorithm provided a highly reliable clinical decision support [32]. Shen et al. proposed an adjusted flower pollination algorithm to multi-level image thresholding, the results illustrated the superiority of the algorithm in terms of image quality measures, fitness values and convergence calculation [33]. Hao et al. designed a variational pattern to solve the underwater image restoration and evaluate the effectiveness and robustness [34]. Zhou et al. proposed the moth swarm algorithm to optimize the thresholds and obtain a better segmentation effect [35]. Kalyani et al. introduced an exchange market algorithm to solve the image segmentation, and the results indicate that the proposed algorithm balances exploration and exploitation to find the global threshold values [36]. Duan et al. used a modified cuckoo search algorithm to solve the multilevel thresholding image segmentation, and the proposed algorithm had strong robustness and stability to obtain the best results [37]. Elaziz et al. combined the improved volleyball premier league algorithm with the whale optimization algorithm for image segmentation, and the hybrid algorithm had the better segmentation accuracy [38]. Li et al. tried to solve the fuzzy multilevel image segmentation using an improved coyote optimization algorithm, and the proposed algorithm had better threshold levels and segmentation effect [39]. Luo et al. applied the enhanced moth swarm algorithm to address the global optimization problem, and the proposed algorithm had a fast convergence speed and higher calculation accuracy [40]. Li et al. presented Lévy-flight moth-flame algorithm to solve the function optimization and engineering design problems, and the proposed algorithm balanced exploration and exploitation to obtain better optimization results [41]. Wang et al. designed eight complex-valued encoding metaheuristic optimization algorithms to solve the function optimization and engineering optimization problems, and the superiority of the algorithms has been proved [42].
Moth-flame optimization (MFO) simulates the transverse orientation navigation mechanism of moths and overcomes premature convergence to attain the global extremum in the optimization area [43]. MFO has some advantages of simple operation, easy implementation, few adjustment parameters, high search efficiency and strong robustness. MFO has a fast convergence speed and high calculation accuracy. MFO based on Kapur's entropy strategy is utilized to achieve multilevel thresholding image segmentation. MFO can efficiently utilize exploration and exploitation to obtain a better segmentation effect and convergence precision. Ten test images are applied to evaluate the overall segmentation performance of the proposed algorithm. To prove the productivity and practicability of the MFO, the MFO is compared with BA, FPA, MSA, PSO and WWO. The experimental results show that MFO consumes less execution time to obtain a better optimization effect, and MFO is an efficient algorithm.
The remaining sections are as follows: Section 2 provides multilevel thresholding. Section 3 surveys MFO. Section 4 describes the MFO-based multilevel threshold method. Section 5 gives the experimental results and analysis. Finally, conclusions and future research are drawn in Section 6.
The bilevel thresholding method separates an allotted image into foreground and background and can only effectively process a simple image that contains an object. However, this is a poor choice to handle a complex image that contains multiple objects. Therefore, the multilevel thresholding method replaces the bilevel thresholding method to perform image segmentation and obtains the best threshold values in the solution space. Kapur's entropy is a valuable and feasible metric for multilevel thresholding segmentation. Kapur's entropy divides the image into different classes, and the size of the entropy determines whether the category is uniform. Kapur's entropy has a low calculation process, easy implementation, strong stability, fast processing speed and high segmentation accuracy. The entropy of the original image is compactness and separateness between different classes. Kapur's entropy finds the best threshold values by maximizing the fitness value. The selection of the segmentation threshold for MFO is manual. Gao et al. designed an effective genetic first-order statistical image segmentation method to solve quantitative crack detection. The proposed method can automatically determine the best statistical feature and threshold selection [44]. Assuming that [t1,t2,...,tn] are the excellent threshold values, an image is separated into diverse classes [45]. The formula is described as
pi=hi∑L−1i=0h(i) | (1) |
where hi denotes the number of pixels, i denotes gray level, and L denotes the number of levels.
f(t1,t2,...,tn)=H0+H1+H2+...+Hn | (2) |
where
H0=−t1−1∑i=0piω0lnpiω0,ω0=t1−1∑i=0pi | (3) |
H1=−t2−1∑i=t1piω1lnpiω1,ω1=t2−1∑i=t1pi | (4) |
H2=−t3−1∑i=t2piω2lnpiω2,ω2=t3−1∑i=t2pi | (5) |
Hn=−L−1∑i=tnpiωnlnpiωn,ωn=L−1∑i=tnpi | (6) |
H0,H1,...,Hn denote the Kapur's entropies of the distinct classes, and ω0,ω1,...,ωn denote the probabilities of each class.
The unique flight approach of moths at night is called transverse orientation. In MFO, the moths are regarded as a candidate solution, and the positions are regarded as the variables. The moth maintains a fixed flight angle relative to the moon, which is a powerful flight strategy that travels long distances along a straight line. Due to the presence of artificial light sources in nature, the flames are regarded not only as the optimal solutions but also as flags or pins in the search area. The position of each moth is refreshed by the logarithmic spiral movement formula. The transverse orientation is given in Figure 1, and the spiral flying path is given in Figure 2. The corresponding relationship between the algorithm's description and moth-flame's elements is given in Table 1.
Algorithm's description | Moth-flame's elements |
Decision variable | Moth's position in each dimension |
Solutions | Moth's position |
Initial solutions | Random positions of moths |
Current solutions | Current positions of moths |
New solutions | New positions of moths |
Best solution | Flame's position |
Fitness function | Distance between moth and flame |
Process of generating a new solution | Flying in a spiral path toward a flame |
The moths fly in one-dimensional, two-dimensional, three-dimensional or n-dimensional space. MFO is a population-based optimization algorithm, the formula is described as
M=[m1,1m1,2⋯⋯m1,dm2,1m2,2⋯⋯m2,d⋮⋮⋮⋮⋮mn,1mn,2⋯⋯mn,d] | (7) |
where n denotes the number of moths and d denotes the number of dimensions.
The target values of the moths are sorted by an array.
OM=[OM1OM2⋮OMn] | (8) |
The flames are the core component of the MFO, and its matrix is similar to the moth matrix.
F=[F1,1F1,2⋯⋯F1,dF2,1F2,2⋯⋯F2,d⋮⋮⋮⋮⋮Fn,1Fn,2⋯⋯Fn,d] | (9) |
The target values of the flames are sorted by an array.
OF=[OF1OF2⋮OFn] | (10) |
Moths and flames are selected as candidate solutions. The main distinction is that the position update method is different during the iteration process. The moths are chosen as the actual search agents to move in the search area. The flames are chosen as flags or pins that crashed by moths, which is the best solution currently obtained by the moths. Therefore, the moths perform a global search around the flames until the moths find the optimal positions. With the flight mechanism, the moths never lose their best solutions.
The framework of MFO contains three-tuple approximation functions to realize the best solution. The location is described as
MFO=(I,P,T) | (11) |
where I denotes a randomly generated moth swarm and the target function (I:ϕ→{M,OM}), P denotes the central function of the moth (P:M→M), and T denotes the end of the search (T:M→true,false). The I is used to implement the random distribution.
M(i,j)=(ub(i)−lb(i))∗rand()+lb(i) | (12) |
where lb and ub denote the lower and upper bounds of the search space, respectively. In MFO, the moths not only use the transverse orientation to fly but also adopt a logarithmic spiral function to update the flight mechanism.
The logarithmic spiral function is described as
S(Mi,Fj)=Di⋅ebt⋅(cos2πt)+Fj | (13) |
where Di denotes the length between the i-th moth and the j-th flame, b denotes a fixed value of the logarithmic spiral, and t denotes an arbitrary value in [-1, 1].
D is described as
Di=|Fj−Mi| | (14) |
where Mi denotes the i-th moth and Fj denotes the j-th flame.
In MFO, n different positions are used to update the positions of the moths, which will reduce the exploitation of the MFO. Therefore, decreasing the number of flames is beneficial to tackle this issue. The formula is described as
flameno=round(N−l∗N−1T) | (15) |
where N denotes the number of flames, l denotes the current number of iterations, and T denotes the maximum number of iterations.
The MFO is shown in Algorithm 1.
Algorithm 1. MFO. |
Randomly initialize the position of moths and the parameters for Moth-flame |
While iteration≤Max_iteration do |
Renew flame no utilizing Eq (15) |
OM=FitnessFunction(M) |
If iteration=1 then |
F=sort(M) |
OF=sort(OM) |
else |
F=sort(Mt−1,Mt) |
OF=sort(Mt−1,Mt) |
end if |
for i=1:n do |
for j=1:d do |
Renew r and t |
Estimate D utilizing Eq (14) |
Renew M(i,j) utilizing Eq (13) |
end for |
end for |
end while |
Return the best solution |
The position of each moth denotes the threshold value of the segmented image. The moth revises the position to determine the global optimal solution by the threshold level. The correspondence between the threshold segmentation and MFO is given in Table 2. The MFO-based Kapur's entropy is shown in Algorithm 2. The flowchart of MFO for multilevel threshold is shown in Figure 3.
Threshold segmentation | MFO |
A collection (x1,x2,...,xk) scheduling schemes | A moth population (n1,n2,...,nk) moths |
An optimal scheme to resolve the image segmentation | An optimal flame's position |
The objective function of the image segmentation | The fitness function of the MFO |
Algorithm 2. MFO-based Kapur entropy. |
Randomly initialize the position of moths and the parameters for Moth-flame |
While iteration≤Max_iteration do |
Renew flame no utilizing Eq (15) |
Estimate the fitness value of each moth utilizing Eq (2) for the Kapur entropy and attain the best solution |
OM=FitnessFunction(M) |
If iteration=1 then |
F=sort(M) |
OF=sort(OM) |
else |
F=sort(Mt−1,Mt) |
OF=sort(Mt−1,Mt) |
end if |
for i=1:n do |
for j=1:d do |
Renew r and t |
Estimate D utilizing Eq (14) |
Renew M(i,j) utilizing Eq (13) |
end for |
end for |
end while |
Return the best solution or the optimal threshold value |
In this section, the time and spatial complexity of the MFO are studied.
The time complexity of MFO is based on the calculation workload and operational structure of the algorithm, which is used as an important indicator to estimate the optimization efficiency. In MFO, n denotes the number of moths, t denotes the maximum number of iterations, d denotes the number of variables, and the sorting mechanism of flames in each iteration. MFO uses the quicksort method, the best time complexity of MFO is O(nlogn), and the worst time complexity of MFO is O(n2). Therefore, the total time complexity of MFO is described as
O(MFO)=O(t(O(Quicksort)+O(positionupdate))) | (16) |
O(MFO)=O(t(n2+n×d))=O(tn2+tnd) | (17) |
The spatial complexity denotes the storage space that requires to be executed by an algorithm. The total spatial complexity of MFO is O(tn2+tnd), which is valuable and achievable.
The numerical test is conducted on a computer with a 2.2 GHz Intel Core i7-8750H processor and 8 GB of RAM using MATLAB R2018(b).
Image segmentation is an effective method for character extraction and object identification recognition. It is also an important step from image handling to image investigation. Image segmentation segments a provided preprocessed image to obtain a more intuitive target and background. The experiments select ten images to detect the overall segmentation effect, and they are given in Figure 4.
To prove the effectiveness and practicability, the MFO is compared with BA, FPA, MSA, PSO and WWO. These control parameters are some representative empirical values and are derived from the original articles. The parameters of all algorithms are given in Table 3.
Algorithm | Parameter | Value |
BA [11] | Pulse frequency scope f | [0, 2] |
Echo loudness A | 0.25 | |
Reducing coefficient γ | 0.5 | |
FPA [12] | Switch probability ρ | 0.8 |
MSA [13] | An arbitrary value θ | [-2, 1] |
An arbitrary value ε2 | [0, 1] | |
An arbitrary value ε3 | [0, 1] | |
An arbitrary value r1 | [0, 1] | |
An arbitrary value r2 | [0, 1] | |
PSO [14] | Constant inertia ω | 0.3 |
First acceleration coefficient c1 | 1.4962 | |
Second acceleration coefficient c2 | 1.4962 | |
WWO [15] | Wavelength λ | 0.5 |
Wave height hmax | 6 | |
Wavelength attenuation factor α | 1.0026 | |
Breaking factor β | [0.001, 0.25] | |
Maximum value kmax of breaking directions | min(12,D/D22) | |
MFO [43] | Logarithmic spiral b | 1 |
An arbitrary value t | [-1, 1] |
Five important indicators are used to estimate the image segmentation effect of different algorithms as follows:
1) Fitness value. The fitness value shows the calculation precision of each algorithm. The fitness value is proportional to the segmented image information.
2) Execution time. The algorithm consumes less time, which means that the algorithm has a faster calculation process.
3) Peak signal-to-noise ratio (PSNR). The PSNR based on the intensity value is used to measure the variation between the processed image and the reference image. A larger PSNR indicates that the processed image has less distortion. The image segmentation effect of the higher PSNR may be lower than the image segmentation effect of the lower PSNR. The PSNR is described as [46]
PSNR=10log10(2552MSE) | (18) |
where MSE denotes the mean squared error. It is described as follows:
MSE=1MNM∑i=1N∑j=1[I(i,j)−K(i,j)]2 | (19) |
where M and N denote the size of the provided image and the processed image, respectively.
4) Structure similarity index (SSIM). The SSIM is a similarity measure between the provided image and the processed image. If the SSIM is close to 1, then the image segmentation result is better. The SSIM is described as [47]
SSIM(x,y)=(2μxμy+c1)(2σxy+c2)(μ2x+μ2y+c1)(σ2x+σ2y+c2) | (20) |
where for the provided image and the processed image, μx and μy denote the mean intensity. σ2x and σ2y denote the standard deviation. σxy denotes the covariance. c1 and c2 denote constants.
5) Wilcoxon's rank-sum test is utilized to identify whether there is a noteworthy distinction between the two algorithms [48]. There is a noteworthy distinction if the p value is lower than 0.05. There is no noteworthy distinction if the p value is higher than 0.05.
To ensure the segmentation effect of the MFO, the population size of each algorithm is set to 30, the maximum number of iterations is set to 100, and the number of independent runs is set to 30. The threshold levels are defined as 2, 3, 4, 5 and 6. The effectiveness and feasibility of the MFO are verified by comparing it with other algorithms. The experimental results of the comparison algorithms are given in Tables 4-9, and the experimental results of some given segmented images are given in Figures 5-14.
Images | k | Fitness values | ||||||
BA | FPA | MSA | PSO | WWO | MFO | Rank | ||
Test 1 | 2 | 12.3364 | 12.3198 | 12.2127 | 12.3479 | 12.3112 | 12.3487 | 1 |
3 | 15.2194 | 15.3081 | 15.2704 | 15.2018 | 15.1970 | 15.3172 | 1 | |
4 | 17.7102 | 17.7705 | 17.8821 | 17.7208 | 17.8752 | 17.9921 | 1 | |
5 | 20.3813 | 20.0295 | 20.2961 | 21.1111 | 20.2899 | 21.2798 | 1 | |
6 | 22.4683 | 22.3940 | 21.9694 | 22.4280 | 22.4488 | 22.6422 | 1 | |
Test 2 | 2 | 12.5842 | 12.5331 | 12.5997 | 12.6346 | 12.5916 | 12.6346 | 1 |
3 | 15.6189 | 15.5130 | 15.6003 | 15.4587 | 15.4813 | 15.6531 | 1 | |
4 | 18.1117 | 18.3233 | 18.1107 | 18.3061 | 18.2180 | 18.4397 | 1 | |
5 | 20.5250 | 20.9349 | 20.9719 | 20.9611 | 20.9605 | 21.0539 | 1 | |
6 | 23.1116 | 23.3068 | 23.3549 | 23.2826 | 23.2950 | 23.3837 | 1 | |
Test 3 | 2 | 12.1651 | 12.1623 | 12.1384 | 12.2017 | 12.0067 | 12.2061 | 1 |
3 | 15.3462 | 15.3160 | 14.9498 | 15.2155 | 15.1669 | 15.5039 | 1 | |
4 | 17.9605 | 18.1165 | 18.0610 | 17.8602 | 17.7274 | 18.3107 | 1 | |
5 | 20.0693 | 20.3889 | 20.6938 | 20.7448 | 20.0828 | 20.8056 | 1 | |
6 | 22.2665 | 22.6040 | 22.7055 | 23.0135 | 22.2510 | 24.1228 | 1 | |
Test 4 | 2 | 11.6162 | 11.0138 | 11.6151 | 11.6170 | 11.5649 | 11.6170 | 1 |
3 | 14.4375 | 14.1046 | 14.4277 | 14.4640 | 14.4074 | 14.6363 | 1 | |
4 | 17.1661 | 17.1351 | 17.2543 | 17.2182 | 16.5648 | 17.5047 | 1 | |
5 | 19.3315 | 19.0672 | 19.5998 | 19.9435 | 19.4292 | 20.0589 | 1 | |
6 | 22.1115 | 21.7571 | 21.8045 | 21.9815 | 21.7166 | 22.1257 | 1 | |
Test 5 | 2 | 12.5987 | 9.17771 | 12.4965 | 12.6016 | 12.5880 | 12.6016 | 1 |
3 | 15.8446 | 15.6981 | 15.6613 | 15.7945 | 15.6387 | 15.9201 | 1 | |
4 | 18.6330 | 18.5687 | 18.6837 | 18.7647 | 18.4739 | 18.8308 | 1 | |
5 | 21.5729 | 21.4283 | 21.6418 | 21.3651 | 21.5618 | 21.6809 | 1 | |
6 | 24.1845 | 24.0339 | 24.0773 | 23.7893 | 23.9359 | 24.3074 | 1 | |
Test 6 | 2 | 12.9609 | 12.9185 | 12.9393 | 12.9682 | 12.9668 | 12.9682 | 1 |
3 | 15.9835 | 16.0781 | 16.0526 | 16.1034 | 16.1034 | 16.1252 | 1 | |
4 | 18.5746 | 18.7090 | 18.7443 | 18.6889 | 18.7069 | 19.0165 | 1 | |
5 | 21.3011 | 21.1524 | 21.2343 | 21.0410 | 20.8741 | 21.4711 | 1 | |
6 | 24.1403 | 23.8479 | 23.9266 | 23.7607 | 24.0573 | 24.1842 | 1 | |
Test 7 | 2 | 12.5779 | 12.3517 | 12.5367 | 12.5936 | 12.3939 | 12.5936 | 1 |
3 | 15.3831 | 15.4011 | 15.3516 | 15.3938 | 15.0022 | 15.4274 | 1 | |
4 | 18.3603 | 18.0115 | 17.8258 | 17.9950 | 18.2520 | 18.4235 | 1 | |
5 | 20.9092 | 20.9076 | 20.6714 | 20.5292 | 20.7942 | 21.0217 | 1 | |
6 | 22.8604 | 23.3690 | 23.1421 | 22.9799 | 23.0124 | 23.5484 | 1 | |
Test 8 | 2 | 12.8868 | 12.8947 | 12.8930 | 12.9208 | 12.8957 | 12.9208 | 1 |
3 | 15.8248 | 15.9079 | 15.8297 | 15.8527 | 15.8992 | 16.0552 | 1 | |
4 | 18.5661 | 18.7317 | 18.6622 | 18.7469 | 18.5391 | 19.0449 | 1 | |
5 | 21.2946 | 21.1664 | 21.1186 | 21.1555 | 21.5266 | 21.5719 | 1 | |
6 | 23.5705 | 23.8786 | 24.2027 | 23.8717 | 23.6695 | 24.3206 | 1 | |
Test 9 | 2 | 11.9271 | 11.8657 | 11.4150 | 11.9285 | 11.7951 | 11.9286 | 1 |
3 | 14.7762 | 14.7811 | 14.7560 | 14.8629 | 14.7074 | 14.9331 | 1 | |
4 | 17.1365 | 17.2515 | 17.1703 | 17.3163 | 17.3681 | 17.4062 | 1 | |
5 | 19.8132 | 19.5984 | 19.8790 | 19.7153 | 19.8422 | 19.8973 | 2 | |
6 | 21.9515 | 22.0255 | 22.1325 | 21.8282 | 21.9971 | 22.2318 | 1 | |
Test 10 | 2 | 11.5248 | 11.4683 | 11.4326 | 11.5288 | 11.4273 | 11.5288 | 1 |
3 | 14.3849 | 13.9338 | 14.1944 | 14.4104 | 14.3475 | 14.5453 | 1 | |
4 | 16.8579 | 17.2591 | 17.3456 | 17.3302 | 17.2842 | 17.3904 | 1 | |
5 | 19.3943 | 19.2793 | 18.9721 | 19.3799 | 19.3881 | 19.8757 | 1 | |
6 | 21.5514 | 21.6964 | 21.5692 | 21.3715 | 21.8951 | 22.2800 | 1 |
Images | k | Best threshold values | ||||||
BA | FPA | MSA | PSO | WWO | MFO | |||
Test 1 | 2 | 95, 168 | 95, 171 | 113, 157 | 98, 165 | 103, 173 | 97, 164 | |
3 | 67, 121, 181 | 88, 134, 179 | 76, 133, 176 | 73, 124, 160 | 90, 139, 168 | 81, 126, 174 | ||
4 | 68, 110, 130, 163 | 60, 103, 160, 200 | 55, 91, 139, 180 | 61, 83, 116, 181 | 79, 121, 146, 175 | 73, 112, 147, 184 | ||
5 | 60, 98, 144, 172, 204 |
46, 65, 109, 142, 176 |
78, 98, 135, 157, 183 |
39, 100, 163, 165, 239 |
63, 91, 144, 168, 187 |
65, 101, 125, 165, 239 |
||
6 | 38, 58, 98, 140, 171, 195 |
71, 89, 127, 176, 194, 216 |
44, 91, 101, 133, 155, 200 |
66, 106, 137, 159, 196, 224 |
66, 115, 140, 162, 178, 193 |
77, 98, 132, 156, 181, 208 |
||
Test 2 | 2 | 62, 148 | 64, 121 | 79, 138 | 75, 147 | 66, 153 | 75, 147 | |
3 | 76, 132, 174 | 42, 83, 158 | 76, 119, 158 | 45, 130, 169 | 43, 109, 146 | 59, 106, 170 | ||
4 | 43, 86, 144, 206 | 55, 108, 133, 190 | 62, 89, 118, 192 | 53, 121, 152, 188 | 47, 118, 159, 203 | 50, 84, 141, 179 | ||
5 | 24, 93, 134, 173, 192 |
35, 93, 126, 155, 191 |
32, 79, 101, 136, 188 |
34, 73, 95, 129, 176 |
56, 84, 104, 145, 175 |
50, 80, 119, 163, 204 |
||
6 | 35, 80, 106, 137, 191, 203 |
56, 101, 126, 160, 177, 200 |
44, 76, 122, 162, 177, 196 |
22, 38, 82, 110, 151, 193 |
65, 83, 107, 145, 179, 199 |
37, 52, 76, 126, 169, 195 |
||
Test 3 | 2 | 82, 162 | 88, 164 | 85, 157 | 69, 177 | 110, 163 | 69, 174 | |
3 | 87, 135, 186 | 62, 141, 178 | 102, 159, 184 | 73, 141, 195 | 81, 154, 192 | 69, 127, 183 | ||
4 | 89, 123, 152, 189 | 64, 114, 151, 176 | 54, 95, 135, 169 | 68, 120, 134, 185 | 38, 93, 148, 192 | 66, 106, 146, 186 | ||
5 | 78, 101, 118, 133, 186 |
67, 98, 135, 149, 174 |
56, 80, 111, 152, 194 |
34, 87, 165, 182, 231 |
75, 101, 132, 169, 213 |
70, 104, 132, 160, 190 |
||
6 | 82, 114, 131, 154, 174, 212 |
49, 80, 94, 114, 174, 198 |
41, 53, 73, 113, 146, 181 |
55, 93, 128, 153, 183, 196 |
58, 71, 78, 118, 147, 181 |
56, 69, 127, 163, 183, 231 |
||
Test 4 | 2 | 101, 174 | 146, 164 | 95, 175 | 98, 174 | 93, 154 | 95, 171 | |
3 | 72, 136, 169 | 117, 177, 212 | 69, 115, 180 | 99, 152, 181 | 70, 113, 169 | 85, 137, 180 | ||
4 | 41, 84, 115, 164 | 50, 80, 146, 183 | 43, 91, 124, 172 | 40, 86, 133, 167 | 63, 96, 159, 172 | 38, 86, 138, 180 | ||
5 | 49, 82, 122, 181, 224 |
29, 75, 104, 120, 205 |
49, 75, 105, 160, 181 |
32, 91, 125, 171, 208 |
37, 100, 116, 152, 210 |
43, 98, 125, 173, 245 |
||
6 | 75, 102, 125, 161, 188, 237 |
43, 110, 129, 150, 181, 211 |
79, 120, 135, 167, 221, 237 |
43, 59, 85, 127, 183, 212 |
32, 61, 78, 122, 148, 211 |
28, 53, 77, 114, 146, 182 |
||
Test 5 | 2 | 74, 135 | 110, 248 | 83, 157 | 70, 135 | 64, 129 | 70, 135 | |
3 | 56, 134, 215 | 61, 120, 184 | 59, 145, 230 | 62, 119, 197 | 80, 127, 180 | 69, 133, 204 | ||
4 | 52, 131, 206, 231 | 95, 145, 200, 234 | 70, 94, 146, 207 | 74, 127, 186, 226 | 81, 114, 190, 221 | 70, 108, 150, 216 | ||
5 | 61, 110, 168, 199, 231 |
33, 71, 97, 154, 225 |
37, 101, 137, 179, 217 |
21, 79, 150, 195, 231 |
63, 93, 134, 188, 233 |
41, 94, 131, 177, 225 |
||
6 | 29, 62, 117, 143, 188, 211 |
23, 75, 110, 142, 208, 238 |
38, 61, 127, 167, 212, 233 |
51, 84, 124, 147, 187, 200 |
32, 72, 91, 116, 192, 228 |
27, 77, 109, 140, 179, 225 |
||
Test 6 | 2 | 84, 168 | 111, 175 | 106, 175 | 91, 170 | 92, 171 | 91, 170 | |
3 | 55, 126, 191 | 84, 145, 188 | 85, 138, 200 | 71, 124, 188 | 68, 128, 177 | 75, 131, 185 | ||
4 | 37, 117, 168, 211 | 60, 137, 164, 194 | 39, 77, 132, 186 | 94, 121, 157, 214 | 54, 139, 178, 219 | 68, 105, 157, 204 | ||
5 | 50, 75, 110, 184, 206 |
41, 82, 122, 189, 234 |
35, 78, 131, 156, 183 |
37, 124, 154, 182, 208 |
42, 108, 120, 179, 205 |
80, 111, 132, 163, 204 |
||
6 | 59, 89, 114, 146, 187, 207 |
32, 58, 116, 146, 186, 214 |
60, 80, 105, 135, 168, 189 |
47, 88, 111, 165, 191, 204 |
44, 65, 113, 146, 170, 199 |
42, 84, 116, 136, 170, 209 |
||
Test 7 | 2 | 97, 166 | 124, 164 | 97, 170 | 96, 163 | 70, 156 | 96, 163 | |
3 | 75, 123, 158 | 53, 94, 176 | 54, 130, 162 | 80, 107, 170 | 62, 178, 219 | 81, 166, 198 | ||
4 | 71, 127, 166, 218 | 66, 121, 145, 184 | 77, 129, 187, 236 | 43, 110, 162, 181 | 95, 123, 166, 209 | 46, 104, 167, 197 | ||
5 | 46, 87, 123, 161, 225 |
40, 99, 130, 175, 198 |
40, 59, 97, 143, 196 |
24, 73, 137, 166, 214 |
65, 122, 146, 175, 214 |
79, 107, 137, 166, 212 |
||
6 | 37, 69, 131, 145, 174, 236 |
47, 63, 112, 162, 186, 223 |
53, 101, 125, 160, 202, 214 |
62, 123, 149, 174, 190, 233 |
62, 110, 167, 193, 204, 233 |
44, 82, 132, 171, 200, 234 |
||
Test 8 | 2 | 91, 170 | 83, 162 | 100, 168 | 93, 161 | 94, 169 | 93, 161 | |
3 | 80, 164, 225 | 109, 165, 201 | 66, 102, 157 | 69, 105, 171 | 59, 114, 161 | 95, 159, 206 | ||
4 | 46, 104, 144, 217 | 73, 109, 175, 225 | 83, 136, 177, 203 | 42, 109, 159, 191 | 47, 81, 124, 156 | 65, 111, 160, 207 | ||
5 | 62, 120, 172, 204, 223 |
36, 55, 115, 157, 217 |
80, 143, 175, 209, 231 |
55, 112, 132, 173, 194 |
68, 102, 131, 164, 223 |
74, 107, 159, 196, 223 |
||
6 | 29, 47, 87, 110, 157, 212 |
58, 85, 113, 133, 165, 229 |
52, 75, 102, 131, 160, 205 |
59, 74, 108, 145, 171, 204 |
58, 98, 144, 157, 181, 201 |
50, 85, 126, 158, 202, 227 |
||
Test 9 | 2 | 103, 155 | 93, 160 | 128, 163 | 104, 156 | 92, 166 | 105, 156 | |
3 | 110, 152, 213 | 92, 152, 212 | 104, 166, 207 | 111, 153, 193 | 69, 115, 167 | 104, 154, 203 | ||
4 | 55, 105, 135, 161 | 44, 86, 150, 205 | 55, 96, 121, 174 | 97, 132, 155, 192 | 63, 99, 173, 203 | 57, 106, 172, 201 | ||
5 | 96, 117, 150, 179, 298 |
92, 121, 136, 152, 204 |
56, 91, 114, 165, 220 |
56, 116, 153, 169, 186 |
92, 129, 154, 172, 201 |
61, 84, 102, 163, 197 |
||
6 | 45, 74, 86, 120, 161, 220 |
66, 84, 96, 128, 156, 184 |
72, 95, 116, 162, 172, 209 |
78, 96, 107, 133, 151, 199 |
53, 84, 102, 111, 165, 211 |
56, 82, 115, 164, 187, 198 |
||
Test 10 | 2 | 74, 148 | 72, 138 | 77, 133 | 75, 153 | 96, 168 | 75, 153 | |
3 | 86, 154, 184 | 75, 104, 213 | 84, 129, 211 | 71, 154, 196 | 97, 143, 196 | 83, 143, 187 | ||
4 | 76, 95, 171, 222 | 83, 125, 164, 203 | 77, 123, 164, 213 | 74, 112, 138, 177 | 74, 123, 156, 210 | 72, 116, 151, 181 | ||
5 | 94, 132, 147, 188, 222 |
85, 146, 168, 202, 230 |
71, 88, 101, 179, 213 |
50, 83, 152, 179, 248 |
81, 132, 174, 214, 230 |
74, 105, 136, 163, 186 |
||
6 | 70, 82, 114, 172, 194, 230 |
74, 110, 126, 163, 194, 203 |
89, 120, 133, 167, 180, 223 |
64, 81, 128, 162, 202, 230 |
72, 126, 162, 192, 213, 233 |
75, 103, 144, 176, 191, 222 |
Images | k | Execution time (in second) | ||||||
BA | FPA | MSA | PSO | WWO | MFO | Rank | ||
Test 1 | 2 | 2.0504 | 2.5449 | 4.1430 | 3.2668 | 2.6219 | 1.8838 | 1 |
3 | 2.1806 | 2.4652 | 3.6404 | 3.7600 | 3.0271 | 2.1470 | 1 | |
4 | 2.3493 | 2.5466 | 3.6591 | 4.2612 | 3.5488 | 2.3476 | 1 | |
5 | 2.3526 | 2.4754 | 3.6553 | 4.4621 | 4.1037 | 2.3232 | 1 | |
6 | 2.4534 | 2.5140 | 3.6961 | 4.7721 | 4.6332 | 2.4476 | 1 | |
Test 2 | 2 | 2.0546 | 2.2233 | 3.5972 | 3.0943 | 2.4066 | 1.9862 | 1 |
3 | 2.2834 | 2.4729 | 3.7247 | 3.7189 | 3.0388 | 2.2371 | 1 | |
4 | 2.4856 | 2.4565 | 3.5933 | 4.0514 | 3.7730 | 2.3832 | 1 | |
5 | 2.6244 | 2.5519 | 3.6495 | 13.892 | 4.2132 | 2.5896 | 2 | |
6 | 2.7085 | 2.6344 | 3.6366 | 4.6383 | 4.9811 | 2.6217 | 1 | |
Test 3 | 2 | 2.0428 | 2.1661 | 3.5012 | 10.081 | 2.3834 | 2.0128 | 1 |
3 | 2.1067 | 2.2636 | 3.6970 | 3.5344 | 2.9690 | 2.1931 | 2 | |
4 | 2.3168 | 2.4309 | 3.6582 | 4.1890 | 3.5014 | 2.2318 | 1 | |
5 | 2.4964 | 2.4430 | 3.6781 | 4.2050 | 4.1567 | 2.4421 | 1 | |
6 | 2.5751 | 2.5232 | 3.7181 | 4.4494 | 4.7794 | 2.5211 | 1 | |
Test 4 | 2 | 2.1245 | 2.2784 | 3.5689 | 3.1980 | 2.4759 | 1.8874 | 1 |
3 | 2.2841 | 2.3142 | 3.6728 | 3.9206 | 3.1605 | 2.1235 | 1 | |
4 | 2.4620 | 2.4784 | 3.7133 | 4.4914 | 3.6540 | 2.4128 | 1 | |
5 | 2.5981 | 2.5782 | 3.7064 | 4.5182 | 4.2552 | 2.5252 | 1 | |
6 | 2.5760 | 2.6113 | 3.7157 | 4.6266 | 4.6624 | 2.5645 | 1 | |
Test 5 | 2 | 2.1369 | 2.3193 | 3.6874 | 3.3801 | 2.5160 | 1.9748 | 1 |
3 | 2.3770 | 2.4655 | 3.8206 | 3.9882 | 3.1202 | 2.1927 | 1 | |
4 | 2.6246 | 2.5708 | 3.7468 | 4.6477 | 3.7042 | 2.4725 | 1 | |
5 | 2.6867 | 2.6756 | 3.7018 | 4.8451 | 4.2924 | 2.6573 | 1 | |
6 | 3.0574 | 2.6619 | 3.7099 | 5.2076 | 4.9496 | 2.6989 | 2 | |
Test 6 | 2 | 2.0659 | 2.2878 | 3.7082 | 3.4298 | 2.4881 | 1.8933 | 1 |
3 | 2.3009 | 2.4216 | 3.7141 | 3.7289 | 3.1803 | 2.1388 | 1 | |
4 | 2.5690 | 2.5297 | 3.7186 | 4.4016 | 3.6365 | 2.5144 | 1 | |
5 | 2.7012 | 2.7481 | 3.8449 | 4.6251 | 4.4892 | 2.5788 | 1 | |
6 | 2.7363 | 2.6549 | 3.5908 | 5.0158 | 5.0763 | 2.6390 | 1 | |
Test 7 | 2 | 2.1999 | 2.2860 | 3.7677 | 3.4719 | 2.5184 | 1.7930 | 1 |
3 | 2.3913 | 2.4617 | 3.8282 | 4.4295 | 3.1260 | 2.1823 | 1 | |
4 | 2.5758 | 2.5069 | 3.6892 | 4.5830 | 3.6773 | 2.5712 | 2 | |
5 | 2.8661 | 2.6928 | 3.7420 | 4.9113 | 4.3654 | 2.6331 | 1 | |
6 | 2.8314 | 2.7552 | 3.8166 | 4.7869 | 4.8823 | 2.7347 | 1 | |
Test 8 | 2 | 2.1196 | 2.2375 | 3.5308 | 3.2347 | 2.6986 | 1.8208 | 1 |
3 | 2.1790 | 2.4691 | 3.6472 | 4.1744 | 3.2448 | 2.0801 | 1 | |
4 | 2.4523 | 2.5377 | 3.6976 | 4.4788 | 3.7100 | 2.3825 | 1 | |
5 | 2.5949 | 2.5873 | 3.7993 | 4.6852 | 4.3499 | 2.5537 | 1 | |
6 | 2.6545 | 2.6189 | 3.7323 | 5.1430 | 4.7387 | 2.5936 | 1 | |
Test 9 | 2 | 2.1158 | 2.2435 | 3.7132 | 3.0533 | 2.3750 | 1.8010 | 1 |
3 | 2.2377 | 2.3223 | 3.7861 | 3.8355 | 2.9901 | 2.1133 | 1 | |
4 | 2.3979 | 2.4493 | 3.6818 | 4.1490 | 3.5694 | 2.3356 | 1 | |
5 | 2.4748 | 2.4971 | 3.6920 | 4.3074 | 4.2244 | 2.4209 | 1 | |
6 | 2.4707 | 2.5587 | 3.7407 | 4.6462 | 4.5649 | 2.5010 | 2 | |
Test 10 | 2 | 2.0775 | 2.1429 | 3.4231 | 3.0237 | 2.3839 | 1.6726 | 1 |
3 | 2.2550 | 2.2918 | 3.5819 | 3.4502 | 2.9528 | 2.2082 | 1 | |
4 | 2.3523 | 2.3987 | 3.6269 | 4.0056 | 3.4883 | 2.3009 | 1 | |
5 | 2.3653 | 2.4887 | 3.7718 | 4.1497 | 4.0963 | 2.3358 | 1 | |
6 | 2.42209 | 2.5584 | 3.7138 | 4.3912 | 4.6485 | 2.4192 | 1 |
Images | k | PSNR values | ||||||
BA | FPA | MSA | PSO | WWO | MFO | Rank | ||
Test 1 | 2 | 54.2052 | 54.0193 | 52.6804 | 53.9194 | 53.3728 | 54.2052 | 1 |
3 | 55.2116 | 54.7434 | 55.5773 | 55.8071 | 54.6025 | 56.2391 | 1 | |
4 | 56.1645 | 56.9214 | 55.8071 | 56.8053 | 55.3545 | 57.8253 | 1 | |
5 | 56.9214 | 57.2139 | 55.4283 | 67.4037 | 56.5877 | 61.6781 | 2 | |
6 | 57.5946 | 55.9464 | 63.0931 | 56.3249 | 56.3249 | 68.3558 | 1 | |
Test 2 | 2 | 56.8302 | 55.6667 | 55.2570 | 55.6667 | 56.4413 | 56.8496 | 1 |
3 | 55.5716 | 55.8390 | 55.5716 | 56.9284 | 58.4671 | 58.5125 | 1 | |
4 | 56.8302 | 57.5587 | 56.8302 | 57.7738 | 57.7738 | 58.6671 | 1 | |
5 | 60.8783 | 57.6678 | 59.6180 | 57.5587 | 57.4521 | 58.5125 | 3 | |
6 | 58.7405 | 57.4521 | 58.5890 | 61.3621 | 56.5356 | 59.3017 | 2 | |
Test 3 | 2 | 61.6543 | 60.6947 | 61.1888 | 59.1452 | 57.4414 | 63.7976 | 1 |
3 | 60.8653 | 64.1985 | 58.3970 | 63.3619 | 61.8294 | 65.2923 | 1 | |
4 | 60.5327 | 65.0068 | 64.6841 | 64.3602 | 66.0216 | 66.2020 | 1 | |
5 | 62.3681 | 65.6347 | 65.9875 | 70.5641 | 62.9357 | 67.5475 | 2 | |
6 | 61.6543 | 66.8489 | 65.6347 | 66.0853 | 65.7478 | 68.2531 | 1 | |
Test 4 | 2 | 53.7298 | 51.8359 | 53.9307 | 53.8281 | 53.3635 | 54.0080 | 1 |
3 | 55.7727 | 53.2812 | 56.2939 | 53.7936 | 54.4415 | 56.3931 | 1 | |
4 | 69.8724 | 64.0939 | 68.4585 | 70.6684 | 57.7874 | 70.6684 | 1 | |
5 | 64.6339 | 76.5339 | 64.6339 | 75.2461 | 54.0512 | 72.8879 | 3 | |
6 | 55.3686 | 68.4585 | 62.6342 | 59.8785 | 71.2461 | 71.5255 | 1 | |
Test 5 | 2 | 55.9353 | 54.4501 | 55.5723 | 56.1030 | 56.1944 | 56.3859 | 1 |
3 | 56.1489 | 56.5395 | 56.6408 | 56.1489 | 55.6932 | 56.7947 | 1 | |
4 | 56.0035 | 55.0787 | 56.1030 | 55.9353 | 55.6534 | 56.4888 | 1 | |
5 | 57.1093 | 57.6783 | 57.8691 | 59.3191 | 56.4366 | 58.1327 | 2 | |
6 | 58.4300 | 59.0280 | 57.8027 | 57.0566 | 57.3278 | 59.0280 | 1 | |
Test 6 | 2 | 52.4037 | 50.9764 | 51.2852 | 52.4037 | 52.3196 | 52.9992 | 1 |
3 | 53.7675 | 52.9992 | 52.9146 | 54.0808 | 54.3233 | 55.5443 | 1 | |
4 | 56.9588 | 55.0405 | 54.3233 | 52.1517 | 55.6405 | 57.5981 | 1 | |
5 | 55.2454 | 54.8447 | 55.8429 | 57.9588 | 56.4138 | 58.3841 | 1 | |
6 | 55.1430 | 57.0950 | 54.9352 | 56.4138 | 56.7949 | 59.1946 | 1 | |
Test 7 | 2 | 52.1853 | 50.1439 | 52.1853 | 52.2305 | 52.2305 | 53.6248 | 1 |
3 | 53.1369 | 52.7825 | 54.3929 | 52.8286 | 54.1279 | 54.4252 | 1 | |
4 | 53.5238 | 53.9356 | 52.9913 | 54.1279 | 52.2737 | 54.9081 | 1 | |
5 | 54.7169 | 55.1408 | 54.7169 | 52.7825 | 53.9928 | 57.7724 | 1 | |
6 | 54.4130 | 54.6643 | 54.4252 | 54.4600 | 54.1279 | 55.1408 | 1 | |
Test 8 | 2 | 51.2625 | 51.1401 | 50.7696 | 51.1401 | 51.0819 | 51.8484 | 1 |
3 | 52.1217 | 50.3589 | 53.9395 | 53.4810 | 51.0247 | 55.1889 | 1 | |
4 | 58.3667 | 52.9207 | 51.8484 | 52.6689 | 58.1344 | 59.3198 | 1 | |
5 | 54.6097 | 54.7941 | 52.1217 | 60.9018 | 53.6305 | 61.3007 | 1 | |
6 | 62.1126 | 55.4021 | 56.8943 | 55.1889 | 55.4021 | 64.4974 | 1 | |
Test 9 | 2 | 54.7684 | 56.0844 | 50.9610 | 54.6524 | 54.5365 | 56.2376 | 1 |
3 | 53.9616 | 56.2376 | 54.6524 | 53.8444 | 54.6524 | 61.7530 | 1 | |
4 | 67.6683 | 73.5879 | 67.6683 | 55.5133 | 58.1149 | 68.0342 | 2 | |
5 | 62.8685 | 59.5786 | 67.1721 | 67.1721 | 56.2376 | 73.5879 | 1 | |
6 | 72.9963 | 62.8685 | 68.6413 | 57.8977 | 68.6413 | 79.2437 | 1 | |
Test 10 | 2 | 49.4261 | 49.4702 | 49.3850 | 49.4109 | 49.2129 | 49.4809 | 1 |
3 | 49.3039 | 49.4109 | 49.3191 | 49.3437 | 49.2012 | 49.4261 | 1 | |
4 | 49.3976 | 49.3267 | 49.3850 | 49.4261 | 49.4261 | 49.5080 | 1 | |
5 | 49.2362 | 49.3115 | 49.4261 | 49.1974 | 49.3437 | 49.5080 | 1 | |
6 | 49.5634 | 49.4261 | 49.2816 | 49.3850 | 49.4702 | 50.5952 | 1 |
Images | k | SSIM values | ||||||
BA | FPA | MSA | PSO | WWO | MFO | Rank | ||
Test 1 | 2 | 0.5811 | 0.5630 | 0.4666 | 0.5589 | 0.5389 | 0.5827 | 1 |
3 | 0.6174 | 0.6028 | 0.6291 | 0.6196 | 0.5792 | 0.6677 | 1 | |
4 | 0.6275 | 0.6713 | 0.6450 | 0.6841 | 0.6040 | 0.6962 | 1 | |
5 | 0.6706 | 0.6692 | 0.6240 | 0.6779 | 0.6761 | 0.7428 | 1 | |
6 | 0.6579 | 0.6752 | 0.7295 | 0.6565 | 0.6272 | 0.7853 | 1 | |
Test 2 | 2 | 0.5934 | 0.5618 | 0.5486 | 0.5624 | 0.5854 | 0.5951 | 1 |
3 | 0.5849 | 0.5892 | 0.5737 | 0.6229 | 0.6440 | 0.6549 | 1 | |
4 | 0.6118 | 0.6431 | 0.6084 | 0.6336 | 0.6302 | 0.6680 | 1 | |
5 | 0.6700 | 0.6321 | 0.6721 | 0.6239 | 0.6315 | 0.6953 | 1 | |
6 | 0.6764 | 0.6305 | 0.6926 | 0.7184 | 0.6484 | 0.7095 | 2 | |
Test 3 | 2 | 0.7776 | 0.7700 | 0.7735 | 0.7433 | 0.7326 | 0.7782 | 1 |
3 | 0.7694 | 0.7963 | 0.7380 | 0.7321 | 0.7388 | 0.8075 | 1 | |
4 | 0.7661 | 0.8171 | 0.8107 | 0.7983 | 0.7966 | 0.8286 | 1 | |
5 | 0.8008 | 0.7352 | 0.8087 | 0.7841 | 0.7682 | 0.8266 | 1 | |
6 | 0.7468 | 0.7928 | 0.8434 | 0.7941 | 0.8482 | 0.8560 | 1 | |
Test 4 | 2 | 0.5682 | 0.4613 | 0.5752 | 0.5724 | 0.5494 | 0.5840 | 1 |
3 | 0.6295 | 0.5643 | 0.6447 | 0.5538 | 0.5765 | 0.6573 | 1 | |
4 | 0.7995 | 0.7457 | 0.8018 | 0.7963 | 0.7050 | 0.8387 | 1 | |
5 | 0.8021 | 0.7892 | 0.7802 | 0.8431 | 0.5767 | 0.8509 | 1 | |
6 | 0.6250 | 0.8207 | 0.8056 | 0.7640 | 0.8148 | 0.8493 | 1 | |
Test 5 | 2 | 0.5874 | 0.5694 | 0.5478 | 0.5923 | 0.5947 | 0.6025 | 1 |
3 | 0.6513 | 0.6167 | 0.6558 | 0.6536 | 0.5760 | 0.6752 | 1 | |
4 | 0.6629 | 0.5762 | 0.6594 | 0.6147 | 0.6122 | 0.6669 | 1 | |
5 | 0.6686 | 0.6775 | 0.6918 | 0.7207 | 0.6737 | 0.7221 | 1 | |
6 | 0.7354 | 0.7299 | 0.7183 | 0.6835 | 0.7114 | 0.7593 | 1 | |
Test 6 | 2 | 0.3856 | 0.3073 | 0.3285 | 0.3856 | 0.3823 | 0.4098 | 1 |
3 | 0.4862 | 0.4423 | 0.4438 | 0.5025 | 0.5060 | 0.5417 | 1 | |
4 | 0.6023 | 0.5147 | 0.5425 | 0.4154 | 0.5323 | 0.6141 | 1 | |
5 | 0.5798 | 0.5765 | 0.5771 | 0.5794 | 0.6314 | 0.6562 | 1 | |
6 | 0.6170 | 0.6676 | 0.6141 | 0.6412 | 0.6737 | 0.7035 | 1 | |
Test 7 | 2 | 0.5412 | 0.2944 | 0.5452 | 0.5357 | 0.5357 | 0.6049 | 1 |
3 | 0.5439 | 0.5643 | 0.6308 | 0.5533 | 0.6497 | 0.6713 | 1 | |
4 | 0.5819 | 0.5867 | 0.5474 | 0.6396 | 0.5011 | 0.6571 | 1 | |
5 | 0.6752 | 0.6858 | 0.6817 | 0.5044 | 0.5725 | 0.7308 | 1 | |
6 | 0.6826 | 0.6776 | 0.6360 | 0.6650 | 0.5908 | 0.6938 | 1 | |
Test 8 | 2 | 0.3781 | 0.3656 | 0.3403 | 0.3656 | 0.3661 | 0.4100 | 1 |
3 | 0.4250 | 0.2956 | 0.4948 | 0.4927 | 0.3533 | 0.5583 | 1 | |
4 | 0.6528 | 0.4934 | 0.3981 | 0.4760 | 0.6109 | 0.6803 | 1 | |
5 | 0.5484 | 0.5568 | 0.3853 | 0.4986 | 0.5249 | 0.6793 | 1 | |
6 | 0.7181 | 0.5974 | 0.6489 | 0.6071 | 0.5787 | 0.7293 | 1 | |
Test 9 | 2 | 0.5502 | 0.6010 | 0.2334 | 0.5494 | 0.5547 | 0.6075 | 1 |
3 | 0.4929 | 0.5707 | 0.5475 | 0.4852 | 0.5360 | 0.6251 | 1 | |
4 | 0.5860 | 0.6949 | 0.6196 | 0.4427 | 0.5586 | 0.7198 | 1 | |
5 | 0.6465 | 0.6827 | 0.7318 | 0.6505 | 0.4812 | 0.7441 | 1 | |
6 | 0.7208 | 0.6556 | 0.7322 | 0.5454 | 0.7166 | 0.7698 | 1 | |
Test 10 | 2 | 0.1722 | 0.1666 | 0.1571 | 0.1729 | 0.1502 | 0.1733 | 1 |
3 | 0.1611 | 0.1719 | 0.1644 | 0.1708 | 0.1475 | 0.1772 | 1 | |
4 | 0.1822 | 0.1678 | 0.1775 | 0.1753 | 0.1804 | 0.1927 | 1 | |
5 | 0.1486 | 0.1511 | 0.1786 | 0.6364 | 0.1645 | 0.1915 | 2 | |
6 | 0.2091 | 0.1812 | 0.1565 | 0.1697 | 0.1755 | 0.2901 | 1 |
Images | k | Wilcoxon test | ||||
MFO vs BA | MFO vs FPA | MFO vs MSA | MFO vs PSO | MFO vs WWO | ||
Test 1 | 2 | 4.1486E-08 | 2.9135E-07 | 3.7215E-07 | 1.0905E-02 | 4.9558E-08 |
3 | 4.1406E-03 | 8.8674E-01 | 2.7328E-02 | 5.9956E-04 | 1.8056E-02 | |
4 | 3.9271E-03 | 6.8298E-03 | 2.3871E-05 | 5.2530E-04 | 5.9054E-05 | |
5 | 3.5064E-03 | 4.4599E-02 | 7.7394E-06 | 2.5972E-04 | 7.7394E-06 | |
6 | 1.5429E-04 | 1.6017E-04 | 2.1821E-11 | 1.6475E-04 | 2.1821E-11 | |
Test 2 | 2 | 1.5649E-11 | 4.1040E-11 | 4.5618E-11 | 5.7016E-03 | 2.6819E-11 |
3 | 3.7061E-02 | 1.4931E-03 | 4.5940E-02 | 1.5957E-02 | 7.3007E-03 | |
4 | 2.1572E-02 | 7.2382E-04 | 1.1435E-02 | 9.2276E-03 | 1.8454E-02 | |
5 | 3.0221E-07 | 1.2754E-02 | 4.4680E-10 | 3.9238E-02 | 4.4680E-10 | |
6 | 2.1287E-05 | 6.0511E-04 | 4.8389E-10 | 1.9143E-02 | 4.8389E-10 | |
Test 3 | 2 | 1.6510E-11 | 1.2118E-12 | 1.2118E-12 | 2.7793E-03 | 1.2118E-12 |
3 | 1.7047E-02 | 7.9323E-05 | 9.8208E-03 | 5.1474E-03 | 3.8910E-02 | |
4 | 1.5568E-02 | 4.8012E-02 | 6.1697E-05 | 6.0010E-03 | 1.8438E-03 | |
5 | 1.2075E-04 | 1.1553E-03 | 8.9553E-08 | 8.6976E-06 | 8.9553E-08 | |
6 | 4.2458E-05 | 1.6691E-02 | 3.9562E-10 | 1.4187E-05 | 3.9562E-10 | |
Test 4 | 2 | 1.4119E-10 | 3.6912E-11 | 4.5618E-11 | 2.7605E-02 | 1.5672E-11 |
3 | 9.6851E-08 | 1.0617E-03 | 1.3782E-02 | 1.8815E-02 | 2.0296E-11 | |
4 | 2.3687E-03 | 2.6206E-03 | 3.3040E-02 | 2.2534E-02 | 1.8354E-02 | |
5 | 1.3187E-02 | 6.9403E-03 | 6.0393E-02 | 3.3072E-02 | 1.3187E-02 | |
6 | 1.0490E-02 | 3.1661E-03 | 6.3076E-09 | 6.0661E-05 | 3.0311E-04 | |
Test 5 | 2 | 4.7773E-09 | 1.4148E-08 | 1.8780E-09 | 6.9419E-03 | 1.0569E-09 |
3 | 1.0226E-06 | 1.5514E-03 | 9.3662E-04 | 1.7753E-02 | 2.8427E-10 | |
4 | 1.2338E-04 | 6.8037E-03 | 9.0570E-05 | 6.0755E-04 | 6.6120E-03 | |
5 | 1.9974E-02 | 1.5408E-02 | 1.9284E-05 | 1.8299E-02 | 1.1010E-02 | |
6 | 2.3675E-02 | 1.9315E-02 | 9.3069E-08 | 2.8298E-02 | 2.0096E-02 | |
Test 6 | 2 | 5.4162E-09 | 5.4162E-09 | 2.4736E-08 | 2.8298E-02 | 8.3512E-09 |
3 | 1.2298E-07 | 1.5879E-06 | 3.6108E-02 | 7.8961E-03 | 7.6552E-10 | |
4 | 1.3692E-02 | 1.2204E-02 | 6.7678E-04 | 3.3418E-02 | N/A | |
5 | 1.5319E-02 | 1.3228E-05 | 3.7759E-02 | 8.2918E-03 | 8.0670E-03 | |
6 | 7.9518E-01 | 7.6105E-05 | 8.8807E-06 | 1.6308E-03 | 7.6285E-03 | |
Test 7 | 2 | 1.1999E-12 | 1.2118E-12 | 1.2118E-12 | 5.5398E-03 | 1.2118E-12 |
3 | 1.0043E-08 | 3.2704E-04 | 1.7181E-04 | 4.5838E-04 | 1.8783E-11 | |
4 | 2.2155E-05 | 1.3080E-04 | 2.0545E-03 | 1.8360E-02 | 1.8586E-03 | |
5 | 9.2817E-05 | 5.9629E-04 | 2.6611E-02 | 2.7791E-02 | 7.1075E-03 | |
6 | 8.1845E-01 | 1.8944E-02 | 1.0237E-07 | 7.3815E-04 | 2.6871E-02 | |
Test 8 | 2 | 1.1067E-08 | 1.2380E-09 | 1.2377E-09 | 9.5909E-03 | 1.2377E-09 |
3 | 5.0104E-03 | 5.7108E-04 | 7.4568E-04 | 2.5069E-02 | 7.4568E-03 | |
4 | 6.0746E-03 | 7.7156E-05 | 4.5418E-04 | 1.2662E-02 | 7.5196E-03 | |
5 | 1.2619E-02 | 7.7958E-05 | 4.3177E-10 | 5.6943E-07 | 4.3177E-10 | |
6 | 1.0049E-02 | 1.1403E-02 | 2.5562E-11 | 9.6312E-05 | 2.5562E-11 | |
Test 9 | 2 | 4.1906E-10 | 7.2256E-10 | 1.2384E-09 | 4.5164E-02 | 1.1236E-09 |
3 | 2.0185E-02 | 5.6566E-03 | 6.7067E-03 | 8.2284E-02 | N/A | |
4 | 1.7717E-02 | 8.1726E-03 | 2.2107E-06 | 2.0015E-02 | 7.4528E-03 | |
5 | 1.2740E-02 | 3.7302E-05 | 4.5563E-10 | 2.6262E-05 | 4.5563E-10 | |
6 | 1.4911E-02 | 1.7368E-03 | 4.3348E-10 | 9.9941E-04 | 4.3348E-10 | |
Test 10 | 2 | 2.5301E-10 | 1.2384E-09 | 1.2384E-09 | N/A | 7.5947E-10 |
3 | 8.1850E-03 | 1.5376E-02 | 1.4949E-02 | 9.7602E-01 | 6.5949E-04 | |
4 | 1.3894E-02 | 1.3909E-02 | 3.7115E-05 | 1.2287E-02 | 1.8341E-03 | |
5 | 9.3482E-01 | 1.5129E-02 | 1.2758E-05 | 6.5560E-03 | 3.6908E-04 | |
6 | 2.4276E-02 | 1.5559E-02 | 3.9225E-08 | 4.9250E-04 | 2.3328E-05 |
The optimal fitness of each algorithm is given in Table 4. The optimization goal is to achieve the best threshold levels by maximizing the desired value of Kapur's entropy. For given segmented images, the threshold levels are set to 2, 3, 4, 5 and 6. The fitness value of each algorithm increases as the threshold level increases, and each algorithm can achieve a better fitness value under a relatively high threshold level. The processed images embody more segmentation information. The ranking based on the fitness value is applied to reflect the optimization performance and segmentation ability of the MFO. The fitness value and ranking of MFO are better than those of the other algorithms, which indicates that MFO can utilize exploration and exploitation to realize the maximum fitness value. The processed images of the MFO have more segmentation information. The best threshold values of each algorithm are given in Table 5. The choice of the threshold level directly affects the effect and quality of the processed image. MFO finds the optimal objective value according to the best threshold level. To summarize, MFO can dodge immature convergence to achieve better segmentation accuracy and effect.
The average execution time of each algorithm is given in Table 6. The execution time reflects the computational complexity of each algorithm and the realization ability of the problem. At the same threshold level, the algorithm consumes less time and has a better optimization performance. As the segmentation threshold level increases, the time consumption gradually increases. Compared with other algorithms, the execution time of the MFO is better. MFO consumes less time to address image segmentation.
The PSNR of each algorithm is given in Table 7. The selection of the threshold level is crucial for the accuracy and effect of image segmentation. The overall segmentation performance improves if the threshold level increases. The PSNR is an effective criterion to determine the distortion between the provided image and the processed image and the segmentation ability of the multilevel thresholding image. The PSNR increases accordingly when the threshold level becomes larger, and the algorithm has lower distortion. To demonstrate the advantage of the MFO, the ranking is based upon the PSNR. For a given image, the threshold levels are defined as 2, 3, 4, 5 and 6; each algorithm has 50 PSNR values; and 43 PSNR values of the MFO are better. The PSNR values and ranking of the MFO are better than those of other algorithms, which indicates that the MFO has better overall segmentation performance and better superiority. The experimental results indicate that MFO has stable practicability and robustness to obtain a better segmentation effect.
The SSIM of each algorithm is given in Table 8. SSIM based on the brightness, contrast and structural information is used to determine the visual similarity between the provided image and the processed image. When the threshold level increases, the SSIM value becomes larger. The optimization algorithm obtains the processed image with less distortion, and the processed image is close to the provided image. The ranking based on the SSIM value is used to detect the segmentation ability. The ranking of the MFO is better, which indicates that the segmented images of the MFO contain more segmentation information. Each algorithm has 50 SSIM values, the first-place ranking of MFO is 48 and the second-place ranking of MFO is 2. The SSIM values and segmentation effect of the MFO are better than those of other algorithms. MFO obtains a segmented image that is close to the original image. The experimental results indicate that MFO has better calculation precision and overall segmentation performance.
The p value of the Wilcoxon rank-sum is given in Table 9. Wilcoxon's rank-sum is utilized to identify whether there is a noteworthy distinction between the two algorithms. If p<0.05, then there is a noteworthy distinction between MFO and other algorithms. If p>0.05 is expressed in bold, then there is no noteworthy distinction between MFO and other algorithms. There is a noteworthy distinction in most cases, and the experimental data are valid.
The segmented images of Tests 1-10 for different algorithms using the Kapur method at levels 2, 3, 4, 5 and 6 are given in Figures 5-14. The segmentation quality of the provided images is closely related to the threshold level. A segmented image with a higher threshold level includes more segmentation information. MFO has a strong enhancement and optimization performance to obtain better segmented images that are close to the original images. The MFO can find excellent fitness values and higher calculation accuracy under a given threshold level. The population size of each algorithm is set to 30, the maximum number of iterations is set to 100 and the number of independent runs is set to 30. MFO consumes less execution time to achieve a smaller computational complexity. The PSNR value and SSIM value of the MFO are better than those of other algorithms so that the MFO has better distortion and structural similarity. Wilcoxon's rank-sum can effectively verify the noteworthy distinction between MFO and other algorithms. In summary, MFO has stronger robustness and a better segmentation effect to solve the multilevel thresholding image segmentation problem.
Statistically, the MFO simulates the transverse orientation navigation behavior of the moths to effectively search for the global optimal solution in the search space. MFO resolves multilevel thresholding image segmentation for the following reasons. First, for MFO, the algorithm framework is simple, the amount of calculation is small, the control parameters are few and the algorithm is easy to implement. The MFO has better search ability and strong robustness. Second, MFO has a better position update strategy and overall optimization performance. MFO can effectively avoid falling into a local optimal solution or premature convergence. MFO balances the global search ability and the local search ability in the optimization space to improve the convergence speed and calculation accuracy. Third, the combination of MFO and Kapur's entropy method realizes complementary advantages to enhance the segmentation effect and optimization performance. To summarize, MFO is the optimal choice to solve the multilevel thresholding image segmentation problem.
The objective of image segmentation is to consume less time to attain the best threshold values by maximizing the objective value of Kapur's entropy. This paper proposes an MFO based on Kapur's entropy to resolve multithreshold image segmentation. The MFO simulates the transverse orientation navigation mechanism of moths to perform global search optimization. MFO has high search efficiency and strong robustness to avoid immature convergence or falling into the local solution, which balances exploration and exploitation to find the best solution in the optimization space. For image segmentation, as the threshold level increases, the difference between the MFO and other algorithms is significant. To verify the overall segmentation performance, compared with other algorithms, MFO has a faster convergence rate and higher calculation precision to obtain segmented images that contain more useful segmentation information. The experimental results indicate that the MFO has strong stability and a better segmentation effect in terms of the fitness value, threshold values, execution time, PSNR, SSIM and Wilcoxon's rank-sum. Meanwhile, MFO has stronger robustness and better practicality to effectively achieve the image segmentation problem.
In future research, we will develop a system that can automatically detect the optimal number of levels for the input image. MFO will be applied to settle complicated high-threshold or color image segmentation. Meanwhile, different segmentation methods will be introduced into the MFO such as Tsallis entropy, Renyi entropy, cross entropy, fuzzy entropy and Otsu. These research works will further demonstrate the effectiveness and feasibility of MFO.
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. This work was partially funded by the Research on the Application of Internet of Things Technology based on Smart Chain in University Management under Grant No. 2021-KYYWF-E005.
The authors declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.
[1] | D. J. Acheson, Elementary Fluid Dynamics, The Clarendon Press Oxford University Press, New York, 1990. |
[2] | V. S. Ajaev, Evolution of dry patches in evaporating liquid films, Phys. Rev. E, 72 (2005), 031605. |
[3] |
V. S. Ajaev, Spreading of thin volatile liquid droplets on uniformly heated surfaces, J. Fluid Mech., 528 (2005), 279-296. doi: 10.1017/S0022112005003320
![]() |
[4] | V. S. Ajaev, Interfacial Fluid Mechanics, Springer, New York, 2012. |
[5] |
V. S. Ajaev, E. Y. Gatapova, O. A. Kabov, Stability and break-up of thin liquid films on patterned and structured surfaces, Adv. Colloid Interface Sci., 228 (2016), 92-104. doi: 10.1016/j.cis.2015.11.011
![]() |
[6] |
V. S. Ajaev and G. M. Homsy, Steady vapor bubbles in rectangular microchannels, J. Colloid Interface Sci., 240 (2001), 259-271. doi: 10.1006/jcis.2001.7562
![]() |
[7] |
V. S. Ajaev, J. Klentzman, T. Gambaryan-Roisman, et al. Fingering instability of partially wetting evaporating liquids, J. Eng. Math., 73 (2012), 31-38. doi: 10.1007/s10665-010-9448-y
![]() |
[8] |
D. M. Anderson, M. K. Gupta, A. A. Voevodin, et al. Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation, ACS Nano, 6 (2012), 3262-3268. doi: 10.1021/nn300183d
![]() |
[9] | D. G. Aronson, The porous medium equation. In Nonlinear diffusion problems (Montecatini Terme, 1985), volume 1224 of Lecture Notes in Math., pages 1-46. Springer, Berlin, 1986. |
[10] | M. Asgari and A. Moosavi, Coarsening dynamics of dewetting nanodroplets on chemically patterned substrates, Phys. Rev. E, 86 (2012), 016303. |
[11] | G. I. Barenblatt, Scaling, Self-similarity, and Intermediate Asymptotics, Cambridge University Press, New York, 1996. |
[12] | G. I. Barenblatt, Scaling, Cambridge University Press, New York, 2003. |
[13] |
J. Becker, G. Grün, R. Seemann, et al. Complex dewetting scenarios captured by thin-film models, Nat. Mater., 2 (2003), 59-63. doi: 10.1038/nmat788
![]() |
[14] |
P. Beltrame and U. Thiele, Time integration and steady-state continuation for 2d lubrication equations, SIAM J. Appl. Dyn. Syst., 9 (2010), 484-518. doi: 10.1137/080718619
![]() |
[15] | F. Bernis, Finite speed of propagation and continuity of the interface for thin viscous flows, Adv. Differential Equ., 1 (1996), 337-368. |
[16] |
F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations, J. Differ. Equations, 83 (1990), 179-206. doi: 10.1016/0022-0396(90)90074-Y
![]() |
[17] |
F. Bernis, J. Hulshof, J. R. King, Dipoles and similarity solutions of the thin film equation in the half-line, Nonlinearity, 13 (2000), 413-439. doi: 10.1088/0951-7715/13/2/305
![]() |
[18] |
A. L. Bertozzi, Symmetric singularity formation in lubrication-type equations for interface motion, SIAM J. Appl. Math., 56 (1996), 681-714. doi: 10.1137/S0036139994271972
![]() |
[19] | A. L. Bertozzi, The mathematics of moving contact lines in thin liquid films, Notices of the American Mathematical Society, 45 (1998), 689-697. |
[20] | A. L. Bertozzi, M. P. Brenner, T. F. Dupont, et al. Singularities and similarities in interface flows. In Trends and perspectives in applied mathematics, pages 155-208. Springer, New York, 1994. |
[21] |
A. L. Bertozzi, G. Grün, T. P. Witelski, Dewetting films: bifurcations and concentrations, Nonlinearity, 14 (2001), 1569-1592. doi: 10.1088/0951-7715/14/6/309
![]() |
[22] |
A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: the moving contact line with a "porous media" cut-off of van der Waals interactions, Nonlinearity, 7 (1994), 1535-1564. doi: 10.1088/0951-7715/7/6/002
![]() |
[23] |
A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions, Commun. Pure Appl. Math., 49 (1996), 85-123. doi: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO;2-2
![]() |
[24] |
A. L. Bertozzi and M. C. Pugh, Long-wave instabilities and saturation in thin film equations, Commun. Pure Appl. Math., 51 (1998), 625-661. doi: 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.0.CO;2-9
![]() |
[25] | A. L. Bertozzi and M. C. Pugh, Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana Univ. Math. J., 49 (2000), 1323-1366. |
[26] | M. Bertsch, R. Dal Passo, H. Garcke, et al. The thin viscous flow equation in higher space dimensions, Adv. Differ. Equations, 3 (1998), 417-440. |
[27] |
J. Bischof, D. Scherer, S. Herminghaus, et al. Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting, Phys. Rev. Lett., 77 (1996), 1536-1539. doi: 10.1103/PhysRevLett.77.1536
![]() |
[28] | S. Boatto, L. P. Kadanoff, P. Olla, Traveling-wave solutions to thin-film equations, Phys. Rev. E, 48 (1993), 4423-4431. |
[29] |
D. Bonn, J. Eggers, J. Indekeu, et al. Wetting and spreading, Rev. Mod. Phys., 81 (2009), 739-805. doi: 10.1103/RevModPhys.81.739
![]() |
[30] |
M. Bowen, J. Hulshof, J. R. King, Anomalous exponents and dipole solutions for the thin film equation, SIAM J. Appl. Math., 62 (2001), 149-179. doi: 10.1137/S0036139900366936
![]() |
[31] |
R. J. Braun, Dynamics of the tear film, Annu. Rev. Fluid Mech., 44 (2012), 267-297. doi: 10.1146/annurev-fluid-120710-101042
![]() |
[32] | L. Brusch, H. Kühne, U. Thiele, et al. Dewetting of thin films on heterogeneous substrates: Pinning versus coarsening, Phys. Rev. E, 66 (2002), 011602. |
[33] |
L. N. Brush and S. H. Davis, A new law of thinning in foam dynamics, J. Fluid Mech., 534 (2005), 227-236. doi: 10.1017/S0022112005004763
![]() |
[34] |
J. P. Burelbach, S. G. Bankoff, S. H. Davis, Nonlinear stability of evaporating/condensing liquid films, J. Fluid Mech., 195 (1988), 463-494. doi: 10.1017/S0022112088002484
![]() |
[35] |
J. A. Carrillo and G. Toscani, Long-time asymptotics for strong solutions of the thin film equation, Commun. Math. Phys., 225 (2002), 551-571. doi: 10.1007/s002200100591
![]() |
[36] |
A.-M. Cazabat and G. Guena, Evaporation of macroscopic sessile droplets, Soft Matter, 6 (2010), 2591-2612. doi: 10.1039/b924477h
![]() |
[37] |
S. J. Chapman, P. H. Trinh, T. P. Witelski, Exponential asymptotics for thin film rupture, SIAM J. Appl. Math., 73 (2013), 232-253. doi: 10.1137/120872012
![]() |
[38] |
K.-S. Chou and S.-Z. Du, Estimates on the Hausdorff dimension of the rupture set of a thin film, SIAM J. Math. Anal., 40 (2008), 790-823. doi: 10.1137/070685348
![]() |
[39] |
K.-S. Chou and Y.-C. Kwong, Finite time rupture for thin films under van der Waals forces, Nonlinearity, 20 (2007), 299-317. doi: 10.1088/0951-7715/20/2/004
![]() |
[40] |
P. Constantin, T. F. Dupont, R. E. Goldstein, et al. Droplet breakup in a model of the Hele-Shaw cell, Phys. Rev. E, 47 (1993), 4169-4181. doi: 10.1103/PhysRevE.47.4169
![]() |
[41] |
P. Constantin, T. Elgindi, H. Nguyen, et al. On singularity formation in a Hele-Shaw model, Commun. Math. Phys., 363 (2018), 139-171. doi: 10.1007/s00220-018-3241-6
![]() |
[42] |
R. V. Craster and O. K. Matar, Dynamics and stability of thin liquid films, Rev. Mod. Phys., 81(2009), 1131-1198. doi: 10.1103/RevModPhys.81.1131
![]() |
[43] |
M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys., 65 (1993), 851-1112. doi: 10.1103/RevModPhys.65.851
![]() |
[44] | B. Dai, L. G. Leal, A. Redondo, Disjoining pressure for nonuniform thin films, Phys. Rev. E, 78 (2008), 061602. |
[45] |
S. B. Dai, On a mean field model for 1D thin film droplet coarsening, Nonlinearity, 23 (2010), 325-340. doi: 10.1088/0951-7715/23/2/006
![]() |
[46] |
S. B. Dai, On the Ostwald ripening of thin liquid films, Commun. Math. Sci., 9 (2011), 143-160. doi: 10.4310/CMS.2011.v9.n1.a7
![]() |
[47] |
S. B. Dai and R. L. Pego, Universal bounds on coarsening rates for mean-field models of phase transitions, SIAM J. Math. Anal., 37 (2005), 347-371. doi: 10.1137/040618047
![]() |
[48] |
R. Dal Passo, H. Garcke, G. Grün, On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal., 29 (1998), 321-342. doi: 10.1137/S0036141096306170
![]() |
[49] |
R. Dal Passo, L. Giacomelli, A. Shishkov, The thin film equation with nonlinear diffusion, Commun. Part. Diff. Eq., 26 (2001), 1509-1557. doi: 10.1081/PDE-100107451
![]() |
[50] | M. C. Dallaston, M. A. Fontelos, D. Tseluiko, et al. Discrete self-similarity in interfacial hydrodynamics and the formation of iterated structures, Phys. Rev. Lett., 120 (2018), 34505. |
[51] |
M. C. Dallaston, D. Tseluiko, Z. Zheng, et al. Self-similar finite-time singularity formation in degenerate parabolic equations arising in thin-film flows, Nonlinearity, 30 (2017), 2647-2666. doi: 10.1088/1361-6544/aa6eb3
![]() |
[52] |
A. A. Darhuber and S. M. Troian, Principles of microfluidic actuation by modulation of surface stresses, Annu. Rev. Fluid Mech., 37 (2005), 425-455. doi: 10.1146/annurev.fluid.36.050802.122052
![]() |
[53] |
A. A. Darhuber, S. M. Troian, S. M. Miller, et al. Morphology of liquid microstructures on chemically patterned surfaces, J. Appl. Phys., 87 (2000), 7768-7775. doi: 10.1063/1.373452
![]() |
[54] | A. A. Darhuber, S. M. Troian, W. W. Reisner, Dynamics of capillary spreading along hydrophilic microstripes, Phys. Rev. E, 64 (2001), 031603. |
[55] | B. Davidovitch, E. Moro, H. A. Stone, Spreading of viscous fluid drops on a solid substrate assisted by thermal fluctuations, Phys. Rev. Lett., 95 (2005), 244505. |
[56] |
P. G. de Gennes, Wetting - statics and dynamics, Rev. Mod. Phys., 57 (1985), 827-863. doi: 10.1103/RevModPhys.57.827
![]() |
[57] | P. G. de Gennes, F. Brochard-Wyart, D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer Verlag, New York, 2003. |
[58] | M. di Bernardo, C. J. Budd, A. R. Champneys, et al. Piecewise-smooth Dynamical Systems, volume 163 of Applied Mathematical Sciences, Springer-Verlag London, Ltd., London, 2008. |
[59] | J. A. Diez, A. G. Gonzalez, L. Kondic, On the breakup of fluid rivulets, Phys. Fluids, 21 (2009), 082105. |
[60] | J. A. Diez and L. Kondic, On the breakup of fluid films of finite and infinite extent, Phys. Fluids, 19 (2007), 072107. |
[61] |
M. A. Durán-Olivencia, R. S. Gvalani, S. Kalliadasis, et al. Instability, rupture and fluctuations in thin liquid films: Theory and computations, J. Stat. Phys., 174 (2019), 579-604. doi: 10.1007/s10955-018-2200-0
![]() |
[62] |
M. Dziwnik, M. Korzec, A. Münch, et al. Stability analysis of unsteady, nonuniform base states in thin film equations, Multiscale Model. Sim., 12 (2014), 755-780. doi: 10.1137/130943352
![]() |
[63] | E. Weinan, Principles of Multiscale Modeling, Cambridge University Press, Cambridge, 2011. |
[64] |
J. Eggers, Nonlinear dynamics and breakup of free-surface flows, Rev. Mod. Phys., 69 (1997), 865-929. doi: 10.1103/RevModPhys.69.865
![]() |
[65] | J. Eggers and M. A. Fontelos, The role of self-similarity in singularities of partial differential equations, Nonlinearity, 22 (2009), R1-R44. |
[66] | J. Eggers and M. A. Fontelos, Singularities: Formation, Structure, and Propagation, Cambridge University Press, 2015. |
[67] | J. Eggers and L. Pismen, Nonlocal description of evaporating drops, Phys. Fluids, 22 (2010), 112101. |
[68] |
C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423. doi: 10.1137/S0036141094267662
![]() |
[69] | S. Engelnkemper, S. V. Gurevich, H. Uecker, et al. Continuation for thin film hydrodynamics and related scalar problems. In Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, pages 459-501. Springer, 2019. |
[70] |
R. Enright, N. Miljkovic, J. L. Alvarado, et al. Dropwise condensation on micro-and nanostructured surfaces, Nanosc. Microsc. Therm., 18 (2014), 223-250. doi: 10.1080/15567265.2013.862889
![]() |
[71] | P. L. Evans, J. R. King, A. Münch, Intermediate-asymptotic structure of a dewetting rim with strong slip, Applied Mathematics Research Express, 2006 (2006), 25262. |
[72] |
P. L. Evans, J. R. King, A. Münch, The structure of a dewetting rim with strong slip: the long-time evolution, Multiscale Model. Sim., 16 (2018), 1365-1391. doi: 10.1137/15M1051221
![]() |
[73] | R. Fetzer, K. Jacobs, A. Munch, et al. New slip regimes and the shape of dewetting thin liquid films, Phys. Rev. Lett., 95 (2005), 127801. |
[74] |
J. Fischer and G. Grün, Existence of positive solutions to stochastic thin-film equations, SIAM J. Math. Anal., 50 (2018), 411-455. doi: 10.1137/16M1098796
![]() |
[75] |
L. S. Fisher and A. A. Golovin, Nonlinear stability analysis of a two-layer thin liquid film: Dewetting and autophobic behavior, J. Colloid Interf. Sci., 291 (2005), 515-528. doi: 10.1016/j.jcis.2005.05.024
![]() |
[76] | Y. Gao, H. Ji, J.-G. Liu, et al. A vicinal surface model for epitaxial growth with logarithmic free energy, Discrete & Continuous Dynamical Systems-B, 23 (2018), 4433-4453. |
[77] | Y. Gao, J.-G. Liu, X. Y. Lu, Gradient flow approach to an exponential thin film equation: global existence and latent singularity, ESAIM: Control, Optimisation and Calculus of Variations, 25 (2019), 49. |
[78] |
A. Ghatak, R. Khanna, A. Sharma, Dynamics and morphology of holes in dewetting thin films, J. Colloid Interf. Sci., 212 (1999), 483-494. doi: 10.1006/jcis.1998.6052
![]() |
[79] | L. Giacomelli, A fourth-order degenerate parabolic equation describing thin viscous flows over an inclined plane, Appl. Math. Lett., 12 (1999), 107-111. |
[80] |
L. Giacomelli, M. V. Gnann, F. Otto, Regularity of source-type solutions to the thin-film equation with zero contact angle and mobility exponent between 3/2 and 3, Eur. J. Appl. Math., 24 (2013), 735-760. doi: 10.1017/S0956792513000156
![]() |
[81] | L. Giacomelli and F. Otto, Rigorous lubrication approximation, Interfaces Free Bound., 5 (2003), 483-529. |
[82] | M.-H. Giga, Y. Giga, J. Saal, Nonlinear Partial Differential Equations: Asymptotic Behavior of Solutions and Self-Similar Solutions, Birkhäuser Boston, Ltd., Boston, MA, 2010. |
[83] |
K. Glasner and S. Orizaga, Improving the accuracy of convexity splitting methods for gradient flow equations, J. Comput. Phys., 315 (2016), 52-64. doi: 10.1016/j.jcp.2016.03.042
![]() |
[84] |
K. Glasner, F. Otto, T. Rump, et al. Ostwald ripening of droplets: The role of migration, Eur. J. Appl. Math., 20 (2009), 1-67. doi: 10.1017/S0956792508007559
![]() |
[85] |
K. B. Glasner, Spreading of droplets under the influence of intermolecular forces, Phys. Fluids, 15 (2003), 1837-1842. doi: 10.1063/1.1578076
![]() |
[86] | K. B. Glasner, Ostwald ripening in thin film equations, SIAM J. Appl. Math., 6 (2008), 473-493. |
[87] | K. B. Glasner and T. P. Witelski, Coarsening dynamics of dewetting films, Phys. Rev. E, 67 (2003), 016302. |
[88] |
K. B. Glasner and T. P. Witelski, Collision versus collapse of droplets in coarsening of dewetting thin films, Physica D, 209 (2005), 80-104. doi: 10.1016/j.physd.2005.06.010
![]() |
[89] |
M. V. Gnann and M. Petrache, The Navier-slip thin-film equation for 3D fluid films: existence and uniqueness, J. Differ. Equations, 265 (2018), 5832-5958. doi: 10.1016/j.jde.2018.07.015
![]() |
[90] |
R. E. Goldstein, A. I. Pesci, M. J. Shelley, Attracting manifold for a viscous topology transition, Phys. Rev. Lett., 75 (1995), 3665-3668. doi: 10.1103/PhysRevLett.75.3665
![]() |
[91] |
C. P. Grant, Spinodal decomposition for the Cahn-Hilliard equation, Commun. Part. Diff. Eq., 18 (1993), 453-490. doi: 10.1080/03605309308820937
![]() |
[92] |
M. B. Gratton and T. P. Witelski, Transient and self-similar dynamics in thin film coarsening, Physica D, 238 (2009), 2380-2394. doi: 10.1016/j.physd.2009.09.015
![]() |
[93] |
H. P. Greenspan, On the motion of a small viscous droplet that wets a surface, J. Fluid Mech., 84 (1978), 125-143. doi: 10.1017/S0022112078000075
![]() |
[94] |
G. Grün, K. Mecke, M. Rauscher, Thin-film flow influenced by thermal noise, J. Stat. Phys., 122 (2006), 1261-1291. doi: 10.1007/s10955-006-9028-8
![]() |
[95] |
G. Grün and M. Rumpf, Nonnegativity preserving convergent schemes for the thin film equation, Numer. Math., 87 (2000), 113-152. doi: 10.1007/s002110000197
![]() |
[96] |
G. Grün and M. Rumpf, Simulation of singularities and instabilities arising in thin film flow, Eur. J. Appl. Math., 12 (2001), 293-320. doi: 10.1017/S0956792501004429
![]() |
[97] | E. K. O. Hellen and J. Krug, Coarsening of sand ripples in mass transfer models, Phys. Rev. E, 66 (2002), 011304. |
[98] | D. Herde, U. Thiele, S. Herminghaus, et al. Driven large contact angle droplets on chemically heterogeneous substrates, EPL, 100 (2012), 16002. |
[99] |
S. Herminghaus, M. Brinkmann, R. Seemann, Wetting and dewetting of complex surface geometries, Annu. Rev. Mater. Res., 38 (2008), 101-121. doi: 10.1146/annurev.matsci.38.060407.130335
![]() |
[100] |
S. Herminghaus and F. Brochard, Dewetting though nucleation, C. R. Phys., 7 (2006), 1073-1081. doi: 10.1016/j.crhy.2006.10.021
![]() |
[101] | S. Herminghaus, K. Jacobs, K. Mecke, et al. Spinodal dewetting in liquid crystal and liquid metal films, Science, 282 (1998), 916-919. |
[102] |
L. M. Hocking, The influence of intermolecular forces on thin fluid layers, Phys. Fluids, 5 (1993), 793-798. doi: 10.1063/1.858627
![]() |
[103] |
C. Huh and L. E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interf. Sci., 35 (1971), 85-101. doi: 10.1016/0021-9797(71)90188-3
![]() |
[104] |
H. J. Hwang and T. P. Witelski, Short-time pattern formation in thin film equations, Discrete and Continuous Dynamical Systems. Series A, 23 (2009), 867-885. doi: 10.3934/dcds.2009.23.867
![]() |
[105] | J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, New York, 1992. |
[106] | K. Jacobs, R. Seemann, S. Herminghaus, Stability and dewetting of thin liquid films. In Polymer thin films, pages 243-265. World Scientific, 2008. |
[107] |
H. Ji and T. P. Witelski, Finite-time thin film rupture driven by modified evaporative loss, Physica D, 342 (2017), 1-15. doi: 10.1016/j.physd.2016.10.002
![]() |
[108] | H. Ji and T. P. Witelski, Instability and dynamics of volatile thin films, Phys. Rev. Fluids, 3 (2018), 024001. |
[109] | H. Ji and T. P. Witelski, Steady states and dynamics of a thin-film-type equation with nonconserved mass, Eur. J. Appl. Math., (2019), 1-34. |
[110] |
H. Jiang and W.-M. Ni, On steady states of van der Waals force driven thin film equations, Eur. J. Appl. Math., 18 (2007), 153-180. doi: 10.1017/S0956792507006936
![]() |
[111] | S. Kalliadasis, C. Ruyer-Quil, B. Scheid, et al. Falling Liquid Films, volume 176 of Applied Mathematical Sciences, Springer, London, 2012. |
[112] |
H. S. Kheshgi and L. E. Scriven, Dewetting - nucleation and growth of dry regions, Chem. Eng. Sci., 46 (1991), 519-526. doi: 10.1016/0009-2509(91)80012-N
![]() |
[113] |
J. R. King, Two generalisations of the thin film equation, Math. Comput. Model., 34 (2001), 737-756. doi: 10.1016/S0895-7177(01)00095-4
![]() |
[114] |
J. R. King and M. Bowen, Moving boundary problems and non-uniqueness for the thin film equation, Eur. J. Appl. Math., 12 (2001), 321-356. doi: 10.1017/S0956792501004405
![]() |
[115] |
J. R. King, A. Münch, B. Wagner, Linear stability of a ridge, Nonlinearity, 19 (2006), 2813-2831. doi: 10.1088/0951-7715/19/12/005
![]() |
[116] |
J. R. King, A. Münch, B. A. Wagner, Linear stability analysis of a sharp-interface model for dewetting thin films, J. Eng. Math., 63 (2009), 177-195. doi: 10.1007/s10665-008-9242-2
![]() |
[117] |
G. Kitavtsev, L. Recke, B. Wagner, Centre manifold reduction approach for the lubrication equation, Nonlinearity, 24 (2011), 2347-2369. doi: 10.1088/0951-7715/24/8/010
![]() |
[118] |
G. Kitavtsev, L. Recke, B. Wagner, Asymptotics for the spectrum of a thin film equation in a singular limit, SIAM J. Appl. Dyn. Syst., 11 (2012), 1425-1457. doi: 10.1137/100813488
![]() |
[119] | R. V. Kohn and F. Otto, Upper bounds on coarsening rates, Commun. Math. Phys., 229 (2002), 275-295. |
[120] |
R. Konnur, K. Kargupta, A. Sharma, Instability and morphology of thin liquid films on chemically heterogeneous substrates, Phys. Rev. Lett., 84 (2000), 931-934. doi: 10.1103/PhysRevLett.84.931
![]() |
[121] | M.-A. Y.-H. Lam, L. J. Cummings, L. Kondic, Computing dynamics of thin films via large scale GPU-based simulations, Journal of Computational Physics: X, 2 (2019), 100001. |
[122] | E. Lauga, M. P. Brenner, H. A. Stone, Microfluidics: The no-slip boundary condition. In J. Foss, C. Tropea, and A. Yarin, editors, Handbook of Experimental Fluid Dynamics, chapter 19, pages 1-27. Springer, 2007. |
[123] |
R. S. Laugesen and M. C. Pugh, Linear stability of steady states for thin film and Cahn-Hilliard type equations, Arch. Ration. Mech. An., 154 (2000), 3-51. doi: 10.1007/PL00004234
![]() |
[124] |
R. S. Laugesen and M. C. Pugh, Properties of steady states for thin film equations, Eur. J. Appl. Math., 11 (2000), 293-351. doi: 10.1017/S0956792599003794
![]() |
[125] |
R. S. Laugesen and M. C. Pugh, Energy levels of steady states for thin-film-type equations, J. Differ. Equations, 182 (2002), 377-415. doi: 10.1006/jdeq.2001.4108
![]() |
[126] | R. S. Laugesen and M. C. Pugh, Heteroclinic orbits, mobility parameters and stability for thin film type equations, Electron. J. Differ. Eq., 2002 (2002), 1-29. |
[127] |
R. N. Leach, F. Stevens, S. C. Langford, et al. Dropwise condensation: Experiments and simulations of nucleation and growth of water drops in a cooling system, Langmuir, 22 (2006), 8864-8872. doi: 10.1021/la061901+
![]() |
[128] | L. G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, Cambridge University Press, 2007. |
[129] |
I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19 (1961), 35-50. doi: 10.1016/0022-3697(61)90054-3
![]() |
[130] |
R. Limary and P. F. Green, Dewetting instabilities in thin block copolymer films: nucleation and growth, Langmuir, 15 (1999), 5617-5622. doi: 10.1021/la981693o
![]() |
[131] |
R. Limary and P. F. Green, Dynamics of droplets on the surface of a structured fluid film: latestage coarsening, Langmuir, 19 (2003), 2419-2424. doi: 10.1021/la026560o
![]() |
[132] |
F. Liu, G. Ghigliotti, J. J. Feng, et al. Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces, J. Fluid Mech., 752 (2014), 39-65. doi: 10.1017/jfm.2014.320
![]() |
[133] | W. Liu and T. P. Witelski, Steady-states of thin film droplets on chemically heterogeneous substrates, preprint, 2020. |
[134] |
A. M. Macner, S. Daniel, P. H. Steen, Condensation on surface energy gradient shifts drop size distribution toward small drops, Langmuir, 30 (2014), 1788-1798. doi: 10.1021/la404057g
![]() |
[135] |
J. A. Marqusee and J. Ross, Kinetics of phase transitions: Theory of Ostwald ripening, J. Chem. Phys., 79 (1983), 373-378. doi: 10.1063/1.445532
![]() |
[136] | L. C. Mayo, S. W. McCue, T. J. Moroney, et al. Simulating droplet motion on virtual leaf surfaces, Roy. Soc. Open Sci., 2 (2015), 140528. |
[137] | K. Mecke and M. Rauscher, On thermal fluctuations in thin film flow, Journal of Physics: Condensed Matter, 17 (2005), S3515. |
[138] |
N. Miljkovic, R. Enright, E. N. Wang, Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces, ACS Nano, 6 (2012), 1776-1785. doi: 10.1021/nn205052a
![]() |
[139] |
A. Miranville, The Cahn-Hilliard equation and some of its variants, AIMS Mathematics, 2 (2017), 479-544. doi: 10.3934/Math.2017.2.479
![]() |
[140] |
V. Mitlin, Dewetting revisited: New asymptotics of the film stability diagram and the metastable regime of nucleation and growth of dry zones, J. Colloid Interf. Sci., 227 (2000), 371-379. doi: 10.1006/jcis.2000.6792
![]() |
[141] |
V. S. Mitlin, Dewetting of a solid surface: analogy with spinodal decomposition, J. Colloid Interf. Sci., 156 (1993), 491-497. doi: 10.1006/jcis.1993.1142
![]() |
[142] |
V. S. Mitlin and N. V. Petviashvili, Nonlinear dynamics of dewetting: kinetically stable structures, Phys. Lett. A, 192 (1994), 323-326. doi: 10.1016/0375-9601(94)90213-5
![]() |
[143] |
R. Mukherjee and A. Sharma, Instability, self-organization and pattern formation in thin soft films, Soft matter, 11 (2015), 8717-8740. doi: 10.1039/C5SM01724F
![]() |
[144] |
A. Münch and B. Wagner, Contact-line instability of dewetting thin films, Physica D, 209 (2005), 178-190. doi: 10.1016/j.physd.2005.06.027
![]() |
[145] |
A. Münch, B. Wagner, T. P. Witelski, Lubrication models with small to large slip lengths, J. Eng. Math., 53 (2005), 359-383. doi: 10.1007/s10665-005-9020-3
![]() |
[146] |
N. Murisic and L. Kondic, On evaporation of sessile drops with moving contact lines, J. Fluid Mech., 679 (2011), 219-246. doi: 10.1017/jfm.2011.133
![]() |
[147] |
T. G. Myers, Thin films with high surface tension, SIAM Review, 40 (1998), 441-462. doi: 10.1137/S003614459529284X
![]() |
[148] | C. Neto, K. Jacobs, R. Seemann, et al. Correlated dewetting patterns in thin polystyrene films, Journal of Physics: Condensed Matter, 15 (2003), S421-S426. |
[149] |
C. Neto, K. Jacobs, R. Seemann, et al. Satellite hole formation during dewetting: experiment and simulation, Journal of Physics: Condensed Matter, 15 (2003), 3355-3366. doi: 10.1088/0953-8984/15/19/334
![]() |
[150] |
B. Niethammer, Derivation of the LSW-theory for Ostwald ripening by homogenization methods, Arch. Ration. Mech. An., 147 (1999), 119-178. doi: 10.1007/s002050050147
![]() |
[151] | B. Niethammer, The mathematics of Ostwald ripening. In Geometric analysis and nonlinear partial differential equations, pages 649-663. Springer, Berlin, 2003. |
[152] |
B. Niethammer and R. L. Pego, Non-self-similar behavior in the LSW theory of Ostwald ripening, J. Stat. Phys., 95 (1999), 867-902. doi: 10.1023/A:1004546215920
![]() |
[153] |
B. Niethammer and R. L. Pego, On the initial-value problem in the Lifshitz-Slyozov-Wagner theory of Ostwald ripening, SIAM J. Math. Anal., 31 (2000), 467-485. doi: 10.1137/S0036141098338211
![]() |
[154] |
B. Niethammer and R. L. Pego, Well-posedness for measure transport in a family of nonlocal domain coarsening models, Indiana U. Math. J., 54 (2005), 499-530. doi: 10.1512/iumj.2005.54.2598
![]() |
[155] |
B. Niethammer and J. J. L. Velázquez, On the convergence to the smooth self-similar solution in the LSW model, Indiana U. Math. J., 55 (2006), 761-794. doi: 10.1512/iumj.2006.55.2854
![]() |
[156] | A. Novick-Cohen, The Cahn-Hilliard equation. In Handbook of differential equations: evolutionary equations. Vol. IV, Handb. Differ. Equ., pages 201-228. Elsevier/North-Holland, Amsterdam, 2008. |
[157] |
A. Novick-Cohen and L. A. Segel, Nonlinear aspects of the Cahn-Hilliard equation, Physica D, 10 (1984), 277-298. doi: 10.1016/0167-2789(84)90180-5
![]() |
[158] | J. R. Ockendon and H. Ockendon, Viscous Flow, Cambridge University, Cambridge, 1995. |
[159] |
A. Oron and S. G. Bankoff, Dewetting of a heated surface by an evaporating liquid film under conjoining/disjoining pressures, J. Colloid Interf. Sci., 218 (1999), 152-166. doi: 10.1006/jcis.1999.6390
![]() |
[160] |
A. Oron and S. G. Bankoff, Dynamics of a condensing liquid film under conjoining/disjoining pressures, Phys. Fluids, 13 (2001), 1107-1117. doi: 10.1063/1.1355022
![]() |
[161] |
A. Oron, S. H. Davis, S. G. Bankoff, Long-scale evolution of thin liquid films, Rev. Mod. Phys., 69 (1997), 931-980. doi: 10.1103/RevModPhys.69.931
![]() |
[162] |
F. Otto, T. Rump, D. Slepcev, Coarsening rates for a droplet model: rigorous upper bounds, SIAM J. Math. Anal., 38 (2006), 503-529. doi: 10.1137/050630192
![]() |
[163] | S. B. G. O'Brien and L. W. Schwartz, Theory and Modeling of Thin Film Flows, In Encyclopedia of Surface and Colloid Science, pages 5283-5297. Marcel Dekker, 2002. |
[164] |
A. A. Pahlavan, L. Cueto-Felgueroso, A. E. Hosoi, et al. Thin films in partial wetting: Stability, dewetting and coarsening, J. Fluid Mech., 845 (2018), 642-681. doi: 10.1017/jfm.2018.255
![]() |
[165] | A. A. Pahlavan, L. Cueto-Felgueroso, G. H. McKinley, et al. Thin films in partial wetting: internal selection of contact-line dynamics, Phys. Rev. Lett., 115 (2015), 034502. |
[166] |
D. Peschka, S. Haefner, L. Marquant, et al. Signatures of slip in dewetting polymer films, P. Natl. Acad. Sci. USA, 116 (2019), 9275-9284. doi: 10.1073/pnas.1820487116
![]() |
[167] | L. M. Pismen, Spinodal dewetting in a volatile liquid film, Phys. Rev. E, 70 (2004), 021601. |
[168] |
L. M. Pismen and Y. Pomeau, Mobility and interactions of weakly nonwetting droplets, Phys. Fluids, 16 (2004), 2604-2612. doi: 10.1063/1.1758911
![]() |
[169] | A. Pototsky, M. Bestehorn, D. Merkt, et al. Alternative pathways of dewetting for a thin liquid two-layer film, Phys. Rev. E, 70 (2004), 025201. |
[170] | C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1992. |
[171] |
M. Rauscher and S. Dietrich, Wetting phenomena in nanofluidics, Annu. Rev. Mater. Res., 38 (2008), 143-172. doi: 10.1146/annurev.matsci.38.060407.132451
![]() |
[172] |
G. Reiter, Dewetting of thin polymer films, Phys. Rev. Lett., 68 (1992), 75-78. doi: 10.1103/PhysRevLett.68.75
![]() |
[173] |
S. N. Reznik and A. L. Yarin, Spreading of a viscous drop due to gravity and capillarity on a horizontal or an inclined dry wall, Phys. Fluids, 14 (2002), 118-132. doi: 10.1063/1.1426388
![]() |
[174] |
A. J. Roberts and Z. Li, An accurate and comprehensive model of thin fluid flows with inertia on curved substrates, J. Fluid Mech., 553 (2006), 33-73. doi: 10.1017/S0022112006008640
![]() |
[175] | N. O. Rojas, M. Argentina, E. Cerda, et al. Inertial lubrication theory, Phys. Rev. Lett., 104 (2010), 187801. |
[176] |
J. W. Rose, On the mechanism of dropwise condensation, Int. J. Heat Mass Tran., 10 (1967), 755-762. doi: 10.1016/0017-9310(67)90135-4
![]() |
[177] | J. W. Rose, Dropwise condensation theory and experiment: A review, Journal of Power Energy, 216 (2012), 115-128. |
[178] |
R. V. Roy, A. J. Roberts, M. E. Simpson, A lubrication model of coating flows over a curved substrate in space, J. Fluid Mech., 454 (2002), 235-261. doi: 10.1017/S0022112001007133
![]() |
[179] |
E. Ruckenstein and R. K. Jain, Spontaneous rupture of thin liquid films, Journal of the Chemical Society-Faraday Transactions II, 70 (1974), 132-147. doi: 10.1039/f29747000132
![]() |
[180] | K. Rykaczewski, A. T. Paxson, M. Staymates, et al. Dropwise condensation of low surface tension fluids on omniphobic surfaces, Scientific reports, 4 (2015), 4158. |
[181] |
E. Sander and T. Wanner, Monte Carlo simulations for spinodal decomposition, J. Stat. Phys., 95 (1999), 925-948. doi: 10.1023/A:1004550416829
![]() |
[182] |
E. Sander and T. Wanner, Unexpectedly linear behavior for the Cahn-Hilliard equation, SIAM J. Appl. Math., 60 (2000), 2182-2202. doi: 10.1137/S0036139999352225
![]() |
[183] | L. W. Schwartz, Unsteady simulation of viscous thin-layer flows. In P. A. Tyvand, editor, Free surface flows with viscosity, pages 203-233. Computational Mechanics Publications, Boston, 1997. |
[184] |
L. W. Schwartz, R. V. Roy, R. R. Eley, et al. Dewetting patterns in a drying liquid film, J. Colloid Interf. Sci., 234 (2001), 363-374. doi: 10.1006/jcis.2000.7312
![]() |
[185] |
L. W. Schwartz and D. E. Weidner, Modeling of coating flows on curved surfaces, J. Eng. Math., 29 (1995), 91-103. doi: 10.1007/BF00046385
![]() |
[186] |
R. Seemann, S. Herminghaus, K. Jacobs, Dewetting patterns and molecular forces: a reconciliation, Phys. Rev. Lett., 86 (2001), 5534-5537. doi: 10.1103/PhysRevLett.86.5534
![]() |
[187] |
A. Sharma, Many paths to dewetting of thin films, Eur. Phys. J. E, 12 (2003), 397-407. doi: 10.1140/epje/e2004-00008-5
![]() |
[188] |
A. Sharma and R. Khanna, Pattern formation in unstable thin liquid films, Phys. Rev. Lett., 81 (1998), 3463-3466. doi: 10.1103/PhysRevLett.81.3463
![]() |
[189] |
A. Sharma and G. Reiter, Instability of thin polymer films on coated substrates: rupture, dewetting, and drop formation, J. Colloid Interf. Sci., 178 (1996), 383-399. doi: 10.1006/jcis.1996.0133
![]() |
[190] |
A. Sharma and R. Verma, Pattern formation and dewetting in thin films of liquids showing complete macroscale wetting: From "pancakes" to "swiss cheese", Langmuir, 20 (2004), 10337-10345. doi: 10.1021/la048669x
![]() |
[191] | D. N. Sibley, A. Nold, N. Savva, et al. A comparison of slip, disjoining pressure, and interface formation models for contact line motion through asymptotic analysis of thin two-dimensional droplet spreading, J. Eng. Math., 94 (2015), 19-41. |
[192] | V. M. Starov, M. G. Velarde, C. J. Radke, Wetting and Spreading Dynamics, CRC Press, Boca Raton Florida, 2007. |
[193] |
P. S. Stewart and S. H. Davis, Dynamics and stability of metallic foams: Network modeling, J. Rheol., 56 (2012), 543-574. doi: 10.1122/1.3695029
![]() |
[194] |
P. S. Stewart and S. H. Davis, Self-similar coalescence of clean foams, J. Fluid Mech., 722 (2013), 645-664. doi: 10.1017/jfm.2013.145
![]() |
[195] |
H. A. Stone, A. D. Stroock, A. Ajdari, Engineering flows in small devices: microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech., 36 (2004), 381-411. doi: 10.1146/annurev.fluid.36.050802.122124
![]() |
[196] |
U. Thiele, Open questions and promising new fields in dewetting, Eur. Phys. J. E, 12 (2003), 409-414. doi: 10.1140/epje/e2004-00009-4
![]() |
[197] | U. Thiele, Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth, Journal of Physics: Condensed Matter, 22 (2010), 084019. |
[198] |
U. Thiele, Patterned deposition at moving contact lines, Adv. Colloid Interfac., 206 (2014), 399-413. doi: 10.1016/j.cis.2013.11.002
![]() |
[199] |
U. Thiele, Recent advances in and future challenges for mesoscopic hydrodynamic modelling of complex wetting, Colloids and Surfaces A, 553 (2018), 487-495. doi: 10.1016/j.colsurfa.2018.05.049
![]() |
[200] | U. Thiele, A. J. Archer, L. M. Pismen, Gradient dynamics models for liquid films with soluble surfactant, Phys. Rev. Fluids, 1 (2016), 083903. |
[201] | U. Thiele, A. J. Archer, M. Plapp, Thermodynamically consistent description of the hydrodynamics of free surfaces covered by insoluble surfactants of high concentration, Phys. Fluids, 24 (2012), 102107. |
[202] | U. Thiele and E. Knobloch, Driven drops on heterogeneous substrates: Onset of sliding motion, Phys. Rev. Lett., 97 (2006), 204501. |
[203] |
U. Thiele, M. Mertig, W. Pompe, Dewetting of an evaporating thin liquid film: Heterogeneous nucleation and surface instability, Phys. Rev. Lett., 80 (1998), 2869-2872. doi: 10.1103/PhysRevLett.80.2869
![]() |
[204] | U. Thiele, M. G. Velarde, K. Neuffer, et al. Film rupture in the diffuse interface model coupled to hydrodynamics, Phys. Rev. E, 64 (2001), 031602. |
[205] |
D. Tseluiko and D. T. Papageorgiou, Nonlinear dynamics of electrified thin liquid films, SIAM J. Appl. Math., 67 (2007), 1310-1329. doi: 10.1137/060663532
![]() |
[206] |
D. Tseluiko, J. Baxter, U. Thiele, A homotopy continuation approach for analysing finite-time singularities in thin liquid films, IMA J. Appl. Math., 78 (2013), 762-776. doi: 10.1093/imamat/hxt021
![]() |
[207] | H. B. van Lengerich, M. J. Vogel, P. H. Steen, Coarsening of capillary drops coupled by conduit networks, Phys. Rev. E, 82 (2010), 66312. |
[208] |
F. Vandenbrouck, M. P. Valignat, A. M. Cazabat, Thin nematic films: metastability and spinodal dewetting, Phys. Rev. Lett., 82 (1999), 2693-2696. doi: 10.1103/PhysRevLett.82.2693
![]() |
[209] |
S. J. VanHook, M. F. Schatz, W. D. McCormick, et al. Long-wavelength surface-tension-driven Bénard convection: experiment and theory, J. Fluid Mech., 345 (1997), 45-78. doi: 10.1017/S0022112097006101
![]() |
[210] | J. L. Vázquez, The Porous Medium Equation, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007. |
[211] |
A. Vrij, Possible mechanism for spontaneous rupture of thin free liquid films, Discussions of the Faraday Society, 42 (1966), 23-33. doi: 10.1039/df9664200023
![]() |
[212] | C. Wagner, Theorie der alterung von niedershlagen durch umlosen (Ostwald-Reifung), Z. Elektrochem, 65 (1961), 581-591. |
[213] | M. H. Ward, Interfacial thin films rupture and self-similarity, Phys. Fluids, 23 (2011), 062105. |
[214] |
S. J. Watson, F. Otto, B. Y. Rubinstein, et al. Coarsening dynamics of the convective Cahn-Hilliard equation, Physica D, 178 (2003), 127-148. doi: 10.1016/S0167-2789(03)00048-4
![]() |
[215] | T. Wei and F. Duan, Interfacial stability and self-similar rupture of evaporating liquid layers under vapor recoil, Phys. Fluids, 28 (2016), 124106. |
[216] |
G. M. Whitesides, The origins and the future of microfluidics, Nature, 442 (2006), 368-373. doi: 10.1038/nature05058
![]() |
[217] |
M. B. Williams and S. H. Davis, Nonlinear theory of film rupture, J. Colloid Interf. Sci., 90 (1982), 220-228. doi: 10.1016/0021-9797(82)90415-5
![]() |
[218] | T. P. Witelski, Computing finite-time singularities in interfacial flows. In G. Sabidussi, editor, Modern Methods in Scientific Computing and Applications, NATO ASI series proceedings, pages 451-487. Kluwer, 2002. |
[219] |
T. P. Witelski and A. J. Bernoff, Stability of self-similar solutions for van der Waals driven thin film rupture, Phys. Fluids, 11 (1999), 2443-2445. doi: 10.1063/1.870138
![]() |
[220] |
T. P. Witelski and A. J. Bernoff, Dynamics of three-dimensional thin film rupture, Physica D, 147 (2000), 155-176. doi: 10.1016/S0167-2789(00)00165-2
![]() |
[221] |
T. P. Witelski, A. J. Bernoff, A. L. Bertozzi, Blowup and dissipation in a critical-case unstable thin film equation, Eur. J. Appl. Math., 15 (2004), 223-256. doi: 10.1017/S0956792504005418
![]() |
[222] |
T. P. Witelski and M. Bowen, ADI schemes for higher-order nonlinear diffusion equations, Appl. Numer. Math., 45 (2003), 331-351. doi: 10.1016/S0168-9274(02)00194-0
![]() |
[223] |
Q. Wu and H. Wong, A slope-dependent disjoining pressure for non-zero contact angles, J. Fluid Mech., 506 (2004), 157-185. doi: 10.1017/S0022112004008420
![]() |
[224] |
W. W. Zhang and J. R. Lister, Similarity solutions for van der Waals rupture of a thin film on a solid substrate, Phys. Fluids, 11 (1999), 2454-2462. doi: 10.1063/1.870110
![]() |
[225] | L. Zhornitskaya and A. L. Bertozzi, Positivity-preserving numerical schemes for lubrication-type equations, SIAM J. Numer. Anal., 37 (2000), 523-555. |
1. | Jie Xing, Hanli Zhao, Huiling Chen, Ruoxi Deng, Lei Xiao, Boosting Whale Optimizer with Quasi-Oppositional Learning and Gaussian Barebone for Feature Selection and COVID-19 Image Segmentation, 2023, 20, 1672-6529, 797, 10.1007/s42235-022-00297-8 | |
2. | Nilkanth Mukund Deshpande, Shilpa Gite, Biswajeet Pradhan, Ketan Kotecha, Abdullah Alamri, Improved Otsu and Kapur approach for white blood cells segmentation based on LebTLBO optimization for the detection of Leukemia, 2021, 19, 1551-0018, 1970, 10.3934/mbe.2022093 | |
3. | Rebika Rai, Arunita Das, Krishna Gopal Dhal, Nature-inspired optimization algorithms and their significance in multi-thresholding image segmentation: an inclusive review, 2022, 13, 1868-6478, 889, 10.1007/s12530-022-09425-5 | |
4. | Simrandeep Singh, Harbinder Singh, Gloria Bueno, Oscar Deniz, Sartajvir Singh, Himanshu Monga, P.N. Hrisheekesha, Anibal Pedraza, A Review of Image Fusion: Methods, Applications and Performance Metrics, 2023, 10512004, 104020, 10.1016/j.dsp.2023.104020 | |
5. | Simrandeep Singh, Nitin Mittal, Harbinder Singh, Diego Oliva, Improving the segmentation of digital images by using a modified Otsu’s between-class variance, 2023, 1380-7501, 10.1007/s11042-023-15129-y | |
6. | Nagamani Gonthina, L V Narasimha Prasad, 2024, A Study of Various Optimization Algorithms and Entropy Measures for Image Segmentation, 978-93-80544-51-9, 1828, 10.23919/INDIACom61295.2024.10498431 | |
7. | Emir Turajlic, 2024, Multilevel Image Thresholding based on Particle Swarm Optimization Algorithm with Chaotic Cognitive and Social Acceleration Coefficients, 979-8-3503-8756-8, 1, 10.1109/MECO62516.2024.10577873 | |
8. | Hanyue He, An enhanced seagull algorithm for multi-threshold image segmentation based on Kapur entropy, 2024, 2858, 1742-6588, 012043, 10.1088/1742-6596/2858/1/012043 | |
9. | Saifuddin Ahmed, Anupam Biswas, Abdul Kayom Md Khairuzzaman, An experimentation of objective functions used for multilevel thresholding based image segmentation using particle swarm optimization, 2024, 16, 2511-2104, 1717, 10.1007/s41870-023-01606-y | |
10. | Linguo Li, Mingyu Zhang, Qinghe Li, Shujing Li, 2024, Chapter 33, 978-981-99-9238-6, 334, 10.1007/978-981-99-9239-3_33 |
Algorithm's description | Moth-flame's elements |
Decision variable | Moth's position in each dimension |
Solutions | Moth's position |
Initial solutions | Random positions of moths |
Current solutions | Current positions of moths |
New solutions | New positions of moths |
Best solution | Flame's position |
Fitness function | Distance between moth and flame |
Process of generating a new solution | Flying in a spiral path toward a flame |
Algorithm 1. MFO. |
Randomly initialize the position of moths and the parameters for Moth-flame |
While iteration≤Max_iteration do |
Renew flame no utilizing Eq (15) |
OM=FitnessFunction(M) |
If iteration=1 then |
F=sort(M) |
OF=sort(OM) |
else |
F=sort(Mt−1,Mt) |
OF=sort(Mt−1,Mt) |
end if |
for i=1:n do |
for j=1:d do |
Renew r and t |
Estimate D utilizing Eq (14) |
Renew M(i,j) utilizing Eq (13) |
end for |
end for |
end while |
Return the best solution |
Threshold segmentation | MFO |
A collection (x1,x2,...,xk) scheduling schemes | A moth population (n1,n2,...,nk) moths |
An optimal scheme to resolve the image segmentation | An optimal flame's position |
The objective function of the image segmentation | The fitness function of the MFO |
Algorithm 2. MFO-based Kapur entropy. |
Randomly initialize the position of moths and the parameters for Moth-flame |
While iteration≤Max_iteration do |
Renew flame no utilizing Eq (15) |
Estimate the fitness value of each moth utilizing Eq (2) for the Kapur entropy and attain the best solution |
OM=FitnessFunction(M) |
If iteration=1 then |
F=sort(M) |
OF=sort(OM) |
else |
F=sort(Mt−1,Mt) |
OF=sort(Mt−1,Mt) |
end if |
for i=1:n do |
for j=1:d do |
Renew r and t |
Estimate D utilizing Eq (14) |
Renew M(i,j) utilizing Eq (13) |
end for |
end for |
end while |
Return the best solution or the optimal threshold value |
Algorithm | Parameter | Value |
BA [11] | Pulse frequency scope f | [0, 2] |
Echo loudness A | 0.25 | |
Reducing coefficient γ | 0.5 | |
FPA [12] | Switch probability ρ | 0.8 |
MSA [13] | An arbitrary value θ | [-2, 1] |
An arbitrary value ε2 | [0, 1] | |
An arbitrary value ε3 | [0, 1] | |
An arbitrary value r1 | [0, 1] | |
An arbitrary value r2 | [0, 1] | |
PSO [14] | Constant inertia ω | 0.3 |
First acceleration coefficient c1 | 1.4962 | |
Second acceleration coefficient c2 | 1.4962 | |
WWO [15] | Wavelength λ | 0.5 |
Wave height hmax | 6 | |
Wavelength attenuation factor α | 1.0026 | |
Breaking factor β | [0.001, 0.25] | |
Maximum value kmax of breaking directions | min(12,D/D22) | |
MFO [43] | Logarithmic spiral b | 1 |
An arbitrary value t | [-1, 1] |
Images | k | Fitness values | ||||||
BA | FPA | MSA | PSO | WWO | MFO | Rank | ||
Test 1 | 2 | 12.3364 | 12.3198 | 12.2127 | 12.3479 | 12.3112 | 12.3487 | 1 |
3 | 15.2194 | 15.3081 | 15.2704 | 15.2018 | 15.1970 | 15.3172 | 1 | |
4 | 17.7102 | 17.7705 | 17.8821 | 17.7208 | 17.8752 | 17.9921 | 1 | |
5 | 20.3813 | 20.0295 | 20.2961 | 21.1111 | 20.2899 | 21.2798 | 1 | |
6 | 22.4683 | 22.3940 | 21.9694 | 22.4280 | 22.4488 | 22.6422 | 1 | |
Test 2 | 2 | 12.5842 | 12.5331 | 12.5997 | 12.6346 | 12.5916 | 12.6346 | 1 |
3 | 15.6189 | 15.5130 | 15.6003 | 15.4587 | 15.4813 | 15.6531 | 1 | |
4 | 18.1117 | 18.3233 | 18.1107 | 18.3061 | 18.2180 | 18.4397 | 1 | |
5 | 20.5250 | 20.9349 | 20.9719 | 20.9611 | 20.9605 | 21.0539 | 1 | |
6 | 23.1116 | 23.3068 | 23.3549 | 23.2826 | 23.2950 | 23.3837 | 1 | |
Test 3 | 2 | 12.1651 | 12.1623 | 12.1384 | 12.2017 | 12.0067 | 12.2061 | 1 |
3 | 15.3462 | 15.3160 | 14.9498 | 15.2155 | 15.1669 | 15.5039 | 1 | |
4 | 17.9605 | 18.1165 | 18.0610 | 17.8602 | 17.7274 | 18.3107 | 1 | |
5 | 20.0693 | 20.3889 | 20.6938 | 20.7448 | 20.0828 | 20.8056 | 1 | |
6 | 22.2665 | 22.6040 | 22.7055 | 23.0135 | 22.2510 | 24.1228 | 1 | |
Test 4 | 2 | 11.6162 | 11.0138 | 11.6151 | 11.6170 | 11.5649 | 11.6170 | 1 |
3 | 14.4375 | 14.1046 | 14.4277 | 14.4640 | 14.4074 | 14.6363 | 1 | |
4 | 17.1661 | 17.1351 | 17.2543 | 17.2182 | 16.5648 | 17.5047 | 1 | |
5 | 19.3315 | 19.0672 | 19.5998 | 19.9435 | 19.4292 | 20.0589 | 1 | |
6 | 22.1115 | 21.7571 | 21.8045 | 21.9815 | 21.7166 | 22.1257 | 1 | |
Test 5 | 2 | 12.5987 | 9.17771 | 12.4965 | 12.6016 | 12.5880 | 12.6016 | 1 |
3 | 15.8446 | 15.6981 | 15.6613 | 15.7945 | 15.6387 | 15.9201 | 1 | |
4 | 18.6330 | 18.5687 | 18.6837 | 18.7647 | 18.4739 | 18.8308 | 1 | |
5 | 21.5729 | 21.4283 | 21.6418 | 21.3651 | 21.5618 | 21.6809 | 1 | |
6 | 24.1845 | 24.0339 | 24.0773 | 23.7893 | 23.9359 | 24.3074 | 1 | |
Test 6 | 2 | 12.9609 | 12.9185 | 12.9393 | 12.9682 | 12.9668 | 12.9682 | 1 |
3 | 15.9835 | 16.0781 | 16.0526 | 16.1034 | 16.1034 | 16.1252 | 1 | |
4 | 18.5746 | 18.7090 | 18.7443 | 18.6889 | 18.7069 | 19.0165 | 1 | |
5 | 21.3011 | 21.1524 | 21.2343 | 21.0410 | 20.8741 | 21.4711 | 1 | |
6 | 24.1403 | 23.8479 | 23.9266 | 23.7607 | 24.0573 | 24.1842 | 1 | |
Test 7 | 2 | 12.5779 | 12.3517 | 12.5367 | 12.5936 | 12.3939 | 12.5936 | 1 |
3 | 15.3831 | 15.4011 | 15.3516 | 15.3938 | 15.0022 | 15.4274 | 1 | |
4 | 18.3603 | 18.0115 | 17.8258 | 17.9950 | 18.2520 | 18.4235 | 1 | |
5 | 20.9092 | 20.9076 | 20.6714 | 20.5292 | 20.7942 | 21.0217 | 1 | |
6 | 22.8604 | 23.3690 | 23.1421 | 22.9799 | 23.0124 | 23.5484 | 1 | |
Test 8 | 2 | 12.8868 | 12.8947 | 12.8930 | 12.9208 | 12.8957 | 12.9208 | 1 |
3 | 15.8248 | 15.9079 | 15.8297 | 15.8527 | 15.8992 | 16.0552 | 1 | |
4 | 18.5661 | 18.7317 | 18.6622 | 18.7469 | 18.5391 | 19.0449 | 1 | |
5 | 21.2946 | 21.1664 | 21.1186 | 21.1555 | 21.5266 | 21.5719 | 1 | |
6 | 23.5705 | 23.8786 | 24.2027 | 23.8717 | 23.6695 | 24.3206 | 1 | |
Test 9 | 2 | 11.9271 | 11.8657 | 11.4150 | 11.9285 | 11.7951 | 11.9286 | 1 |
3 | 14.7762 | 14.7811 | 14.7560 | 14.8629 | 14.7074 | 14.9331 | 1 | |
4 | 17.1365 | 17.2515 | 17.1703 | 17.3163 | 17.3681 | 17.4062 | 1 | |
5 | 19.8132 | 19.5984 | 19.8790 | 19.7153 | 19.8422 | 19.8973 | 2 | |
6 | 21.9515 | 22.0255 | 22.1325 | 21.8282 | 21.9971 | 22.2318 | 1 | |
Test 10 | 2 | 11.5248 | 11.4683 | 11.4326 | 11.5288 | 11.4273 | 11.5288 | 1 |
3 | 14.3849 | 13.9338 | 14.1944 | 14.4104 | 14.3475 | 14.5453 | 1 | |
4 | 16.8579 | 17.2591 | 17.3456 | 17.3302 | 17.2842 | 17.3904 | 1 | |
5 | 19.3943 | 19.2793 | 18.9721 | 19.3799 | 19.3881 | 19.8757 | 1 | |
6 | 21.5514 | 21.6964 | 21.5692 | 21.3715 | 21.8951 | 22.2800 | 1 |
Images | k | Best threshold values | ||||||
BA | FPA | MSA | PSO | WWO | MFO | |||
Test 1 | 2 | 95, 168 | 95, 171 | 113, 157 | 98, 165 | 103, 173 | 97, 164 | |
3 | 67, 121, 181 | 88, 134, 179 | 76, 133, 176 | 73, 124, 160 | 90, 139, 168 | 81, 126, 174 | ||
4 | 68, 110, 130, 163 | 60, 103, 160, 200 | 55, 91, 139, 180 | 61, 83, 116, 181 | 79, 121, 146, 175 | 73, 112, 147, 184 | ||
5 | 60, 98, 144, 172, 204 |
46, 65, 109, 142, 176 |
78, 98, 135, 157, 183 |
39, 100, 163, 165, 239 |
63, 91, 144, 168, 187 |
65, 101, 125, 165, 239 |
||
6 | 38, 58, 98, 140, 171, 195 |
71, 89, 127, 176, 194, 216 |
44, 91, 101, 133, 155, 200 |
66, 106, 137, 159, 196, 224 |
66, 115, 140, 162, 178, 193 |
77, 98, 132, 156, 181, 208 |
||
Test 2 | 2 | 62, 148 | 64, 121 | 79, 138 | 75, 147 | 66, 153 | 75, 147 | |
3 | 76, 132, 174 | 42, 83, 158 | 76, 119, 158 | 45, 130, 169 | 43, 109, 146 | 59, 106, 170 | ||
4 | 43, 86, 144, 206 | 55, 108, 133, 190 | 62, 89, 118, 192 | 53, 121, 152, 188 | 47, 118, 159, 203 | 50, 84, 141, 179 | ||
5 | 24, 93, 134, 173, 192 |
35, 93, 126, 155, 191 |
32, 79, 101, 136, 188 |
34, 73, 95, 129, 176 |
56, 84, 104, 145, 175 |
50, 80, 119, 163, 204 |
||
6 | 35, 80, 106, 137, 191, 203 |
56, 101, 126, 160, 177, 200 |
44, 76, 122, 162, 177, 196 |
22, 38, 82, 110, 151, 193 |
65, 83, 107, 145, 179, 199 |
37, 52, 76, 126, 169, 195 |
||
Test 3 | 2 | 82, 162 | 88, 164 | 85, 157 | 69, 177 | 110, 163 | 69, 174 | |
3 | 87, 135, 186 | 62, 141, 178 | 102, 159, 184 | 73, 141, 195 | 81, 154, 192 | 69, 127, 183 | ||
4 | 89, 123, 152, 189 | 64, 114, 151, 176 | 54, 95, 135, 169 | 68, 120, 134, 185 | 38, 93, 148, 192 | 66, 106, 146, 186 | ||
5 | 78, 101, 118, 133, 186 |
67, 98, 135, 149, 174 |
56, 80, 111, 152, 194 |
34, 87, 165, 182, 231 |
75, 101, 132, 169, 213 |
70, 104, 132, 160, 190 |
||
6 | 82, 114, 131, 154, 174, 212 |
49, 80, 94, 114, 174, 198 |
41, 53, 73, 113, 146, 181 |
55, 93, 128, 153, 183, 196 |
58, 71, 78, 118, 147, 181 |
56, 69, 127, 163, 183, 231 |
||
Test 4 | 2 | 101, 174 | 146, 164 | 95, 175 | 98, 174 | 93, 154 | 95, 171 | |
3 | 72, 136, 169 | 117, 177, 212 | 69, 115, 180 | 99, 152, 181 | 70, 113, 169 | 85, 137, 180 | ||
4 | 41, 84, 115, 164 | 50, 80, 146, 183 | 43, 91, 124, 172 | 40, 86, 133, 167 | 63, 96, 159, 172 | 38, 86, 138, 180 | ||
5 | 49, 82, 122, 181, 224 |
29, 75, 104, 120, 205 |
49, 75, 105, 160, 181 |
32, 91, 125, 171, 208 |
37, 100, 116, 152, 210 |
43, 98, 125, 173, 245 |
||
6 | 75, 102, 125, 161, 188, 237 |
43, 110, 129, 150, 181, 211 |
79, 120, 135, 167, 221, 237 |
43, 59, 85, 127, 183, 212 |
32, 61, 78, 122, 148, 211 |
28, 53, 77, 114, 146, 182 |
||
Test 5 | 2 | 74, 135 | 110, 248 | 83, 157 | 70, 135 | 64, 129 | 70, 135 | |
3 | 56, 134, 215 | 61, 120, 184 | 59, 145, 230 | 62, 119, 197 | 80, 127, 180 | 69, 133, 204 | ||
4 | 52, 131, 206, 231 | 95, 145, 200, 234 | 70, 94, 146, 207 | 74, 127, 186, 226 | 81, 114, 190, 221 | 70, 108, 150, 216 | ||
5 | 61, 110, 168, 199, 231 |
33, 71, 97, 154, 225 |
37, 101, 137, 179, 217 |
21, 79, 150, 195, 231 |
63, 93, 134, 188, 233 |
41, 94, 131, 177, 225 |
||
6 | 29, 62, 117, 143, 188, 211 |
23, 75, 110, 142, 208, 238 |
38, 61, 127, 167, 212, 233 |
51, 84, 124, 147, 187, 200 |
32, 72, 91, 116, 192, 228 |
27, 77, 109, 140, 179, 225 |
||
Test 6 | 2 | 84, 168 | 111, 175 | 106, 175 | 91, 170 | 92, 171 | 91, 170 | |
3 | 55, 126, 191 | 84, 145, 188 | 85, 138, 200 | 71, 124, 188 | 68, 128, 177 | 75, 131, 185 | ||
4 | 37, 117, 168, 211 | 60, 137, 164, 194 | 39, 77, 132, 186 | 94, 121, 157, 214 | 54, 139, 178, 219 | 68, 105, 157, 204 | ||
5 | 50, 75, 110, 184, 206 |
41, 82, 122, 189, 234 |
35, 78, 131, 156, 183 |
37, 124, 154, 182, 208 |
42, 108, 120, 179, 205 |
80, 111, 132, 163, 204 |
||
6 | 59, 89, 114, 146, 187, 207 |
32, 58, 116, 146, 186, 214 |
60, 80, 105, 135, 168, 189 |
47, 88, 111, 165, 191, 204 |
44, 65, 113, 146, 170, 199 |
42, 84, 116, 136, 170, 209 |
||
Test 7 | 2 | 97, 166 | 124, 164 | 97, 170 | 96, 163 | 70, 156 | 96, 163 | |
3 | 75, 123, 158 | 53, 94, 176 | 54, 130, 162 | 80, 107, 170 | 62, 178, 219 | 81, 166, 198 | ||
4 | 71, 127, 166, 218 | 66, 121, 145, 184 | 77, 129, 187, 236 | 43, 110, 162, 181 | 95, 123, 166, 209 | 46, 104, 167, 197 | ||
5 | 46, 87, 123, 161, 225 |
40, 99, 130, 175, 198 |
40, 59, 97, 143, 196 |
24, 73, 137, 166, 214 |
65, 122, 146, 175, 214 |
79, 107, 137, 166, 212 |
||
6 | 37, 69, 131, 145, 174, 236 |
47, 63, 112, 162, 186, 223 |
53, 101, 125, 160, 202, 214 |
62, 123, 149, 174, 190, 233 |
62, 110, 167, 193, 204, 233 |
44, 82, 132, 171, 200, 234 |
||
Test 8 | 2 | 91, 170 | 83, 162 | 100, 168 | 93, 161 | 94, 169 | 93, 161 | |
3 | 80, 164, 225 | 109, 165, 201 | 66, 102, 157 | 69, 105, 171 | 59, 114, 161 | 95, 159, 206 | ||
4 | 46, 104, 144, 217 | 73, 109, 175, 225 | 83, 136, 177, 203 | 42, 109, 159, 191 | 47, 81, 124, 156 | 65, 111, 160, 207 | ||
5 | 62, 120, 172, 204, 223 |
36, 55, 115, 157, 217 |
80, 143, 175, 209, 231 |
55, 112, 132, 173, 194 |
68, 102, 131, 164, 223 |
74, 107, 159, 196, 223 |
||
6 | 29, 47, 87, 110, 157, 212 |
58, 85, 113, 133, 165, 229 |
52, 75, 102, 131, 160, 205 |
59, 74, 108, 145, 171, 204 |
58, 98, 144, 157, 181, 201 |
50, 85, 126, 158, 202, 227 |
||
Test 9 | 2 | 103, 155 | 93, 160 | 128, 163 | 104, 156 | 92, 166 | 105, 156 | |
3 | 110, 152, 213 | 92, 152, 212 | 104, 166, 207 | 111, 153, 193 | 69, 115, 167 | 104, 154, 203 | ||
4 | 55, 105, 135, 161 | 44, 86, 150, 205 | 55, 96, 121, 174 | 97, 132, 155, 192 | 63, 99, 173, 203 | 57, 106, 172, 201 | ||
5 | 96, 117, 150, 179, 298 |
92, 121, 136, 152, 204 |
56, 91, 114, 165, 220 |
56, 116, 153, 169, 186 |
92, 129, 154, 172, 201 |
61, 84, 102, 163, 197 |
||
6 | 45, 74, 86, 120, 161, 220 |
66, 84, 96, 128, 156, 184 |
72, 95, 116, 162, 172, 209 |
78, 96, 107, 133, 151, 199 |
53, 84, 102, 111, 165, 211 |
56, 82, 115, 164, 187, 198 |
||
Test 10 | 2 | 74, 148 | 72, 138 | 77, 133 | 75, 153 | 96, 168 | 75, 153 | |
3 | 86, 154, 184 | 75, 104, 213 | 84, 129, 211 | 71, 154, 196 | 97, 143, 196 | 83, 143, 187 | ||
4 | 76, 95, 171, 222 | 83, 125, 164, 203 | 77, 123, 164, 213 | 74, 112, 138, 177 | 74, 123, 156, 210 | 72, 116, 151, 181 | ||
5 | 94, 132, 147, 188, 222 |
85, 146, 168, 202, 230 |
71, 88, 101, 179, 213 |
50, 83, 152, 179, 248 |
81, 132, 174, 214, 230 |
74, 105, 136, 163, 186 |
||
6 | 70, 82, 114, 172, 194, 230 |
74, 110, 126, 163, 194, 203 |
89, 120, 133, 167, 180, 223 |
64, 81, 128, 162, 202, 230 |
72, 126, 162, 192, 213, 233 |
75, 103, 144, 176, 191, 222 |
Images | k | Execution time (in second) | ||||||
BA | FPA | MSA | PSO | WWO | MFO | Rank | ||
Test 1 | 2 | 2.0504 | 2.5449 | 4.1430 | 3.2668 | 2.6219 | 1.8838 | 1 |
3 | 2.1806 | 2.4652 | 3.6404 | 3.7600 | 3.0271 | 2.1470 | 1 | |
4 | 2.3493 | 2.5466 | 3.6591 | 4.2612 | 3.5488 | 2.3476 | 1 | |
5 | 2.3526 | 2.4754 | 3.6553 | 4.4621 | 4.1037 | 2.3232 | 1 | |
6 | 2.4534 | 2.5140 | 3.6961 | 4.7721 | 4.6332 | 2.4476 | 1 | |
Test 2 | 2 | 2.0546 | 2.2233 | 3.5972 | 3.0943 | 2.4066 | 1.9862 | 1 |
3 | 2.2834 | 2.4729 | 3.7247 | 3.7189 | 3.0388 | 2.2371 | 1 | |
4 | 2.4856 | 2.4565 | 3.5933 | 4.0514 | 3.7730 | 2.3832 | 1 | |
5 | 2.6244 | 2.5519 | 3.6495 | 13.892 | 4.2132 | 2.5896 | 2 | |
6 | 2.7085 | 2.6344 | 3.6366 | 4.6383 | 4.9811 | 2.6217 | 1 | |
Test 3 | 2 | 2.0428 | 2.1661 | 3.5012 | 10.081 | 2.3834 | 2.0128 | 1 |
3 | 2.1067 | 2.2636 | 3.6970 | 3.5344 | 2.9690 | 2.1931 | 2 | |
4 | 2.3168 | 2.4309 | 3.6582 | 4.1890 | 3.5014 | 2.2318 | 1 | |
5 | 2.4964 | 2.4430 | 3.6781 | 4.2050 | 4.1567 | 2.4421 | 1 | |
6 | 2.5751 | 2.5232 | 3.7181 | 4.4494 | 4.7794 | 2.5211 | 1 | |
Test 4 | 2 | 2.1245 | 2.2784 | 3.5689 | 3.1980 | 2.4759 | 1.8874 | 1 |
3 | 2.2841 | 2.3142 | 3.6728 | 3.9206 | 3.1605 | 2.1235 | 1 | |
4 | 2.4620 | 2.4784 | 3.7133 | 4.4914 | 3.6540 | 2.4128 | 1 | |
5 | 2.5981 | 2.5782 | 3.7064 | 4.5182 | 4.2552 | 2.5252 | 1 | |
6 | 2.5760 | 2.6113 | 3.7157 | 4.6266 | 4.6624 | 2.5645 | 1 | |
Test 5 | 2 | 2.1369 | 2.3193 | 3.6874 | 3.3801 | 2.5160 | 1.9748 | 1 |
3 | 2.3770 | 2.4655 | 3.8206 | 3.9882 | 3.1202 | 2.1927 | 1 | |
4 | 2.6246 | 2.5708 | 3.7468 | 4.6477 | 3.7042 | 2.4725 | 1 | |
5 | 2.6867 | 2.6756 | 3.7018 | 4.8451 | 4.2924 | 2.6573 | 1 | |
6 | 3.0574 | 2.6619 | 3.7099 | 5.2076 | 4.9496 | 2.6989 | 2 | |
Test 6 | 2 | 2.0659 | 2.2878 | 3.7082 | 3.4298 | 2.4881 | 1.8933 | 1 |
3 | 2.3009 | 2.4216 | 3.7141 | 3.7289 | 3.1803 | 2.1388 | 1 | |
4 | 2.5690 | 2.5297 | 3.7186 | 4.4016 | 3.6365 | 2.5144 | 1 | |
5 | 2.7012 | 2.7481 | 3.8449 | 4.6251 | 4.4892 | 2.5788 | 1 | |
6 | 2.7363 | 2.6549 | 3.5908 | 5.0158 | 5.0763 | 2.6390 | 1 | |
Test 7 | 2 | 2.1999 | 2.2860 | 3.7677 | 3.4719 | 2.5184 | 1.7930 | 1 |
3 | 2.3913 | 2.4617 | 3.8282 | 4.4295 | 3.1260 | 2.1823 | 1 | |
4 | 2.5758 | 2.5069 | 3.6892 | 4.5830 | 3.6773 | 2.5712 | 2 | |
5 | 2.8661 | 2.6928 | 3.7420 | 4.9113 | 4.3654 | 2.6331 | 1 | |
6 | 2.8314 | 2.7552 | 3.8166 | 4.7869 | 4.8823 | 2.7347 | 1 | |
Test 8 | 2 | 2.1196 | 2.2375 | 3.5308 | 3.2347 | 2.6986 | 1.8208 | 1 |
3 | 2.1790 | 2.4691 | 3.6472 | 4.1744 | 3.2448 | 2.0801 | 1 | |
4 | 2.4523 | 2.5377 | 3.6976 | 4.4788 | 3.7100 | 2.3825 | 1 | |
5 | 2.5949 | 2.5873 | 3.7993 | 4.6852 | 4.3499 | 2.5537 | 1 | |
6 | 2.6545 | 2.6189 | 3.7323 | 5.1430 | 4.7387 | 2.5936 | 1 | |
Test 9 | 2 | 2.1158 | 2.2435 | 3.7132 | 3.0533 | 2.3750 | 1.8010 | 1 |
3 | 2.2377 | 2.3223 | 3.7861 | 3.8355 | 2.9901 | 2.1133 | 1 | |
4 | 2.3979 | 2.4493 | 3.6818 | 4.1490 | 3.5694 | 2.3356 | 1 | |
5 | 2.4748 | 2.4971 | 3.6920 | 4.3074 | 4.2244 | 2.4209 | 1 | |
6 | 2.4707 | 2.5587 | 3.7407 | 4.6462 | 4.5649 | 2.5010 | 2 | |
Test 10 | 2 | 2.0775 | 2.1429 | 3.4231 | 3.0237 | 2.3839 | 1.6726 | 1 |
3 | 2.2550 | 2.2918 | 3.5819 | 3.4502 | 2.9528 | 2.2082 | 1 | |
4 | 2.3523 | 2.3987 | 3.6269 | 4.0056 | 3.4883 | 2.3009 | 1 | |
5 | 2.3653 | 2.4887 | 3.7718 | 4.1497 | 4.0963 | 2.3358 | 1 | |
6 | 2.42209 | 2.5584 | 3.7138 | 4.3912 | 4.6485 | 2.4192 | 1 |
Images | k | PSNR values | ||||||
BA | FPA | MSA | PSO | WWO | MFO | Rank | ||
Test 1 | 2 | 54.2052 | 54.0193 | 52.6804 | 53.9194 | 53.3728 | 54.2052 | 1 |
3 | 55.2116 | 54.7434 | 55.5773 | 55.8071 | 54.6025 | 56.2391 | 1 | |
4 | 56.1645 | 56.9214 | 55.8071 | 56.8053 | 55.3545 | 57.8253 | 1 | |
5 | 56.9214 | 57.2139 | 55.4283 | 67.4037 | 56.5877 | 61.6781 | 2 | |
6 | 57.5946 | 55.9464 | 63.0931 | 56.3249 | 56.3249 | 68.3558 | 1 | |
Test 2 | 2 | 56.8302 | 55.6667 | 55.2570 | 55.6667 | 56.4413 | 56.8496 | 1 |
3 | 55.5716 | 55.8390 | 55.5716 | 56.9284 | 58.4671 | 58.5125 | 1 | |
4 | 56.8302 | 57.5587 | 56.8302 | 57.7738 | 57.7738 | 58.6671 | 1 | |
5 | 60.8783 | 57.6678 | 59.6180 | 57.5587 | 57.4521 | 58.5125 | 3 | |
6 | 58.7405 | 57.4521 | 58.5890 | 61.3621 | 56.5356 | 59.3017 | 2 | |
Test 3 | 2 | 61.6543 | 60.6947 | 61.1888 | 59.1452 | 57.4414 | 63.7976 | 1 |
3 | 60.8653 | 64.1985 | 58.3970 | 63.3619 | 61.8294 | 65.2923 | 1 | |
4 | 60.5327 | 65.0068 | 64.6841 | 64.3602 | 66.0216 | 66.2020 | 1 | |
5 | 62.3681 | 65.6347 | 65.9875 | 70.5641 | 62.9357 | 67.5475 | 2 | |
6 | 61.6543 | 66.8489 | 65.6347 | 66.0853 | 65.7478 | 68.2531 | 1 | |
Test 4 | 2 | 53.7298 | 51.8359 | 53.9307 | 53.8281 | 53.3635 | 54.0080 | 1 |
3 | 55.7727 | 53.2812 | 56.2939 | 53.7936 | 54.4415 | 56.3931 | 1 | |
4 | 69.8724 | 64.0939 | 68.4585 | 70.6684 | 57.7874 | 70.6684 | 1 | |
5 | 64.6339 | 76.5339 | 64.6339 | 75.2461 | 54.0512 | 72.8879 | 3 | |
6 | 55.3686 | 68.4585 | 62.6342 | 59.8785 | 71.2461 | 71.5255 | 1 | |
Test 5 | 2 | 55.9353 | 54.4501 | 55.5723 | 56.1030 | 56.1944 | 56.3859 | 1 |
3 | 56.1489 | 56.5395 | 56.6408 | 56.1489 | 55.6932 | 56.7947 | 1 | |
4 | 56.0035 | 55.0787 | 56.1030 | 55.9353 | 55.6534 | 56.4888 | 1 | |
5 | 57.1093 | 57.6783 | 57.8691 | 59.3191 | 56.4366 | 58.1327 | 2 | |
6 | 58.4300 | 59.0280 | 57.8027 | 57.0566 | 57.3278 | 59.0280 | 1 | |
Test 6 | 2 | 52.4037 | 50.9764 | 51.2852 | 52.4037 | 52.3196 | 52.9992 | 1 |
3 | 53.7675 | 52.9992 | 52.9146 | 54.0808 | 54.3233 | 55.5443 | 1 | |
4 | 56.9588 | 55.0405 | 54.3233 | 52.1517 | 55.6405 | 57.5981 | 1 | |
5 | 55.2454 | 54.8447 | 55.8429 | 57.9588 | 56.4138 | 58.3841 | 1 | |
6 | 55.1430 | 57.0950 | 54.9352 | 56.4138 | 56.7949 | 59.1946 | 1 | |
Test 7 | 2 | 52.1853 | 50.1439 | 52.1853 | 52.2305 | 52.2305 | 53.6248 | 1 |
3 | 53.1369 | 52.7825 | 54.3929 | 52.8286 | 54.1279 | 54.4252 | 1 | |
4 | 53.5238 | 53.9356 | 52.9913 | 54.1279 | 52.2737 | 54.9081 | 1 | |
5 | 54.7169 | 55.1408 | 54.7169 | 52.7825 | 53.9928 | 57.7724 | 1 | |
6 | 54.4130 | 54.6643 | 54.4252 | 54.4600 | 54.1279 | 55.1408 | 1 | |
Test 8 | 2 | 51.2625 | 51.1401 | 50.7696 | 51.1401 | 51.0819 | 51.8484 | 1 |
3 | 52.1217 | 50.3589 | 53.9395 | 53.4810 | 51.0247 | 55.1889 | 1 | |
4 | 58.3667 | 52.9207 | 51.8484 | 52.6689 | 58.1344 | 59.3198 | 1 | |
5 | 54.6097 | 54.7941 | 52.1217 | 60.9018 | 53.6305 | 61.3007 | 1 | |
6 | 62.1126 | 55.4021 | 56.8943 | 55.1889 | 55.4021 | 64.4974 | 1 | |
Test 9 | 2 | 54.7684 | 56.0844 | 50.9610 | 54.6524 | 54.5365 | 56.2376 | 1 |
3 | 53.9616 | 56.2376 | 54.6524 | 53.8444 | 54.6524 | 61.7530 | 1 | |
4 | 67.6683 | 73.5879 | 67.6683 | 55.5133 | 58.1149 | 68.0342 | 2 | |
5 | 62.8685 | 59.5786 | 67.1721 | 67.1721 | 56.2376 | 73.5879 | 1 | |
6 | 72.9963 | 62.8685 | 68.6413 | 57.8977 | 68.6413 | 79.2437 | 1 | |
Test 10 | 2 | 49.4261 | 49.4702 | 49.3850 | 49.4109 | 49.2129 | 49.4809 | 1 |
3 | 49.3039 | 49.4109 | 49.3191 | 49.3437 | 49.2012 | 49.4261 | 1 | |
4 | 49.3976 | 49.3267 | 49.3850 | 49.4261 | 49.4261 | 49.5080 | 1 | |
5 | 49.2362 | 49.3115 | 49.4261 | 49.1974 | 49.3437 | 49.5080 | 1 | |
6 | 49.5634 | 49.4261 | 49.2816 | 49.3850 | 49.4702 | 50.5952 | 1 |
Images | k | SSIM values | ||||||
BA | FPA | MSA | PSO | WWO | MFO | Rank | ||
Test 1 | 2 | 0.5811 | 0.5630 | 0.4666 | 0.5589 | 0.5389 | 0.5827 | 1 |
3 | 0.6174 | 0.6028 | 0.6291 | 0.6196 | 0.5792 | 0.6677 | 1 | |
4 | 0.6275 | 0.6713 | 0.6450 | 0.6841 | 0.6040 | 0.6962 | 1 | |
5 | 0.6706 | 0.6692 | 0.6240 | 0.6779 | 0.6761 | 0.7428 | 1 | |
6 | 0.6579 | 0.6752 | 0.7295 | 0.6565 | 0.6272 | 0.7853 | 1 | |
Test 2 | 2 | 0.5934 | 0.5618 | 0.5486 | 0.5624 | 0.5854 | 0.5951 | 1 |
3 | 0.5849 | 0.5892 | 0.5737 | 0.6229 | 0.6440 | 0.6549 | 1 | |
4 | 0.6118 | 0.6431 | 0.6084 | 0.6336 | 0.6302 | 0.6680 | 1 | |
5 | 0.6700 | 0.6321 | 0.6721 | 0.6239 | 0.6315 | 0.6953 | 1 | |
6 | 0.6764 | 0.6305 | 0.6926 | 0.7184 | 0.6484 | 0.7095 | 2 | |
Test 3 | 2 | 0.7776 | 0.7700 | 0.7735 | 0.7433 | 0.7326 | 0.7782 | 1 |
3 | 0.7694 | 0.7963 | 0.7380 | 0.7321 | 0.7388 | 0.8075 | 1 | |
4 | 0.7661 | 0.8171 | 0.8107 | 0.7983 | 0.7966 | 0.8286 | 1 | |
5 | 0.8008 | 0.7352 | 0.8087 | 0.7841 | 0.7682 | 0.8266 | 1 | |
6 | 0.7468 | 0.7928 | 0.8434 | 0.7941 | 0.8482 | 0.8560 | 1 | |
Test 4 | 2 | 0.5682 | 0.4613 | 0.5752 | 0.5724 | 0.5494 | 0.5840 | 1 |
3 | 0.6295 | 0.5643 | 0.6447 | 0.5538 | 0.5765 | 0.6573 | 1 | |
4 | 0.7995 | 0.7457 | 0.8018 | 0.7963 | 0.7050 | 0.8387 | 1 | |
5 | 0.8021 | 0.7892 | 0.7802 | 0.8431 | 0.5767 | 0.8509 | 1 | |
6 | 0.6250 | 0.8207 | 0.8056 | 0.7640 | 0.8148 | 0.8493 | 1 | |
Test 5 | 2 | 0.5874 | 0.5694 | 0.5478 | 0.5923 | 0.5947 | 0.6025 | 1 |
3 | 0.6513 | 0.6167 | 0.6558 | 0.6536 | 0.5760 | 0.6752 | 1 | |
4 | 0.6629 | 0.5762 | 0.6594 | 0.6147 | 0.6122 | 0.6669 | 1 | |
5 | 0.6686 | 0.6775 | 0.6918 | 0.7207 | 0.6737 | 0.7221 | 1 | |
6 | 0.7354 | 0.7299 | 0.7183 | 0.6835 | 0.7114 | 0.7593 | 1 | |
Test 6 | 2 | 0.3856 | 0.3073 | 0.3285 | 0.3856 | 0.3823 | 0.4098 | 1 |
3 | 0.4862 | 0.4423 | 0.4438 | 0.5025 | 0.5060 | 0.5417 | 1 | |
4 | 0.6023 | 0.5147 | 0.5425 | 0.4154 | 0.5323 | 0.6141 | 1 | |
5 | 0.5798 | 0.5765 | 0.5771 | 0.5794 | 0.6314 | 0.6562 | 1 | |
6 | 0.6170 | 0.6676 | 0.6141 | 0.6412 | 0.6737 | 0.7035 | 1 | |
Test 7 | 2 | 0.5412 | 0.2944 | 0.5452 | 0.5357 | 0.5357 | 0.6049 | 1 |
3 | 0.5439 | 0.5643 | 0.6308 | 0.5533 | 0.6497 | 0.6713 | 1 | |
4 | 0.5819 | 0.5867 | 0.5474 | 0.6396 | 0.5011 | 0.6571 | 1 | |
5 | 0.6752 | 0.6858 | 0.6817 | 0.5044 | 0.5725 | 0.7308 | 1 | |
6 | 0.6826 | 0.6776 | 0.6360 | 0.6650 | 0.5908 | 0.6938 | 1 | |
Test 8 | 2 | 0.3781 | 0.3656 | 0.3403 | 0.3656 | 0.3661 | 0.4100 | 1 |
3 | 0.4250 | 0.2956 | 0.4948 | 0.4927 | 0.3533 | 0.5583 | 1 | |
4 | 0.6528 | 0.4934 | 0.3981 | 0.4760 | 0.6109 | 0.6803 | 1 | |
5 | 0.5484 | 0.5568 | 0.3853 | 0.4986 | 0.5249 | 0.6793 | 1 | |
6 | 0.7181 | 0.5974 | 0.6489 | 0.6071 | 0.5787 | 0.7293 | 1 | |
Test 9 | 2 | 0.5502 | 0.6010 | 0.2334 | 0.5494 | 0.5547 | 0.6075 | 1 |
3 | 0.4929 | 0.5707 | 0.5475 | 0.4852 | 0.5360 | 0.6251 | 1 | |
4 | 0.5860 | 0.6949 | 0.6196 | 0.4427 | 0.5586 | 0.7198 | 1 | |
5 | 0.6465 | 0.6827 | 0.7318 | 0.6505 | 0.4812 | 0.7441 | 1 | |
6 | 0.7208 | 0.6556 | 0.7322 | 0.5454 | 0.7166 | 0.7698 | 1 | |
Test 10 | 2 | 0.1722 | 0.1666 | 0.1571 | 0.1729 | 0.1502 | 0.1733 | 1 |
3 | 0.1611 | 0.1719 | 0.1644 | 0.1708 | 0.1475 | 0.1772 | 1 | |
4 | 0.1822 | 0.1678 | 0.1775 | 0.1753 | 0.1804 | 0.1927 | 1 | |
5 | 0.1486 | 0.1511 | 0.1786 | 0.6364 | 0.1645 | 0.1915 | 2 | |
6 | 0.2091 | 0.1812 | 0.1565 | 0.1697 | 0.1755 | 0.2901 | 1 |
Images | k | Wilcoxon test | ||||
MFO vs BA | MFO vs FPA | MFO vs MSA | MFO vs PSO | MFO vs WWO | ||
Test 1 | 2 | 4.1486E-08 | 2.9135E-07 | 3.7215E-07 | 1.0905E-02 | 4.9558E-08 |
3 | 4.1406E-03 | 8.8674E-01 | 2.7328E-02 | 5.9956E-04 | 1.8056E-02 | |
4 | 3.9271E-03 | 6.8298E-03 | 2.3871E-05 | 5.2530E-04 | 5.9054E-05 | |
5 | 3.5064E-03 | 4.4599E-02 | 7.7394E-06 | 2.5972E-04 | 7.7394E-06 | |
6 | 1.5429E-04 | 1.6017E-04 | 2.1821E-11 | 1.6475E-04 | 2.1821E-11 | |
Test 2 | 2 | 1.5649E-11 | 4.1040E-11 | 4.5618E-11 | 5.7016E-03 | 2.6819E-11 |
3 | 3.7061E-02 | 1.4931E-03 | 4.5940E-02 | 1.5957E-02 | 7.3007E-03 | |
4 | 2.1572E-02 | 7.2382E-04 | 1.1435E-02 | 9.2276E-03 | 1.8454E-02 | |
5 | 3.0221E-07 | 1.2754E-02 | 4.4680E-10 | 3.9238E-02 | 4.4680E-10 | |
6 | 2.1287E-05 | 6.0511E-04 | 4.8389E-10 | 1.9143E-02 | 4.8389E-10 | |
Test 3 | 2 | 1.6510E-11 | 1.2118E-12 | 1.2118E-12 | 2.7793E-03 | 1.2118E-12 |
3 | 1.7047E-02 | 7.9323E-05 | 9.8208E-03 | 5.1474E-03 | 3.8910E-02 | |
4 | 1.5568E-02 | 4.8012E-02 | 6.1697E-05 | 6.0010E-03 | 1.8438E-03 | |
5 | 1.2075E-04 | 1.1553E-03 | 8.9553E-08 | 8.6976E-06 | 8.9553E-08 | |
6 | 4.2458E-05 | 1.6691E-02 | 3.9562E-10 | 1.4187E-05 | 3.9562E-10 | |
Test 4 | 2 | 1.4119E-10 | 3.6912E-11 | 4.5618E-11 | 2.7605E-02 | 1.5672E-11 |
3 | 9.6851E-08 | 1.0617E-03 | 1.3782E-02 | 1.8815E-02 | 2.0296E-11 | |
4 | 2.3687E-03 | 2.6206E-03 | 3.3040E-02 | 2.2534E-02 | 1.8354E-02 | |
5 | 1.3187E-02 | 6.9403E-03 | 6.0393E-02 | 3.3072E-02 | 1.3187E-02 | |
6 | 1.0490E-02 | 3.1661E-03 | 6.3076E-09 | 6.0661E-05 | 3.0311E-04 | |
Test 5 | 2 | 4.7773E-09 | 1.4148E-08 | 1.8780E-09 | 6.9419E-03 | 1.0569E-09 |
3 | 1.0226E-06 | 1.5514E-03 | 9.3662E-04 | 1.7753E-02 | 2.8427E-10 | |
4 | 1.2338E-04 | 6.8037E-03 | 9.0570E-05 | 6.0755E-04 | 6.6120E-03 | |
5 | 1.9974E-02 | 1.5408E-02 | 1.9284E-05 | 1.8299E-02 | 1.1010E-02 | |
6 | 2.3675E-02 | 1.9315E-02 | 9.3069E-08 | 2.8298E-02 | 2.0096E-02 | |
Test 6 | 2 | 5.4162E-09 | 5.4162E-09 | 2.4736E-08 | 2.8298E-02 | 8.3512E-09 |
3 | 1.2298E-07 | 1.5879E-06 | 3.6108E-02 | 7.8961E-03 | 7.6552E-10 | |
4 | 1.3692E-02 | 1.2204E-02 | 6.7678E-04 | 3.3418E-02 | N/A | |
5 | 1.5319E-02 | 1.3228E-05 | 3.7759E-02 | 8.2918E-03 | 8.0670E-03 | |
6 | 7.9518E-01 | 7.6105E-05 | 8.8807E-06 | 1.6308E-03 | 7.6285E-03 | |
Test 7 | 2 | 1.1999E-12 | 1.2118E-12 | 1.2118E-12 | 5.5398E-03 | 1.2118E-12 |
3 | 1.0043E-08 | 3.2704E-04 | 1.7181E-04 | 4.5838E-04 | 1.8783E-11 | |
4 | 2.2155E-05 | 1.3080E-04 | 2.0545E-03 | 1.8360E-02 | 1.8586E-03 | |
5 | 9.2817E-05 | 5.9629E-04 | 2.6611E-02 | 2.7791E-02 | 7.1075E-03 | |
6 | 8.1845E-01 | 1.8944E-02 | 1.0237E-07 | 7.3815E-04 | 2.6871E-02 | |
Test 8 | 2 | 1.1067E-08 | 1.2380E-09 | 1.2377E-09 | 9.5909E-03 | 1.2377E-09 |
3 | 5.0104E-03 | 5.7108E-04 | 7.4568E-04 | 2.5069E-02 | 7.4568E-03 | |
4 | 6.0746E-03 | 7.7156E-05 | 4.5418E-04 | 1.2662E-02 | 7.5196E-03 | |
5 | 1.2619E-02 | 7.7958E-05 | 4.3177E-10 | 5.6943E-07 | 4.3177E-10 | |
6 | 1.0049E-02 | 1.1403E-02 | 2.5562E-11 | 9.6312E-05 | 2.5562E-11 | |
Test 9 | 2 | 4.1906E-10 | 7.2256E-10 | 1.2384E-09 | 4.5164E-02 | 1.1236E-09 |
3 | 2.0185E-02 | 5.6566E-03 | 6.7067E-03 | 8.2284E-02 | N/A | |
4 | 1.7717E-02 | 8.1726E-03 | 2.2107E-06 | 2.0015E-02 | 7.4528E-03 | |
5 | 1.2740E-02 | 3.7302E-05 | 4.5563E-10 | 2.6262E-05 | 4.5563E-10 | |
6 | 1.4911E-02 | 1.7368E-03 | 4.3348E-10 | 9.9941E-04 | 4.3348E-10 | |
Test 10 | 2 | 2.5301E-10 | 1.2384E-09 | 1.2384E-09 | N/A | 7.5947E-10 |
3 | 8.1850E-03 | 1.5376E-02 | 1.4949E-02 | 9.7602E-01 | 6.5949E-04 | |
4 | 1.3894E-02 | 1.3909E-02 | 3.7115E-05 | 1.2287E-02 | 1.8341E-03 | |
5 | 9.3482E-01 | 1.5129E-02 | 1.2758E-05 | 6.5560E-03 | 3.6908E-04 | |
6 | 2.4276E-02 | 1.5559E-02 | 3.9225E-08 | 4.9250E-04 | 2.3328E-05 |
Algorithm's description | Moth-flame's elements |
Decision variable | Moth's position in each dimension |
Solutions | Moth's position |
Initial solutions | Random positions of moths |
Current solutions | Current positions of moths |
New solutions | New positions of moths |
Best solution | Flame's position |
Fitness function | Distance between moth and flame |
Process of generating a new solution | Flying in a spiral path toward a flame |
Algorithm 1. MFO. |
Randomly initialize the position of moths and the parameters for Moth-flame |
While iteration≤Max_iteration do |
Renew flame no utilizing Eq (15) |
OM=FitnessFunction(M) |
If iteration=1 then |
F=sort(M) |
OF=sort(OM) |
else |
F=sort(Mt−1,Mt) |
OF=sort(Mt−1,Mt) |
end if |
for i=1:n do |
for j=1:d do |
Renew r and t |
Estimate D utilizing Eq (14) |
Renew M(i,j) utilizing Eq (13) |
end for |
end for |
end while |
Return the best solution |
Threshold segmentation | MFO |
A collection (x1,x2,...,xk) scheduling schemes | A moth population (n1,n2,...,nk) moths |
An optimal scheme to resolve the image segmentation | An optimal flame's position |
The objective function of the image segmentation | The fitness function of the MFO |
Algorithm 2. MFO-based Kapur entropy. |
Randomly initialize the position of moths and the parameters for Moth-flame |
While iteration≤Max_iteration do |
Renew flame no utilizing Eq (15) |
Estimate the fitness value of each moth utilizing Eq (2) for the Kapur entropy and attain the best solution |
OM=FitnessFunction(M) |
If iteration=1 then |
F=sort(M) |
OF=sort(OM) |
else |
F=sort(Mt−1,Mt) |
OF=sort(Mt−1,Mt) |
end if |
for i=1:n do |
for j=1:d do |
Renew r and t |
Estimate D utilizing Eq (14) |
Renew M(i,j) utilizing Eq (13) |
end for |
end for |
end while |
Return the best solution or the optimal threshold value |
Algorithm | Parameter | Value |
BA [11] | Pulse frequency scope f | [0, 2] |
Echo loudness A | 0.25 | |
Reducing coefficient γ | 0.5 | |
FPA [12] | Switch probability ρ | 0.8 |
MSA [13] | An arbitrary value θ | [-2, 1] |
An arbitrary value ε2 | [0, 1] | |
An arbitrary value ε3 | [0, 1] | |
An arbitrary value r1 | [0, 1] | |
An arbitrary value r2 | [0, 1] | |
PSO [14] | Constant inertia ω | 0.3 |
First acceleration coefficient c1 | 1.4962 | |
Second acceleration coefficient c2 | 1.4962 | |
WWO [15] | Wavelength λ | 0.5 |
Wave height hmax | 6 | |
Wavelength attenuation factor α | 1.0026 | |
Breaking factor β | [0.001, 0.25] | |
Maximum value kmax of breaking directions | min(12,D/D22) | |
MFO [43] | Logarithmic spiral b | 1 |
An arbitrary value t | [-1, 1] |
Images | k | Fitness values | ||||||
BA | FPA | MSA | PSO | WWO | MFO | Rank | ||
Test 1 | 2 | 12.3364 | 12.3198 | 12.2127 | 12.3479 | 12.3112 | 12.3487 | 1 |
3 | 15.2194 | 15.3081 | 15.2704 | 15.2018 | 15.1970 | 15.3172 | 1 | |
4 | 17.7102 | 17.7705 | 17.8821 | 17.7208 | 17.8752 | 17.9921 | 1 | |
5 | 20.3813 | 20.0295 | 20.2961 | 21.1111 | 20.2899 | 21.2798 | 1 | |
6 | 22.4683 | 22.3940 | 21.9694 | 22.4280 | 22.4488 | 22.6422 | 1 | |
Test 2 | 2 | 12.5842 | 12.5331 | 12.5997 | 12.6346 | 12.5916 | 12.6346 | 1 |
3 | 15.6189 | 15.5130 | 15.6003 | 15.4587 | 15.4813 | 15.6531 | 1 | |
4 | 18.1117 | 18.3233 | 18.1107 | 18.3061 | 18.2180 | 18.4397 | 1 | |
5 | 20.5250 | 20.9349 | 20.9719 | 20.9611 | 20.9605 | 21.0539 | 1 | |
6 | 23.1116 | 23.3068 | 23.3549 | 23.2826 | 23.2950 | 23.3837 | 1 | |
Test 3 | 2 | 12.1651 | 12.1623 | 12.1384 | 12.2017 | 12.0067 | 12.2061 | 1 |
3 | 15.3462 | 15.3160 | 14.9498 | 15.2155 | 15.1669 | 15.5039 | 1 | |
4 | 17.9605 | 18.1165 | 18.0610 | 17.8602 | 17.7274 | 18.3107 | 1 | |
5 | 20.0693 | 20.3889 | 20.6938 | 20.7448 | 20.0828 | 20.8056 | 1 | |
6 | 22.2665 | 22.6040 | 22.7055 | 23.0135 | 22.2510 | 24.1228 | 1 | |
Test 4 | 2 | 11.6162 | 11.0138 | 11.6151 | 11.6170 | 11.5649 | 11.6170 | 1 |
3 | 14.4375 | 14.1046 | 14.4277 | 14.4640 | 14.4074 | 14.6363 | 1 | |
4 | 17.1661 | 17.1351 | 17.2543 | 17.2182 | 16.5648 | 17.5047 | 1 | |
5 | 19.3315 | 19.0672 | 19.5998 | 19.9435 | 19.4292 | 20.0589 | 1 | |
6 | 22.1115 | 21.7571 | 21.8045 | 21.9815 | 21.7166 | 22.1257 | 1 | |
Test 5 | 2 | 12.5987 | 9.17771 | 12.4965 | 12.6016 | 12.5880 | 12.6016 | 1 |
3 | 15.8446 | 15.6981 | 15.6613 | 15.7945 | 15.6387 | 15.9201 | 1 | |
4 | 18.6330 | 18.5687 | 18.6837 | 18.7647 | 18.4739 | 18.8308 | 1 | |
5 | 21.5729 | 21.4283 | 21.6418 | 21.3651 | 21.5618 | 21.6809 | 1 | |
6 | 24.1845 | 24.0339 | 24.0773 | 23.7893 | 23.9359 | 24.3074 | 1 | |
Test 6 | 2 | 12.9609 | 12.9185 | 12.9393 | 12.9682 | 12.9668 | 12.9682 | 1 |
3 | 15.9835 | 16.0781 | 16.0526 | 16.1034 | 16.1034 | 16.1252 | 1 | |
4 | 18.5746 | 18.7090 | 18.7443 | 18.6889 | 18.7069 | 19.0165 | 1 | |
5 | 21.3011 | 21.1524 | 21.2343 | 21.0410 | 20.8741 | 21.4711 | 1 | |
6 | 24.1403 | 23.8479 | 23.9266 | 23.7607 | 24.0573 | 24.1842 | 1 | |
Test 7 | 2 | 12.5779 | 12.3517 | 12.5367 | 12.5936 | 12.3939 | 12.5936 | 1 |
3 | 15.3831 | 15.4011 | 15.3516 | 15.3938 | 15.0022 | 15.4274 | 1 | |
4 | 18.3603 | 18.0115 | 17.8258 | 17.9950 | 18.2520 | 18.4235 | 1 | |
5 | 20.9092 | 20.9076 | 20.6714 | 20.5292 | 20.7942 | 21.0217 | 1 | |
6 | 22.8604 | 23.3690 | 23.1421 | 22.9799 | 23.0124 | 23.5484 | 1 | |
Test 8 | 2 | 12.8868 | 12.8947 | 12.8930 | 12.9208 | 12.8957 | 12.9208 | 1 |
3 | 15.8248 | 15.9079 | 15.8297 | 15.8527 | 15.8992 | 16.0552 | 1 | |
4 | 18.5661 | 18.7317 | 18.6622 | 18.7469 | 18.5391 | 19.0449 | 1 | |
5 | 21.2946 | 21.1664 | 21.1186 | 21.1555 | 21.5266 | 21.5719 | 1 | |
6 | 23.5705 | 23.8786 | 24.2027 | 23.8717 | 23.6695 | 24.3206 | 1 | |
Test 9 | 2 | 11.9271 | 11.8657 | 11.4150 | 11.9285 | 11.7951 | 11.9286 | 1 |
3 | 14.7762 | 14.7811 | 14.7560 | 14.8629 | 14.7074 | 14.9331 | 1 | |
4 | 17.1365 | 17.2515 | 17.1703 | 17.3163 | 17.3681 | 17.4062 | 1 | |
5 | 19.8132 | 19.5984 | 19.8790 | 19.7153 | 19.8422 | 19.8973 | 2 | |
6 | 21.9515 | 22.0255 | 22.1325 | 21.8282 | 21.9971 | 22.2318 | 1 | |
Test 10 | 2 | 11.5248 | 11.4683 | 11.4326 | 11.5288 | 11.4273 | 11.5288 | 1 |
3 | 14.3849 | 13.9338 | 14.1944 | 14.4104 | 14.3475 | 14.5453 | 1 | |
4 | 16.8579 | 17.2591 | 17.3456 | 17.3302 | 17.2842 | 17.3904 | 1 | |
5 | 19.3943 | 19.2793 | 18.9721 | 19.3799 | 19.3881 | 19.8757 | 1 | |
6 | 21.5514 | 21.6964 | 21.5692 | 21.3715 | 21.8951 | 22.2800 | 1 |
Images | k | Best threshold values | ||||||
BA | FPA | MSA | PSO | WWO | MFO | |||
Test 1 | 2 | 95, 168 | 95, 171 | 113, 157 | 98, 165 | 103, 173 | 97, 164 | |
3 | 67, 121, 181 | 88, 134, 179 | 76, 133, 176 | 73, 124, 160 | 90, 139, 168 | 81, 126, 174 | ||
4 | 68, 110, 130, 163 | 60, 103, 160, 200 | 55, 91, 139, 180 | 61, 83, 116, 181 | 79, 121, 146, 175 | 73, 112, 147, 184 | ||
5 | 60, 98, 144, 172, 204 |
46, 65, 109, 142, 176 |
78, 98, 135, 157, 183 |
39, 100, 163, 165, 239 |
63, 91, 144, 168, 187 |
65, 101, 125, 165, 239 |
||
6 | 38, 58, 98, 140, 171, 195 |
71, 89, 127, 176, 194, 216 |
44, 91, 101, 133, 155, 200 |
66, 106, 137, 159, 196, 224 |
66, 115, 140, 162, 178, 193 |
77, 98, 132, 156, 181, 208 |
||
Test 2 | 2 | 62, 148 | 64, 121 | 79, 138 | 75, 147 | 66, 153 | 75, 147 | |
3 | 76, 132, 174 | 42, 83, 158 | 76, 119, 158 | 45, 130, 169 | 43, 109, 146 | 59, 106, 170 | ||
4 | 43, 86, 144, 206 | 55, 108, 133, 190 | 62, 89, 118, 192 | 53, 121, 152, 188 | 47, 118, 159, 203 | 50, 84, 141, 179 | ||
5 | 24, 93, 134, 173, 192 |
35, 93, 126, 155, 191 |
32, 79, 101, 136, 188 |
34, 73, 95, 129, 176 |
56, 84, 104, 145, 175 |
50, 80, 119, 163, 204 |
||
6 | 35, 80, 106, 137, 191, 203 |
56, 101, 126, 160, 177, 200 |
44, 76, 122, 162, 177, 196 |
22, 38, 82, 110, 151, 193 |
65, 83, 107, 145, 179, 199 |
37, 52, 76, 126, 169, 195 |
||
Test 3 | 2 | 82, 162 | 88, 164 | 85, 157 | 69, 177 | 110, 163 | 69, 174 | |
3 | 87, 135, 186 | 62, 141, 178 | 102, 159, 184 | 73, 141, 195 | 81, 154, 192 | 69, 127, 183 | ||
4 | 89, 123, 152, 189 | 64, 114, 151, 176 | 54, 95, 135, 169 | 68, 120, 134, 185 | 38, 93, 148, 192 | 66, 106, 146, 186 | ||
5 | 78, 101, 118, 133, 186 |
67, 98, 135, 149, 174 |
56, 80, 111, 152, 194 |
34, 87, 165, 182, 231 |
75, 101, 132, 169, 213 |
70, 104, 132, 160, 190 |
||
6 | 82, 114, 131, 154, 174, 212 |
49, 80, 94, 114, 174, 198 |
41, 53, 73, 113, 146, 181 |
55, 93, 128, 153, 183, 196 |
58, 71, 78, 118, 147, 181 |
56, 69, 127, 163, 183, 231 |
||
Test 4 | 2 | 101, 174 | 146, 164 | 95, 175 | 98, 174 | 93, 154 | 95, 171 | |
3 | 72, 136, 169 | 117, 177, 212 | 69, 115, 180 | 99, 152, 181 | 70, 113, 169 | 85, 137, 180 | ||
4 | 41, 84, 115, 164 | 50, 80, 146, 183 | 43, 91, 124, 172 | 40, 86, 133, 167 | 63, 96, 159, 172 | 38, 86, 138, 180 | ||
5 | 49, 82, 122, 181, 224 |
29, 75, 104, 120, 205 |
49, 75, 105, 160, 181 |
32, 91, 125, 171, 208 |
37, 100, 116, 152, 210 |
43, 98, 125, 173, 245 |
||
6 | 75, 102, 125, 161, 188, 237 |
43, 110, 129, 150, 181, 211 |
79, 120, 135, 167, 221, 237 |
43, 59, 85, 127, 183, 212 |
32, 61, 78, 122, 148, 211 |
28, 53, 77, 114, 146, 182 |
||
Test 5 | 2 | 74, 135 | 110, 248 | 83, 157 | 70, 135 | 64, 129 | 70, 135 | |
3 | 56, 134, 215 | 61, 120, 184 | 59, 145, 230 | 62, 119, 197 | 80, 127, 180 | 69, 133, 204 | ||
4 | 52, 131, 206, 231 | 95, 145, 200, 234 | 70, 94, 146, 207 | 74, 127, 186, 226 | 81, 114, 190, 221 | 70, 108, 150, 216 | ||
5 | 61, 110, 168, 199, 231 |
33, 71, 97, 154, 225 |
37, 101, 137, 179, 217 |
21, 79, 150, 195, 231 |
63, 93, 134, 188, 233 |
41, 94, 131, 177, 225 |
||
6 | 29, 62, 117, 143, 188, 211 |
23, 75, 110, 142, 208, 238 |
38, 61, 127, 167, 212, 233 |
51, 84, 124, 147, 187, 200 |
32, 72, 91, 116, 192, 228 |
27, 77, 109, 140, 179, 225 |
||
Test 6 | 2 | 84, 168 | 111, 175 | 106, 175 | 91, 170 | 92, 171 | 91, 170 | |
3 | 55, 126, 191 | 84, 145, 188 | 85, 138, 200 | 71, 124, 188 | 68, 128, 177 | 75, 131, 185 | ||
4 | 37, 117, 168, 211 | 60, 137, 164, 194 | 39, 77, 132, 186 | 94, 121, 157, 214 | 54, 139, 178, 219 | 68, 105, 157, 204 | ||
5 | 50, 75, 110, 184, 206 |
41, 82, 122, 189, 234 |
35, 78, 131, 156, 183 |
37, 124, 154, 182, 208 |
42, 108, 120, 179, 205 |
80, 111, 132, 163, 204 |
||
6 | 59, 89, 114, 146, 187, 207 |
32, 58, 116, 146, 186, 214 |
60, 80, 105, 135, 168, 189 |
47, 88, 111, 165, 191, 204 |
44, 65, 113, 146, 170, 199 |
42, 84, 116, 136, 170, 209 |
||
Test 7 | 2 | 97, 166 | 124, 164 | 97, 170 | 96, 163 | 70, 156 | 96, 163 | |
3 | 75, 123, 158 | 53, 94, 176 | 54, 130, 162 | 80, 107, 170 | 62, 178, 219 | 81, 166, 198 | ||
4 | 71, 127, 166, 218 | 66, 121, 145, 184 | 77, 129, 187, 236 | 43, 110, 162, 181 | 95, 123, 166, 209 | 46, 104, 167, 197 | ||
5 | 46, 87, 123, 161, 225 |
40, 99, 130, 175, 198 |
40, 59, 97, 143, 196 |
24, 73, 137, 166, 214 |
65, 122, 146, 175, 214 |
79, 107, 137, 166, 212 |
||
6 | 37, 69, 131, 145, 174, 236 |
47, 63, 112, 162, 186, 223 |
53, 101, 125, 160, 202, 214 |
62, 123, 149, 174, 190, 233 |
62, 110, 167, 193, 204, 233 |
44, 82, 132, 171, 200, 234 |
||
Test 8 | 2 | 91, 170 | 83, 162 | 100, 168 | 93, 161 | 94, 169 | 93, 161 | |
3 | 80, 164, 225 | 109, 165, 201 | 66, 102, 157 | 69, 105, 171 | 59, 114, 161 | 95, 159, 206 | ||
4 | 46, 104, 144, 217 | 73, 109, 175, 225 | 83, 136, 177, 203 | 42, 109, 159, 191 | 47, 81, 124, 156 | 65, 111, 160, 207 | ||
5 | 62, 120, 172, 204, 223 |
36, 55, 115, 157, 217 |
80, 143, 175, 209, 231 |
55, 112, 132, 173, 194 |
68, 102, 131, 164, 223 |
74, 107, 159, 196, 223 |
||
6 | 29, 47, 87, 110, 157, 212 |
58, 85, 113, 133, 165, 229 |
52, 75, 102, 131, 160, 205 |
59, 74, 108, 145, 171, 204 |
58, 98, 144, 157, 181, 201 |
50, 85, 126, 158, 202, 227 |
||
Test 9 | 2 | 103, 155 | 93, 160 | 128, 163 | 104, 156 | 92, 166 | 105, 156 | |
3 | 110, 152, 213 | 92, 152, 212 | 104, 166, 207 | 111, 153, 193 | 69, 115, 167 | 104, 154, 203 | ||
4 | 55, 105, 135, 161 | 44, 86, 150, 205 | 55, 96, 121, 174 | 97, 132, 155, 192 | 63, 99, 173, 203 | 57, 106, 172, 201 | ||
5 | 96, 117, 150, 179, 298 |
92, 121, 136, 152, 204 |
56, 91, 114, 165, 220 |
56, 116, 153, 169, 186 |
92, 129, 154, 172, 201 |
61, 84, 102, 163, 197 |
||
6 | 45, 74, 86, 120, 161, 220 |
66, 84, 96, 128, 156, 184 |
72, 95, 116, 162, 172, 209 |
78, 96, 107, 133, 151, 199 |
53, 84, 102, 111, 165, 211 |
56, 82, 115, 164, 187, 198 |
||
Test 10 | 2 | 74, 148 | 72, 138 | 77, 133 | 75, 153 | 96, 168 | 75, 153 | |
3 | 86, 154, 184 | 75, 104, 213 | 84, 129, 211 | 71, 154, 196 | 97, 143, 196 | 83, 143, 187 | ||
4 | 76, 95, 171, 222 | 83, 125, 164, 203 | 77, 123, 164, 213 | 74, 112, 138, 177 | 74, 123, 156, 210 | 72, 116, 151, 181 | ||
5 | 94, 132, 147, 188, 222 |
85, 146, 168, 202, 230 |
71, 88, 101, 179, 213 |
50, 83, 152, 179, 248 |
81, 132, 174, 214, 230 |
74, 105, 136, 163, 186 |
||
6 | 70, 82, 114, 172, 194, 230 |
74, 110, 126, 163, 194, 203 |
89, 120, 133, 167, 180, 223 |
64, 81, 128, 162, 202, 230 |
72, 126, 162, 192, 213, 233 |
75, 103, 144, 176, 191, 222 |
Images | k | Execution time (in second) | ||||||
BA | FPA | MSA | PSO | WWO | MFO | Rank | ||
Test 1 | 2 | 2.0504 | 2.5449 | 4.1430 | 3.2668 | 2.6219 | 1.8838 | 1 |
3 | 2.1806 | 2.4652 | 3.6404 | 3.7600 | 3.0271 | 2.1470 | 1 | |
4 | 2.3493 | 2.5466 | 3.6591 | 4.2612 | 3.5488 | 2.3476 | 1 | |
5 | 2.3526 | 2.4754 | 3.6553 | 4.4621 | 4.1037 | 2.3232 | 1 | |
6 | 2.4534 | 2.5140 | 3.6961 | 4.7721 | 4.6332 | 2.4476 | 1 | |
Test 2 | 2 | 2.0546 | 2.2233 | 3.5972 | 3.0943 | 2.4066 | 1.9862 | 1 |
3 | 2.2834 | 2.4729 | 3.7247 | 3.7189 | 3.0388 | 2.2371 | 1 | |
4 | 2.4856 | 2.4565 | 3.5933 | 4.0514 | 3.7730 | 2.3832 | 1 | |
5 | 2.6244 | 2.5519 | 3.6495 | 13.892 | 4.2132 | 2.5896 | 2 | |
6 | 2.7085 | 2.6344 | 3.6366 | 4.6383 | 4.9811 | 2.6217 | 1 | |
Test 3 | 2 | 2.0428 | 2.1661 | 3.5012 | 10.081 | 2.3834 | 2.0128 | 1 |
3 | 2.1067 | 2.2636 | 3.6970 | 3.5344 | 2.9690 | 2.1931 | 2 | |
4 | 2.3168 | 2.4309 | 3.6582 | 4.1890 | 3.5014 | 2.2318 | 1 | |
5 | 2.4964 | 2.4430 | 3.6781 | 4.2050 | 4.1567 | 2.4421 | 1 | |
6 | 2.5751 | 2.5232 | 3.7181 | 4.4494 | 4.7794 | 2.5211 | 1 | |
Test 4 | 2 | 2.1245 | 2.2784 | 3.5689 | 3.1980 | 2.4759 | 1.8874 | 1 |
3 | 2.2841 | 2.3142 | 3.6728 | 3.9206 | 3.1605 | 2.1235 | 1 | |
4 | 2.4620 | 2.4784 | 3.7133 | 4.4914 | 3.6540 | 2.4128 | 1 | |
5 | 2.5981 | 2.5782 | 3.7064 | 4.5182 | 4.2552 | 2.5252 | 1 | |
6 | 2.5760 | 2.6113 | 3.7157 | 4.6266 | 4.6624 | 2.5645 | 1 | |
Test 5 | 2 | 2.1369 | 2.3193 | 3.6874 | 3.3801 | 2.5160 | 1.9748 | 1 |
3 | 2.3770 | 2.4655 | 3.8206 | 3.9882 | 3.1202 | 2.1927 | 1 | |
4 | 2.6246 | 2.5708 | 3.7468 | 4.6477 | 3.7042 | 2.4725 | 1 | |
5 | 2.6867 | 2.6756 | 3.7018 | 4.8451 | 4.2924 | 2.6573 | 1 | |
6 | 3.0574 | 2.6619 | 3.7099 | 5.2076 | 4.9496 | 2.6989 | 2 | |
Test 6 | 2 | 2.0659 | 2.2878 | 3.7082 | 3.4298 | 2.4881 | 1.8933 | 1 |
3 | 2.3009 | 2.4216 | 3.7141 | 3.7289 | 3.1803 | 2.1388 | 1 | |
4 | 2.5690 | 2.5297 | 3.7186 | 4.4016 | 3.6365 | 2.5144 | 1 | |
5 | 2.7012 | 2.7481 | 3.8449 | 4.6251 | 4.4892 | 2.5788 | 1 | |
6 | 2.7363 | 2.6549 | 3.5908 | 5.0158 | 5.0763 | 2.6390 | 1 | |
Test 7 | 2 | 2.1999 | 2.2860 | 3.7677 | 3.4719 | 2.5184 | 1.7930 | 1 |
3 | 2.3913 | 2.4617 | 3.8282 | 4.4295 | 3.1260 | 2.1823 | 1 | |
4 | 2.5758 | 2.5069 | 3.6892 | 4.5830 | 3.6773 | 2.5712 | 2 | |
5 | 2.8661 | 2.6928 | 3.7420 | 4.9113 | 4.3654 | 2.6331 | 1 | |
6 | 2.8314 | 2.7552 | 3.8166 | 4.7869 | 4.8823 | 2.7347 | 1 | |
Test 8 | 2 | 2.1196 | 2.2375 | 3.5308 | 3.2347 | 2.6986 | 1.8208 | 1 |
3 | 2.1790 | 2.4691 | 3.6472 | 4.1744 | 3.2448 | 2.0801 | 1 | |
4 | 2.4523 | 2.5377 | 3.6976 | 4.4788 | 3.7100 | 2.3825 | 1 | |
5 | 2.5949 | 2.5873 | 3.7993 | 4.6852 | 4.3499 | 2.5537 | 1 | |
6 | 2.6545 | 2.6189 | 3.7323 | 5.1430 | 4.7387 | 2.5936 | 1 | |
Test 9 | 2 | 2.1158 | 2.2435 | 3.7132 | 3.0533 | 2.3750 | 1.8010 | 1 |
3 | 2.2377 | 2.3223 | 3.7861 | 3.8355 | 2.9901 | 2.1133 | 1 | |
4 | 2.3979 | 2.4493 | 3.6818 | 4.1490 | 3.5694 | 2.3356 | 1 | |
5 | 2.4748 | 2.4971 | 3.6920 | 4.3074 | 4.2244 | 2.4209 | 1 | |
6 | 2.4707 | 2.5587 | 3.7407 | 4.6462 | 4.5649 | 2.5010 | 2 | |
Test 10 | 2 | 2.0775 | 2.1429 | 3.4231 | 3.0237 | 2.3839 | 1.6726 | 1 |
3 | 2.2550 | 2.2918 | 3.5819 | 3.4502 | 2.9528 | 2.2082 | 1 | |
4 | 2.3523 | 2.3987 | 3.6269 | 4.0056 | 3.4883 | 2.3009 | 1 | |
5 | 2.3653 | 2.4887 | 3.7718 | 4.1497 | 4.0963 | 2.3358 | 1 | |
6 | 2.42209 | 2.5584 | 3.7138 | 4.3912 | 4.6485 | 2.4192 | 1 |
Images | k | PSNR values | ||||||
BA | FPA | MSA | PSO | WWO | MFO | Rank | ||
Test 1 | 2 | 54.2052 | 54.0193 | 52.6804 | 53.9194 | 53.3728 | 54.2052 | 1 |
3 | 55.2116 | 54.7434 | 55.5773 | 55.8071 | 54.6025 | 56.2391 | 1 | |
4 | 56.1645 | 56.9214 | 55.8071 | 56.8053 | 55.3545 | 57.8253 | 1 | |
5 | 56.9214 | 57.2139 | 55.4283 | 67.4037 | 56.5877 | 61.6781 | 2 | |
6 | 57.5946 | 55.9464 | 63.0931 | 56.3249 | 56.3249 | 68.3558 | 1 | |
Test 2 | 2 | 56.8302 | 55.6667 | 55.2570 | 55.6667 | 56.4413 | 56.8496 | 1 |
3 | 55.5716 | 55.8390 | 55.5716 | 56.9284 | 58.4671 | 58.5125 | 1 | |
4 | 56.8302 | 57.5587 | 56.8302 | 57.7738 | 57.7738 | 58.6671 | 1 | |
5 | 60.8783 | 57.6678 | 59.6180 | 57.5587 | 57.4521 | 58.5125 | 3 | |
6 | 58.7405 | 57.4521 | 58.5890 | 61.3621 | 56.5356 | 59.3017 | 2 | |
Test 3 | 2 | 61.6543 | 60.6947 | 61.1888 | 59.1452 | 57.4414 | 63.7976 | 1 |
3 | 60.8653 | 64.1985 | 58.3970 | 63.3619 | 61.8294 | 65.2923 | 1 | |
4 | 60.5327 | 65.0068 | 64.6841 | 64.3602 | 66.0216 | 66.2020 | 1 | |
5 | 62.3681 | 65.6347 | 65.9875 | 70.5641 | 62.9357 | 67.5475 | 2 | |
6 | 61.6543 | 66.8489 | 65.6347 | 66.0853 | 65.7478 | 68.2531 | 1 | |
Test 4 | 2 | 53.7298 | 51.8359 | 53.9307 | 53.8281 | 53.3635 | 54.0080 | 1 |
3 | 55.7727 | 53.2812 | 56.2939 | 53.7936 | 54.4415 | 56.3931 | 1 | |
4 | 69.8724 | 64.0939 | 68.4585 | 70.6684 | 57.7874 | 70.6684 | 1 | |
5 | 64.6339 | 76.5339 | 64.6339 | 75.2461 | 54.0512 | 72.8879 | 3 | |
6 | 55.3686 | 68.4585 | 62.6342 | 59.8785 | 71.2461 | 71.5255 | 1 | |
Test 5 | 2 | 55.9353 | 54.4501 | 55.5723 | 56.1030 | 56.1944 | 56.3859 | 1 |
3 | 56.1489 | 56.5395 | 56.6408 | 56.1489 | 55.6932 | 56.7947 | 1 | |
4 | 56.0035 | 55.0787 | 56.1030 | 55.9353 | 55.6534 | 56.4888 | 1 | |
5 | 57.1093 | 57.6783 | 57.8691 | 59.3191 | 56.4366 | 58.1327 | 2 | |
6 | 58.4300 | 59.0280 | 57.8027 | 57.0566 | 57.3278 | 59.0280 | 1 | |
Test 6 | 2 | 52.4037 | 50.9764 | 51.2852 | 52.4037 | 52.3196 | 52.9992 | 1 |
3 | 53.7675 | 52.9992 | 52.9146 | 54.0808 | 54.3233 | 55.5443 | 1 | |
4 | 56.9588 | 55.0405 | 54.3233 | 52.1517 | 55.6405 | 57.5981 | 1 | |
5 | 55.2454 | 54.8447 | 55.8429 | 57.9588 | 56.4138 | 58.3841 | 1 | |
6 | 55.1430 | 57.0950 | 54.9352 | 56.4138 | 56.7949 | 59.1946 | 1 | |
Test 7 | 2 | 52.1853 | 50.1439 | 52.1853 | 52.2305 | 52.2305 | 53.6248 | 1 |
3 | 53.1369 | 52.7825 | 54.3929 | 52.8286 | 54.1279 | 54.4252 | 1 | |
4 | 53.5238 | 53.9356 | 52.9913 | 54.1279 | 52.2737 | 54.9081 | 1 | |
5 | 54.7169 | 55.1408 | 54.7169 | 52.7825 | 53.9928 | 57.7724 | 1 | |
6 | 54.4130 | 54.6643 | 54.4252 | 54.4600 | 54.1279 | 55.1408 | 1 | |
Test 8 | 2 | 51.2625 | 51.1401 | 50.7696 | 51.1401 | 51.0819 | 51.8484 | 1 |
3 | 52.1217 | 50.3589 | 53.9395 | 53.4810 | 51.0247 | 55.1889 | 1 | |
4 | 58.3667 | 52.9207 | 51.8484 | 52.6689 | 58.1344 | 59.3198 | 1 | |
5 | 54.6097 | 54.7941 | 52.1217 | 60.9018 | 53.6305 | 61.3007 | 1 | |
6 | 62.1126 | 55.4021 | 56.8943 | 55.1889 | 55.4021 | 64.4974 | 1 | |
Test 9 | 2 | 54.7684 | 56.0844 | 50.9610 | 54.6524 | 54.5365 | 56.2376 | 1 |
3 | 53.9616 | 56.2376 | 54.6524 | 53.8444 | 54.6524 | 61.7530 | 1 | |
4 | 67.6683 | 73.5879 | 67.6683 | 55.5133 | 58.1149 | 68.0342 | 2 | |
5 | 62.8685 | 59.5786 | 67.1721 | 67.1721 | 56.2376 | 73.5879 | 1 | |
6 | 72.9963 | 62.8685 | 68.6413 | 57.8977 | 68.6413 | 79.2437 | 1 | |
Test 10 | 2 | 49.4261 | 49.4702 | 49.3850 | 49.4109 | 49.2129 | 49.4809 | 1 |
3 | 49.3039 | 49.4109 | 49.3191 | 49.3437 | 49.2012 | 49.4261 | 1 | |
4 | 49.3976 | 49.3267 | 49.3850 | 49.4261 | 49.4261 | 49.5080 | 1 | |
5 | 49.2362 | 49.3115 | 49.4261 | 49.1974 | 49.3437 | 49.5080 | 1 | |
6 | 49.5634 | 49.4261 | 49.2816 | 49.3850 | 49.4702 | 50.5952 | 1 |
Images | k | SSIM values | ||||||
BA | FPA | MSA | PSO | WWO | MFO | Rank | ||
Test 1 | 2 | 0.5811 | 0.5630 | 0.4666 | 0.5589 | 0.5389 | 0.5827 | 1 |
3 | 0.6174 | 0.6028 | 0.6291 | 0.6196 | 0.5792 | 0.6677 | 1 | |
4 | 0.6275 | 0.6713 | 0.6450 | 0.6841 | 0.6040 | 0.6962 | 1 | |
5 | 0.6706 | 0.6692 | 0.6240 | 0.6779 | 0.6761 | 0.7428 | 1 | |
6 | 0.6579 | 0.6752 | 0.7295 | 0.6565 | 0.6272 | 0.7853 | 1 | |
Test 2 | 2 | 0.5934 | 0.5618 | 0.5486 | 0.5624 | 0.5854 | 0.5951 | 1 |
3 | 0.5849 | 0.5892 | 0.5737 | 0.6229 | 0.6440 | 0.6549 | 1 | |
4 | 0.6118 | 0.6431 | 0.6084 | 0.6336 | 0.6302 | 0.6680 | 1 | |
5 | 0.6700 | 0.6321 | 0.6721 | 0.6239 | 0.6315 | 0.6953 | 1 | |
6 | 0.6764 | 0.6305 | 0.6926 | 0.7184 | 0.6484 | 0.7095 | 2 | |
Test 3 | 2 | 0.7776 | 0.7700 | 0.7735 | 0.7433 | 0.7326 | 0.7782 | 1 |
3 | 0.7694 | 0.7963 | 0.7380 | 0.7321 | 0.7388 | 0.8075 | 1 | |
4 | 0.7661 | 0.8171 | 0.8107 | 0.7983 | 0.7966 | 0.8286 | 1 | |
5 | 0.8008 | 0.7352 | 0.8087 | 0.7841 | 0.7682 | 0.8266 | 1 | |
6 | 0.7468 | 0.7928 | 0.8434 | 0.7941 | 0.8482 | 0.8560 | 1 | |
Test 4 | 2 | 0.5682 | 0.4613 | 0.5752 | 0.5724 | 0.5494 | 0.5840 | 1 |
3 | 0.6295 | 0.5643 | 0.6447 | 0.5538 | 0.5765 | 0.6573 | 1 | |
4 | 0.7995 | 0.7457 | 0.8018 | 0.7963 | 0.7050 | 0.8387 | 1 | |
5 | 0.8021 | 0.7892 | 0.7802 | 0.8431 | 0.5767 | 0.8509 | 1 | |
6 | 0.6250 | 0.8207 | 0.8056 | 0.7640 | 0.8148 | 0.8493 | 1 | |
Test 5 | 2 | 0.5874 | 0.5694 | 0.5478 | 0.5923 | 0.5947 | 0.6025 | 1 |
3 | 0.6513 | 0.6167 | 0.6558 | 0.6536 | 0.5760 | 0.6752 | 1 | |
4 | 0.6629 | 0.5762 | 0.6594 | 0.6147 | 0.6122 | 0.6669 | 1 | |
5 | 0.6686 | 0.6775 | 0.6918 | 0.7207 | 0.6737 | 0.7221 | 1 | |
6 | 0.7354 | 0.7299 | 0.7183 | 0.6835 | 0.7114 | 0.7593 | 1 | |
Test 6 | 2 | 0.3856 | 0.3073 | 0.3285 | 0.3856 | 0.3823 | 0.4098 | 1 |
3 | 0.4862 | 0.4423 | 0.4438 | 0.5025 | 0.5060 | 0.5417 | 1 | |
4 | 0.6023 | 0.5147 | 0.5425 | 0.4154 | 0.5323 | 0.6141 | 1 | |
5 | 0.5798 | 0.5765 | 0.5771 | 0.5794 | 0.6314 | 0.6562 | 1 | |
6 | 0.6170 | 0.6676 | 0.6141 | 0.6412 | 0.6737 | 0.7035 | 1 | |
Test 7 | 2 | 0.5412 | 0.2944 | 0.5452 | 0.5357 | 0.5357 | 0.6049 | 1 |
3 | 0.5439 | 0.5643 | 0.6308 | 0.5533 | 0.6497 | 0.6713 | 1 | |
4 | 0.5819 | 0.5867 | 0.5474 | 0.6396 | 0.5011 | 0.6571 | 1 | |
5 | 0.6752 | 0.6858 | 0.6817 | 0.5044 | 0.5725 | 0.7308 | 1 | |
6 | 0.6826 | 0.6776 | 0.6360 | 0.6650 | 0.5908 | 0.6938 | 1 | |
Test 8 | 2 | 0.3781 | 0.3656 | 0.3403 | 0.3656 | 0.3661 | 0.4100 | 1 |
3 | 0.4250 | 0.2956 | 0.4948 | 0.4927 | 0.3533 | 0.5583 | 1 | |
4 | 0.6528 | 0.4934 | 0.3981 | 0.4760 | 0.6109 | 0.6803 | 1 | |
5 | 0.5484 | 0.5568 | 0.3853 | 0.4986 | 0.5249 | 0.6793 | 1 | |
6 | 0.7181 | 0.5974 | 0.6489 | 0.6071 | 0.5787 | 0.7293 | 1 | |
Test 9 | 2 | 0.5502 | 0.6010 | 0.2334 | 0.5494 | 0.5547 | 0.6075 | 1 |
3 | 0.4929 | 0.5707 | 0.5475 | 0.4852 | 0.5360 | 0.6251 | 1 | |
4 | 0.5860 | 0.6949 | 0.6196 | 0.4427 | 0.5586 | 0.7198 | 1 | |
5 | 0.6465 | 0.6827 | 0.7318 | 0.6505 | 0.4812 | 0.7441 | 1 | |
6 | 0.7208 | 0.6556 | 0.7322 | 0.5454 | 0.7166 | 0.7698 | 1 | |
Test 10 | 2 | 0.1722 | 0.1666 | 0.1571 | 0.1729 | 0.1502 | 0.1733 | 1 |
3 | 0.1611 | 0.1719 | 0.1644 | 0.1708 | 0.1475 | 0.1772 | 1 | |
4 | 0.1822 | 0.1678 | 0.1775 | 0.1753 | 0.1804 | 0.1927 | 1 | |
5 | 0.1486 | 0.1511 | 0.1786 | 0.6364 | 0.1645 | 0.1915 | 2 | |
6 | 0.2091 | 0.1812 | 0.1565 | 0.1697 | 0.1755 | 0.2901 | 1 |
Images | k | Wilcoxon test | ||||
MFO vs BA | MFO vs FPA | MFO vs MSA | MFO vs PSO | MFO vs WWO | ||
Test 1 | 2 | 4.1486E-08 | 2.9135E-07 | 3.7215E-07 | 1.0905E-02 | 4.9558E-08 |
3 | 4.1406E-03 | 8.8674E-01 | 2.7328E-02 | 5.9956E-04 | 1.8056E-02 | |
4 | 3.9271E-03 | 6.8298E-03 | 2.3871E-05 | 5.2530E-04 | 5.9054E-05 | |
5 | 3.5064E-03 | 4.4599E-02 | 7.7394E-06 | 2.5972E-04 | 7.7394E-06 | |
6 | 1.5429E-04 | 1.6017E-04 | 2.1821E-11 | 1.6475E-04 | 2.1821E-11 | |
Test 2 | 2 | 1.5649E-11 | 4.1040E-11 | 4.5618E-11 | 5.7016E-03 | 2.6819E-11 |
3 | 3.7061E-02 | 1.4931E-03 | 4.5940E-02 | 1.5957E-02 | 7.3007E-03 | |
4 | 2.1572E-02 | 7.2382E-04 | 1.1435E-02 | 9.2276E-03 | 1.8454E-02 | |
5 | 3.0221E-07 | 1.2754E-02 | 4.4680E-10 | 3.9238E-02 | 4.4680E-10 | |
6 | 2.1287E-05 | 6.0511E-04 | 4.8389E-10 | 1.9143E-02 | 4.8389E-10 | |
Test 3 | 2 | 1.6510E-11 | 1.2118E-12 | 1.2118E-12 | 2.7793E-03 | 1.2118E-12 |
3 | 1.7047E-02 | 7.9323E-05 | 9.8208E-03 | 5.1474E-03 | 3.8910E-02 | |
4 | 1.5568E-02 | 4.8012E-02 | 6.1697E-05 | 6.0010E-03 | 1.8438E-03 | |
5 | 1.2075E-04 | 1.1553E-03 | 8.9553E-08 | 8.6976E-06 | 8.9553E-08 | |
6 | 4.2458E-05 | 1.6691E-02 | 3.9562E-10 | 1.4187E-05 | 3.9562E-10 | |
Test 4 | 2 | 1.4119E-10 | 3.6912E-11 | 4.5618E-11 | 2.7605E-02 | 1.5672E-11 |
3 | 9.6851E-08 | 1.0617E-03 | 1.3782E-02 | 1.8815E-02 | 2.0296E-11 | |
4 | 2.3687E-03 | 2.6206E-03 | 3.3040E-02 | 2.2534E-02 | 1.8354E-02 | |
5 | 1.3187E-02 | 6.9403E-03 | 6.0393E-02 | 3.3072E-02 | 1.3187E-02 | |
6 | 1.0490E-02 | 3.1661E-03 | 6.3076E-09 | 6.0661E-05 | 3.0311E-04 | |
Test 5 | 2 | 4.7773E-09 | 1.4148E-08 | 1.8780E-09 | 6.9419E-03 | 1.0569E-09 |
3 | 1.0226E-06 | 1.5514E-03 | 9.3662E-04 | 1.7753E-02 | 2.8427E-10 | |
4 | 1.2338E-04 | 6.8037E-03 | 9.0570E-05 | 6.0755E-04 | 6.6120E-03 | |
5 | 1.9974E-02 | 1.5408E-02 | 1.9284E-05 | 1.8299E-02 | 1.1010E-02 | |
6 | 2.3675E-02 | 1.9315E-02 | 9.3069E-08 | 2.8298E-02 | 2.0096E-02 | |
Test 6 | 2 | 5.4162E-09 | 5.4162E-09 | 2.4736E-08 | 2.8298E-02 | 8.3512E-09 |
3 | 1.2298E-07 | 1.5879E-06 | 3.6108E-02 | 7.8961E-03 | 7.6552E-10 | |
4 | 1.3692E-02 | 1.2204E-02 | 6.7678E-04 | 3.3418E-02 | N/A | |
5 | 1.5319E-02 | 1.3228E-05 | 3.7759E-02 | 8.2918E-03 | 8.0670E-03 | |
6 | 7.9518E-01 | 7.6105E-05 | 8.8807E-06 | 1.6308E-03 | 7.6285E-03 | |
Test 7 | 2 | 1.1999E-12 | 1.2118E-12 | 1.2118E-12 | 5.5398E-03 | 1.2118E-12 |
3 | 1.0043E-08 | 3.2704E-04 | 1.7181E-04 | 4.5838E-04 | 1.8783E-11 | |
4 | 2.2155E-05 | 1.3080E-04 | 2.0545E-03 | 1.8360E-02 | 1.8586E-03 | |
5 | 9.2817E-05 | 5.9629E-04 | 2.6611E-02 | 2.7791E-02 | 7.1075E-03 | |
6 | 8.1845E-01 | 1.8944E-02 | 1.0237E-07 | 7.3815E-04 | 2.6871E-02 | |
Test 8 | 2 | 1.1067E-08 | 1.2380E-09 | 1.2377E-09 | 9.5909E-03 | 1.2377E-09 |
3 | 5.0104E-03 | 5.7108E-04 | 7.4568E-04 | 2.5069E-02 | 7.4568E-03 | |
4 | 6.0746E-03 | 7.7156E-05 | 4.5418E-04 | 1.2662E-02 | 7.5196E-03 | |
5 | 1.2619E-02 | 7.7958E-05 | 4.3177E-10 | 5.6943E-07 | 4.3177E-10 | |
6 | 1.0049E-02 | 1.1403E-02 | 2.5562E-11 | 9.6312E-05 | 2.5562E-11 | |
Test 9 | 2 | 4.1906E-10 | 7.2256E-10 | 1.2384E-09 | 4.5164E-02 | 1.1236E-09 |
3 | 2.0185E-02 | 5.6566E-03 | 6.7067E-03 | 8.2284E-02 | N/A | |
4 | 1.7717E-02 | 8.1726E-03 | 2.2107E-06 | 2.0015E-02 | 7.4528E-03 | |
5 | 1.2740E-02 | 3.7302E-05 | 4.5563E-10 | 2.6262E-05 | 4.5563E-10 | |
6 | 1.4911E-02 | 1.7368E-03 | 4.3348E-10 | 9.9941E-04 | 4.3348E-10 | |
Test 10 | 2 | 2.5301E-10 | 1.2384E-09 | 1.2384E-09 | N/A | 7.5947E-10 |
3 | 8.1850E-03 | 1.5376E-02 | 1.4949E-02 | 9.7602E-01 | 6.5949E-04 | |
4 | 1.3894E-02 | 1.3909E-02 | 3.7115E-05 | 1.2287E-02 | 1.8341E-03 | |
5 | 9.3482E-01 | 1.5129E-02 | 1.2758E-05 | 6.5560E-03 | 3.6908E-04 | |
6 | 2.4276E-02 | 1.5559E-02 | 3.9225E-08 | 4.9250E-04 | 2.3328E-05 |