For students who are academically ineligible to enter a bachelor program in engineering but still want to upskill their knowledge in engineering, many universities provide an associate degree program in engineering to these students. The higher achievers from the associate degree program can transfer to a full degree program in engineering. Mathematics courses in such associate degree programs are often challenging to both the teachers and students due to various reasons. This paper presents a small part of a mathematics revitalization project on pedagogical adjustment to scaffold mathematics learning for students in an associate engineering program at Central Queensland University (CQU), a regional university in Australia, from 2018 to 2020. The design and implementation of the online multi-purpose quizzes (MPQ) to improve both the learning environment and outcomes for the engineering students from 2018 to 2020 are reported in this work. Statistically, the online MPQ empowered students to achieve their best possible outcomes by attempting the questions with time flexibility, on a confined set of topics, and with more chances of amending errors than the traditional written assessments. Hence, their performance in the online MPQ was consistently better than that in the written assignments in 2018-2020. The weaknesses of the online MPQ are also discussed.
Citation: William Guo. Design and implementation of multi-purpose quizzes to improve mathematics learning for transitional engineering students[J]. STEM Education, 2022, 2(3): 245-261. doi: 10.3934/steme.2022015
For students who are academically ineligible to enter a bachelor program in engineering but still want to upskill their knowledge in engineering, many universities provide an associate degree program in engineering to these students. The higher achievers from the associate degree program can transfer to a full degree program in engineering. Mathematics courses in such associate degree programs are often challenging to both the teachers and students due to various reasons. This paper presents a small part of a mathematics revitalization project on pedagogical adjustment to scaffold mathematics learning for students in an associate engineering program at Central Queensland University (CQU), a regional university in Australia, from 2018 to 2020. The design and implementation of the online multi-purpose quizzes (MPQ) to improve both the learning environment and outcomes for the engineering students from 2018 to 2020 are reported in this work. Statistically, the online MPQ empowered students to achieve their best possible outcomes by attempting the questions with time flexibility, on a confined set of topics, and with more chances of amending errors than the traditional written assessments. Hence, their performance in the online MPQ was consistently better than that in the written assignments in 2018-2020. The weaknesses of the online MPQ are also discussed.
[1] |
Mestre, J., Hart, D.M., Rath, K.A. and Dufresne, R., The effect of web-based homework on test performance in large enrollment introductory physics courses. Journal of Computers in Mathematics and Science Teaching, 2002, 21(3): 229-251. |
[2] |
Cole, R.S. and Todd, J.B., Effects of web-based multimedia homework with immediate rich feedback on student learning in general chemistry. Journal of Chemical Education, 2003, 80(11): 1338-1343. http://doi.org/10.1021/ed080p1338 doi: 10.1021/ed080p1338 |
[3] |
Beatty, I.D. and Gerace, W.J., Technology-enhanced formative assessment: A research based pedagogy for teaching science with classroom response technology. Journal of Science Education and Technology, 2009, 18: 146-162. http://doi.org/10.1007/s10956-008-9140-4 doi: 10.1007/s10956-008-9140-4 |
[4] |
Cohen, D. and Sasson, I., Online quizzes in a virtual learning environment as a tool for formative assessment. Journal of Technology and Science Education, 2016, 6(3): 188-208. http://doi.org/10.3926/jotse.217 doi: 10.3926/jotse.217 |
[5] |
Dizon, A.C.O., An, S., Lubguban, A.A. and Suppes, G.J., Online quiz methods for remedial learning in chemical engineering. Education for Chemical Engineers, 2018, 23: 18-24. http://doi.org/10.1016/j.ece.2018.04.001 doi: 10.1016/j.ece.2018.04.001 |
[6] |
Gamage, S.H.P.W., Ayres, J.R., Behrend, M.B. et al., Optimising Moodle quizzes for online assessments. International Journal of STEM Education, 2019, 6: 27. https://doi.org/10.1186/s40594-019-0181-4 doi: 10.1186/s40594-019-0181-4 |
[7] |
Dimas, D.J., Jabbari, F. and Billimek, J., Using recorded lectures and low stakes online quizzes to improve learning efficiency in undergraduate engineering courses, in ASEE Annual Conference and Exposition, 2014. |
[8] |
Tisdell, C.C., Embedding opportunities for participation and feedback in large mathematics lectures via audience response systems. STEM Education, 2021, 1(2): 75-91. https://doi.org/10.3934/steme.2021006 doi: 10.3934/steme.2021006 |
[9] |
Romero, E., García, L. and Ceamanos, J., Moodle and Socrative quizzes as formative aids on theory teaching in a chemical engineering subject. Education for Chemical Engineers, 2021, 36: 54-64. https://doi.org/10.1016/j.ece.2021.03.001 doi: 10.1016/j.ece.2021.03.001 |
[10] |
Martins, S.G., Weekly online quizzes to a mathematics course for engineering students. Teaching Mathematics and its Applications: An international journal of the IMA, 2017, 36 (1): 56-63. https://doi.org/10.1093/teamat/hrw011 doi: 10.1093/teamat/hrw011 |
[11] |
Notaroš, B.M., McCullough, R., Athalye, P.S. and Maclejewski, A.A., New partially flipped electromagnetics classroom approach using conceptual questions. International Journal of Engineering Education, 2019, 35(4): 1215-1223. |
[12] |
Gyllen, J.G., Stahovich, T.F., Mayer, R.E., Entezari, N. and Darvishzadeh, A., Priming productive study strategies with preparatory quizzes in an engineering course. Applied Cognitive Psychology, 2021, 35(1): 169-180. https://doi.org/10.1002/acp.3750 doi: 10.1002/acp.3750 |
[13] |
Torun, A.R., The effect of weekly distributed mathematics homework and quizzes on the learning performance of engineering students. International Journal of Engineering Education, 2019, 35(5): 1561-1565. |
[14] |
Gero, A. and Stav, Y., Summative assessment based on two-tier multiple-choice questions: Item discrimination and engineering students' and teachers' attitudes. International Journal of Engineering Education, 2021, 37(3): 830-840. |
[15] |
Sun, G., Cui, T., Guo, W., Beydoun, G., Xu, D. and Shen, J., Micro learning adaptation in MOOC: A software as a service and a personalized learner model. Lecture Notes in Computer Science, 2015, 9412: 174-184. https://doi.org/10.1007/978-3-319-25515-6_16 doi: 10.1007/978-3-319-25515-6_16 |
[16] |
Garshasbi, S., Yecies, B. and Shen. J., Microlearning and computer-supported collaborative learning: An agenda towards a comprehensive online learning system. STEM Education, 2021, 1(4): 225-255. https://doi.org/10.3934/steme.2021016 doi: 10.3934/steme.2021016 |
[17] |
Guo, W., Li, W. and Tisdell, C.C., Effective pedagogy of guiding undergraduate engineering students solving first-order ordinary differential equations. Mathematics, 2021, 9(14): 1623. https://doi.org/10.3390/math9141623. doi: 10.3390/math9141623 |
Examples of MPQ for TM
Examples of online MPQ in TM
Part of the summary after completing one attempt to online MPQ in TM