
Fluids′ viscous behavior is apparent in many everyday life situations, for example, in squeezing shampoo from a bottle or spooning honey from a jar. As a result, it is quite reasonable to assume that students develop (pre)conceptions to explain such phenomena even before they enter kindergarten or elementary school. As yet, however, empirical studies on children′s conceptions regarding the viscous behavior of fluids are remarkably scarce. The present study aims to address this research gap on an exploratory level. More precisely, we conducted a qualitative interview study in which we explored the conceptions about the viscous behavior of honey among N = 6 preschool children attending their final year in a kindergarten in Hamburg (Germany). For stimulating the conversation during the interviews, an easily noticeable phenomenon in which the viscous behavior of honey can be observed (dropping two identical spoons into a honey-filled and a water-filled glass) was demonstrated to the participating children. In summary, the analysis of the transcribed interviews revealed three distinguishable conceptions of the children about the viscous behavior of honey: (1) The viscous behavior of honey results from its stickiness, (2) from its additional physical characteristics, and (3) from its use in everyday life. In this Express Letter, we present the design and results of our study in detail. Recommendations for future research in science education are outlined at the end of this paper.
Citation: Markus Sebastian Feser, Susanan Mangal. Exploring preschoolers′ conceptions about the viscosity of honey[J]. STEM Education, 2022, 2(2): 86-95. doi: 10.3934/steme.2022007
[1] | Yayun Fu, Mengyue Shi . A conservative exponential integrators method for fractional conservative differential equations. AIMS Mathematics, 2023, 8(8): 19067-19082. doi: 10.3934/math.2023973 |
[2] | Yong-Chao Zhang . Least energy solutions to a class of nonlocal Schrödinger equations. AIMS Mathematics, 2024, 9(8): 20763-20772. doi: 10.3934/math.20241009 |
[3] | Tingting Ma, Yuehua He . An efficient linearly-implicit energy-preserving scheme with fast solver for the fractional nonlinear wave equation. AIMS Mathematics, 2023, 8(11): 26574-26589. doi: 10.3934/math.20231358 |
[4] | Karmina K. Ali, Resat Yilmazer . Discrete fractional solutions to the effective mass Schrödinger equation by mean of nabla operator. AIMS Mathematics, 2020, 5(2): 894-903. doi: 10.3934/math.2020061 |
[5] | Erdal Bas, Ramazan Ozarslan . Theory of discrete fractional Sturm–Liouville equations and visual results. AIMS Mathematics, 2019, 4(3): 593-612. doi: 10.3934/math.2019.3.593 |
[6] | Dengfeng Lu, Shuwei Dai . On a class of three coupled fractional Schrödinger systems with general nonlinearities. AIMS Mathematics, 2023, 8(7): 17142-17153. doi: 10.3934/math.2023875 |
[7] | Mubashir Qayyum, Efaza Ahmad, Hijaz Ahmad, Bandar Almohsen . New solutions of time-space fractional coupled Schrödinger systems. AIMS Mathematics, 2023, 8(11): 27033-27051. doi: 10.3934/math.20231383 |
[8] | Xiaojun Zhou, Yue Dai . A spectral collocation method for the coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2022, 7(4): 5670-5689. doi: 10.3934/math.2022314 |
[9] | Zunyuan Hu, Can Li, Shimin Guo . Fast finite difference/Legendre spectral collocation approximations for a tempered time-fractional diffusion equation. AIMS Mathematics, 2024, 9(12): 34647-34673. doi: 10.3934/math.20241650 |
[10] | Xiao-Yu Li, Yu-Lan Wang, Zhi-Yuan Li . Numerical simulation for the fractional-in-space Ginzburg-Landau equation using Fourier spectral method. AIMS Mathematics, 2023, 8(1): 2407-2418. doi: 10.3934/math.2023124 |
Fluids′ viscous behavior is apparent in many everyday life situations, for example, in squeezing shampoo from a bottle or spooning honey from a jar. As a result, it is quite reasonable to assume that students develop (pre)conceptions to explain such phenomena even before they enter kindergarten or elementary school. As yet, however, empirical studies on children′s conceptions regarding the viscous behavior of fluids are remarkably scarce. The present study aims to address this research gap on an exploratory level. More precisely, we conducted a qualitative interview study in which we explored the conceptions about the viscous behavior of honey among N = 6 preschool children attending their final year in a kindergarten in Hamburg (Germany). For stimulating the conversation during the interviews, an easily noticeable phenomenon in which the viscous behavior of honey can be observed (dropping two identical spoons into a honey-filled and a water-filled glass) was demonstrated to the participating children. In summary, the analysis of the transcribed interviews revealed three distinguishable conceptions of the children about the viscous behavior of honey: (1) The viscous behavior of honey results from its stickiness, (2) from its additional physical characteristics, and (3) from its use in everyday life. In this Express Letter, we present the design and results of our study in detail. Recommendations for future research in science education are outlined at the end of this paper.
Fractional calculus is a popular subject because of having a lot of application areas of theoretical and applied sciences, like engineering, physics, biology, etc. Discrete fractional calculus is more recent area than fractional calculus and it was first defined by Diaz–Osler [1], Miller–Ross [2] and Gray–Zhang [3]. More recently, the theory of discrete fractional calculus have begun to develop rapidly with Goodrich–Peterson [4], Baleanu et al. [5,6], Ahrendt et al. [7], Atici–Eloe [8,9], Anastassiou [10], Abdeljawad et al. [11,12,13,14,15,16], Hein et al. [17] and Cheng et al. [18], Mozyrska [19] and so forth [20,21,22,23,24,25].
Fractional Sturm–Liouville differential operators have been studied by Bas et al. [26,27], Klimek et al.[28], Dehghan et al. [29]. Besides that, Sturm–Liouville differential and difference operators were studied by [30,31,32,33]. In this study, we define DFHA operators and prove the self–adjointness of DFHA operator, some spectral properties of the operator.
More recently, Almeida et al. [34] have studied discrete and continuous fractional Sturm–Liouville operators, Bas–Ozarslan [35] have shown the self–adjointness of discrete fractional Sturm–Liouville operators and proved some spectral properties of the problem.
Sturm–Liouville equation having hydrogen atom potential is defined as follows
d2Rdr2+ardRdr−ℓ(ℓ+1)r2R+(E+ar)R=0(0<r<∞). |
In quantum mechanics, the study of the energy levels of the hydrogen atom leads to this equation. Where R is the distance from the mass center to the origin, ℓ is a positive integer, a is real number E is energy constant and r is the distance between the nucleus and the electron.
The hydrogen atom is a two–particle system and it composes of an electron and a proton. Interior motion of two particles around the center of mass corresponds to the movement of a single particle by a reduced mass. The distance between the proton and the electron is identified r and r is given by the orientation of the vector pointing from the proton to the electron. Hydrogen atom equation is defined as Schrödinger equation in spherical coordinates and in consequence of some transformations, this equation is defined as
y′′+(λ−l(l+1)x2+2x−q(x))y=0. |
Spectral theory of hydrogen atom equation is studied by [39,40,41]. Besides that, we can observe that hydrogen atom differential equation has series solution as follows ([39], p.268)
y(x)=a0xl+1{1−k−l−11!(2l+2).2xk+(k−l−1)(k−l−2)2!(2l+2)(2l+3)(2xk)2+…+(−1)n(k−l−1)(k−l−2)…3.2.1(k−1)!(2l+2)(2l+3)…(2l+n)(2xk)n},k=1,2,… | (1.1) |
Recently, Bohner and Cuchta [36,37] studied some special integer order discrete functions, like Laguerre, Hermite, Bessel and especially Cuchta mentioned the difficulty in obtaining series solution of discrete special functions in his dissertation ([38], p.100). In this regard, finding series solution of DFHA equations is an open problem and has some difficulties in the current situation. For this reason, we study to obtain solutions of DFHA eq.s in a different way with representation of solutions.
In this study, we investigate DFHA equation in Riemann–Liouville and Grü nwald–Letnikov sense. The aim of this study is to contribute to the spectral theory of DFHA operator and behaviors of eigenfunctions and also to obtain the solution of DFHA equation.
We investigate DFHA equation in three different ways;
i) (nabla left and right) Riemann–Liouville (R–L)sense,
L1x(t)=∇μa(b∇μx(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t), 0<μ<1, |
ii) (delta left and right) Grünwald–Letnikov (G–L) sense,
L2x(t)=Δμ−(Δμ+x(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t), 0<μ<1, |
iii) (nabla left) Riemann–Liouville (R–L)sense,
L3x(t)=∇μa(∇μax(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t), 0<μ<1. |
Definition 2.1. [42] Falling and rising factorial functions are defined as follows respectively
tα_=Γ(t+1)Γ(t−α+1), | (2.1) |
t¯α=Γ(t+α)Γ(t), | (2.2) |
where Γ is the gamma function, α∈R.
Remark 2.1. Delta and nabla operators hold the following properties
Δtα_=αtα−1_,∇t¯α=αt¯α−1. | (2.3) |
Definition 2.2. [2,8,11] Nabla fractional sum operators are given as below,
(i) The left fractional sum of order μ>0 is defined by
∇−μax(t)=1Γ(μ)t∑s=a+1(t−ρ(s))¯μ−1x(s), t∈Na+1, | (2.4) |
(ii) The right fractional sum of order μ>0 is defined by
b∇−μx(t)=1Γ(μ)b−1∑s=t(s−ρ(t))¯μ−1x(s), t∈ b−1N, | (2.5) |
where ρ(t)=t−1 is called backward jump operators, Na={a,a+1,...}, bN={b,b−1,...}.
Definition 2.3. [12,14] Nabla fractional difference operators are as follows,
(i) The left fractional difference of order μ>0 is defined by
∇μax(t)=∇n∇−(n−μ)ax(t)=∇nΓ(n−μ)t∑s=a+1(t−ρ(s))¯n−μ−1x(s), t∈Na+1, | (2.6) |
(ii) The right fractional difference of order μ>0 is defined by
b∇μx(t)=(−1)n∇n∇−(n−μ)ax(t)=(−1)nΔnΓ(n−μ)b−1∑s=t(s−ρ(t))¯n−μ−1x(s), t∈ b−1N. | (2.7) |
Fractional differences in (2.6−2.7) are called the Riemann–Liouville (R–L) definition of the μ-th order nabla fractional difference.
Definition 2.4. [1,18] Fractional difference operators are given as follows
(i) The delta left fractional difference of order μ, 0<μ≤1, is defined by
Δμ−x(t)=1hμt∑s=0(−1)sμ(μ−1)...(μ−s+1)s!x(t−s), t=1,...,N. | (2.8) |
(ii) The delta right fractional difference of order μ, 0<μ≤1, is defined by
Δμ+x(t)=1hμN−t∑s=0(−1)sμ(μ−1)...(μ−s+1)s!x(t+s), t=0,..,N−1, | (2.9) |
fractional differences in (2.8−2.9) are called the Grünwald–Letnikov (G–L) definition of the μ-th order delta fractional difference.
Definition 2.5 [14] Integration by parts formula for R–L nabla fractional difference operator is defined by, u is defined on bN and v is defined on Na,
b−1∑s=a+1u(s)∇μav(s)=b−1∑s=a+1v(s)b∇μu(s). | (2.10) |
Definition 2.6. [34] Integration by parts formula for G–L delta fractional difference operator is defined by, u, v is defined on {0,1,...,n}, then
n∑s=0u(s)Δμ−v(s)=n∑s=0v(s)Δμ+u(s). | (2.11) |
Definition 2.7. [17] f:Na→R, s∈ℜ, Laplace transform is defined as follows,
La{f}(s)=∞∑k=1(1−s)k−1f(a+k), |
where ℜ=C∖{1} and ℜ is called the set of regressive (complex) functions.
Definition 2.8. [17] Let f,g:Na→R, all t∈Na+1, convolution of f and g is defined as follows
(f∗g)(t)=t∑s=a+1f(t−ρ(s)+a)g(s), |
where ρ(s) is the backward jump function defined in [42] as
ρ(s)=s−1. |
Theorem 2.1. [17] f,g:Na→R, convolution theorem is expressed as follows,
La{f∗g}(s)=La{f}La{g}(s). |
Lemma 2.1. [17] f:Na→R, the following property is valid,
La+1{f}(s)=11−sLa{f}(s)−11−sf(a+1). |
Theorem 2.2. [17] f:Na→R, 0<μ<1, Laplace transform of nabla fractional difference
La+1{∇μaf}(s)=sμLa+1{f}(s)−1−sμ1−sf(a+1),t∈Na+1. |
Definition 2.9. [17] For |p|<1, α>0, β∈R and t∈Na, Mittag–Leffler function is defined by
Ep,α,β(t,a)=∞∑k=0pk(t−a)¯αk+βΓ(αk+β+1). |
Theorem 2.3. [17] For |p|<1, α>0, β∈R, |1−s|<1 and |s|α>p, Laplace transform of Mittag–Leffler function is as follows,
La+1{Ep,α,β(.,a)}(s)=sα−β−1sα−p. |
Let us consider equations in three different forms;
i) L1 DFHA operator L1 is defined in (nabla left and right) R–L sense,
L1x(t)=∇μa(p(t)b∇μx(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t), 0<μ<1, | (3.1) |
where l is a positive integer or zero, q(t)+2t−l(l+1)t2 are named potential function., λ is the spectral parameter, t∈[a+1,b−1], x(t)∈l2[a+1,b−1], a>0.
ii) L2 DFHA operator L2 is defined in (delta left and right) G–L sense,
L2x(t)=Δμ−(p(t)Δμ+x(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t), 0<μ<1, | (3.2) |
where p,q,l,λ is as defined above, t∈[1,n], x(t)∈l2[0,n].
iii) L3 DFHA operator L3 is defined in (nabla left) R–L sense,
L3x(t)=∇μa(∇μax(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t), 0<μ<1, | (3.3) |
p,q,l,λ is as defined above, t∈[a+1,b−1], a>0.
Theorem 3.1. DFHA operator L1 is self–adjoint.
Proof.
u(t)L1v(t)=u(t)∇μa(p(t)b∇μv(t))+u(t)(l(l+1)t2−2t+q(t))v(t), | (3.4) |
v(t)L1u(t)=v(t)∇μa(p(t)b∇μu(t))+v(t)(l(l+1)t2−2t+q(t))u(t). | (3.5) |
Subtracting (16−17) from each other
u(t)L1v(t)−v(t)L1u(t)=u(t)∇μa(p(t)b∇μv(t))−v(t)∇μa(p(t)b∇μu(t)) |
and applying definite sum operator to both side of the last equality, we have
b−1∑s=a+1(u(s)L1v(s)−v(s)L1u(s))=b−1∑s=a+1u(s)∇μa(p(s)b∇μv(s))−b−1∑s=a+1v(s)∇μa(p(s)b∇μu(s)). | (3.6) |
Applying the integration by parts formula (2.10) to right hand side of (18), we have
b−1∑s=a+1(u(s)L1v(s)−v(s)L1u(s))=b−1∑s=a+1p(s)b∇μv(s)b∇μu(s)−b−1∑s=a+1p(s)b∇μu(s)b∇μv(s)=0, |
⟨L1u,v⟩=⟨u,L1v⟩. |
The proof completes.
Theorem 3.2. Eigenfunctions, corresponding to distinct eigenvalues, of the equation (3.2) are orthogonal.
Proof. Assume that λα and λβ are two different eigenvalues corresponds to eigenfunctions u(n) and v(n) respectively for the equation (3.1),
∇μa(p(t)b∇μu(t))+(l(l+1)t2−2t+q(t))u(t)−λαu(t)=0,∇μa(p(t)b∇μv(t))+(l(l+1)t2−2t+q(t))v(t)−λβv(t)=0, |
Multiplying last two equations to v(n) and u(n) respectively, subtracting from each other and applying sum operator, since the self–adjointness of the operator L1, we get
(λα−λβ)b−1∑s=a+1r(s)u(s)v(s)=0, |
since λα≠λβ,
b−1∑s=a+1r(s)u(s)v(s)=0,⟨u(t),v(t)⟩=0, |
and the proof completes.
Theorem 3.3. All eigenvalues of the equation (3.1) are real.
Proof. Assume λ=α+iβ, since the self–adjointness of the operator L1, we have
⟨L1u,u⟩=⟨u,L1u⟩,⟨λu,u⟩=⟨u,λu⟩, |
(λ−¯λ)⟨u,u⟩=0 |
Since ⟨u,u⟩r≠0,
λ=¯λ |
and hence β=0. So, the proof is completed.
Self–adjointness of L2 DFHA operator G–L sense, reality of eigenvalues and orthogonality of eigenfunctions of the equation 3.2 can be proven in a similar way to the Theorem 3.1–3.2–3.3 by means of Definition 2.5.
Theorem 3.4.
L3x(t)=∇μa(∇μax(t))+(l(l+1)t2−2t+q(t))x(t)=λx(t),0<μ<1, | (3.7) |
x(a+1)=c1,∇μax(a+1)=c2, | (3.8) |
where p(t)>0, r(t)>0, q(t) is defined and real valued, λ is the spectral parameter. The sum representation of solution of the problem (3.7)−(3.8) is given as follows,
x(t)=c1((1+l(l+1)(a+1)2−2a+1+q(a+1))Eλ,2μ,μ−1(t,a)−λEλ,2μ,2μ−1(t,a))+c2(Eλ,2μ,2μ−1(t,a)−Eλ,2μ,μ−1(t,a))−t∑s=a+1Eλ,2μ,2μ−1(t−ρ(s)+a)(l(l+1)s2−2s+q(s))x(s). | (3.9) |
Proof. Taking Laplace transform of the equation (3.7) by Theorem 2.2 and take (l(l+1)t2−2t+q(t))x(t)=g(t),
La+1{∇μa(∇μax)}(s)+La+1{g}(s)=λLa+1{x}(s),=sμLa+1{∇μax}(s)−1−sμ1−sc2=λLa+1{x}(s)−La+1{g}(s),=sμ(sμLa+1{x}(s)−1−sμ1−sc1)−1−sμ1−sc2=λLa+1{x}(s)−La+1{g}(s), |
=La+1{x}(s)=1−sμ1−s1s2μ−λ(sμc1+c2)−1s2μ−λLa+1{g}(s). |
Using Lemma 2.1, we have
La{x}(s)=c1(sμ−λs2μ−λ)−1−ss2μ−λ(11−sLa{g}(s)−11−sg(a+1))+c2(1−sμs2μ−λ). | (3.10) |
Now, taking inverse Laplace transform of the equation (3.10) and applying convolution theorem, then we have the representation of solution of the problem (3.7)−(3.8), |λ|<1, |1−s|<1 and |s|α>λ from Theorem 2.3., i.e.
L−1a{sμs2μ−λ}=Eλ,2μ,μ−1(t,a),L−1a{1s2μ−λ}=Eλ,2μ,2μ−1(t,a), |
L−1a{1s2μ−λLa{q(s)x(s)}}=t∑s=a+1Eλ,2μ,2μ−1(t−ρ(s)+a)q(s)x(s). |
Consequently, we have sum representation of solution for DFHA problem 3.7–3.8
x(t)=c1((1+l(l+1)(a+1)2−2a+1+q(a+1))Eλ,2μ,μ−1(t,a)−λEλ,2μ,2μ−1(t,a))+c2(Eλ,2μ,2μ−1(t,a)−Eλ,2μ,μ−1(t,a))−t∑s=a+1Eλ,2μ,2μ−1(t−ρ(s)+a)(l(l+1)s2−2s+q(s))x(s). |
Presume that c1=1,c2=0,a=0 in the representation of solution (3.9) and hence we may observe the behaviors of solutions in following figures (Figures 1–7) and tables (Tables 1–3);
x(t) | μ=0.3 | μ=0.35 | μ=0.4 | μ=0.45 | μ=0.5 |
x(1) | 1 | 1 | 1 | 1 | 1 |
x(2) | 0.612 | 0.714 | 1.123 | 0.918 | 1.020 |
x(3) | 0.700 | 0.900 | 1.515 | 1.370 | 1.641 |
x(5) | 0.881 | 1.336 | 2.402 | 2.747 | 3.773 |
x(7) | 1.009 | 1.740 | 3.352 | 4.566 | 7.031 |
x(9) | 1.099 | 2.100 | 4.332 | 6.749 | 11.461 |
x(12) | 1.190 | 2.570 | 5.745 | 10.623 | 20.450 |
x(15) | 1.249 | 2.975 | 6.739 | 15.149 | 32.472 |
x(16) | 1.264 | 3.098 | 7.235 | 16.793 | 37.198 |
x(18) | 1.289 | 3.330 | 8.233 | 20.279 | 47.789 |
x(20) | 1.309 | 3.544 | 9.229 | 24.021 | 59.967 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 7.37∗10−17 | 4.41∗10−17 | 5.77∗10−17 |
x(3) | −0.131 | −0.057 | −0.088 |
x(5) | −0.123 | −0.018 | −0.049 |
x(7) | −0.080 | −0.006 | −0.021 |
x(9) | −0.050 | −0.003 | −0.011 |
x(12) | −0.028 | −0.001 | −0.005 |
x(15) | −0.017 | −0.0008 | −0.003 |
x(16) | −0.015 | −0.0006 | −0.0006 |
x(18) | −0.012 | −0.0005 | −0.002 |
x(20) | −0.010 | −0.0003 | −0.001 |
x(t) | λ=0.1 | λ=0.11 | λ=0.12 |
x(1) | 1 | 1 | 1 |
x(2) | 1 | 1.025 | 1.052 |
x(3) | 1.668 | 1.751 | 1.841 |
x(5) | 3.876 | 4.216 | 4.595 |
x(7) | 7.243 | 8.107 | 9.095 |
x(9) | 11.941 | 13.707 | 12.130 |
x(12) | 22.045 | 26.197 | 25.237 |
x(15) | 36.831 | 45.198 | 46.330 |
x(16) | 43.042 | 53.369 | 55.687 |
x(18) | 57.766 | 73.092 | 78.795 |
x(20) | 76.055 | 98.154 | 127.306 |
We have analyzed DFHA equation in Riemann–Liouville and Grü nwald–Letnikov sense. Self–adjointness of the DFHA operator is presented and also, we have proved some significant spectral properties for instance, orthogonality of distinct eigenfunctions, reality of eigenvalues. Moreover, we give sum representation of the solutions for DFHA problem and find the solutions of the problem. We have carried out simulation analysis with graphics and tables. The aim of this paper is to contribute to the theory of hydrogen atom fractional difference operator.
We observe the behaviors of solutions by changing the order of the derivative μ in Figure 1 and Figure 5, by changing the potential function q(t) in Figure 2, we compare solutions under different λ eigenvalues in Figure 3, and Figure 7, also we observe the solutions by changing μ with a specific eigenvalue in Figure 4 and by changing l values in Figure 6.
We have shown the solutions by changing the order of the derivative μ in Table 1, by changing the potential function q(t) and λ eigenvalues in Table 2, Table 3.
The authors would like to thank the editor and anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.
The authors declare no conflict of interest.
[1] |
Adamina, M., Kübler, M., Kalcsics, K., Bietenhard, S. and Engeli E., Wie ich mir das denke und vorstelle... ": Vorstellungen von Schülerinnen und Schülern zu Lerngegenständen des Sachunterrichts und des Fachbereichs Natur, Mensch, Gesellschaft. 2018, 211-229. |
[2] |
Barab, S. and Squire, K., Design-Based Research: Putting a Stake in the Ground. Journal of the Learning Sciences, 2004, 13(1): 1–14. https://doi.org/10.1207/s15327809jls1301_1. doi: 10.1207/s15327809jls1301_1![]() |
[3] |
Black, P.J. and Lucas, A.M., Children's Informal Ideas in Science, 1993, London, United Kingdom: Routledge. |
[4] |
Bransford, J.D., Brown, A.L. and Cocking, R.R., How People Learn: Brain, Mind, Experience, and School: Expanded Edition, 2000, Washington, DC, USA: National Academies Press. |
[5] |
Camacho, F.F., Ideas Previas. 2014. Universidad Nacional Autónoma de México, Mexico City, Mexico. Retrieved from: http://www.ideasprevias.ccadet.unam.mx:8080/ideasprevias/index.html. |
[6] |
Carroll, L., Viscosity. The Physics Teacher, 1982, 20: 47–48. https://doi.org/10.1119/1.2340934. doi: 10.1119/1.2340934![]() |
[7] |
Driver, R. and Easley, J., Pupils and Paradigms: A Review of Literature Related to Concept Development in Adolescent Science Students. Studies in Science Education, 1978, 5(1): 61–84. https://doi.org/10.1080/03057267808559857. doi: 10.1080/03057267808559857![]() |
[8] |
Driver, R., Guesne, E. and Tiberghien, A., Children's Ideas in Science. 1985, Buckingham, United Kingdom: Open University Press. |
[9] |
Duit, R., Bibliography – STCSE. Students' and Teachers' Conceptions and Science Education. 2009. Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik, Kiel, Germany. Retrieved from: https://archiv.ipn.uni-kiel.de/stcse/. |
[10] |
Duit, R., Gropengießer, H., Kattmann, U., Komorek, M. and Parchmann, I., The Model of Educational Reconstruction – a Framework for Improving Teaching and Learning Science, in Science Education Research and Practice in Europe, D. Jorde and J. Dillon, Editors. 2012, pp. 13–37. Sense Publishers. |
[11] |
Eastwell, P., Bernoulli? Perhaps, but What About Viscosity?. The Science Education Review, 2007, 6(1): 1–13. |
[12] |
Eaton, J.F., Anderson, C.W. and Smith, E.L., Students' Misconceptions Interfere with Science Learning: Case Studies of Fifth-Grade Students. The Elementary School Journal, 1984, 84(4): 365–379. https://doi.org/10.1086/461370. doi: 10.1086/461370![]() |
[13] |
Eyring, H., Douglas, H., Jones Stover, B. and Eyring, E.M., Statistical Mechanics and Dynamics, 1964, New York, USA: Wiley. |
[14] |
Faltin, L. and Feser, M.S., Secondary school students' conceptions about the viscous behaviour of liquids. Physics Education, 2021, 56: Article 035018. https://www.doi.org/10.1088/1361-6552/abe690. |
[15] |
Floyd-Smith, T.M., Kwon, K.C., Burmester, J.A., Dale, F.F., Vahdat, N. and Jones, P., Demonstration and Assessment of a Simple Viscosity Experiment for High School Science Classes. Chemical Engineering Education, 2006, 40(3): 211–214. |
[16] |
Fuß, S. and Karbach U., Grundlagen der Transkription. Eine praktische Einführung, 2019, Opladen, Germany: Verlag Barbara Budrich. |
[17] |
Haagen-Schützenhöfer, C. and Hopf, M., Design-based research as a model for systematic curriculum development: The example of a curriculum for introductory optics. Physical Review Physics Education Research, 2020, 16: Article 020152. https://www.doi.org/10.1103/PhysRevPhysEducRes.16.020152. |
[18] |
Irgens, F., Rheology and Non-Newtonian Fluids, 2014, Cham, Switzerland: Springer. |
[19] |
Jung W., Zum Problem der 'Schülervorstellungen'. physica didactica, 1978, 5: 125–126. |
[20] |
Kuckartz U., Qualitative text analysis: a guide to methods, practice and using software, 2014, London, United Kingdom: Sage Publications. |
[21] |
Kvale, S., The social construction of validity. Qualitative Inquiry, 1995, 1(1): 19–40. https://doi.org/10.1177/107780049500100103. doi: 10.1177/107780049500100103![]() |
[22] |
Limniou, M., Papadopoulos, N., Giannakoudakis, A., Roberts, D. and Otto, O., The integration of a viscosity simulator in a chemistry laboratory. Chemistry Education Research and Practice, 2007 8(2): 220–231. https://doi.org/10.1039/B6RP90032A. doi: 10.1039/B6RP90032A![]() |
[23] |
Mason, L., Introduction: Bridging the Cognitive and Sociocultural Approaches in Research on Conceptual Change: Is it Feasible? Educational Psychologist, 2007, 42: 1–7. https://doi.org/10.1080/00461520709336914. doi: 10.1080/00461520709336914![]() |
[24] |
Niedderer, H. and Schecker, H., Towards an explicit description of cognitive systems for research in physics learning, in Research in Physics Learning—Theoretical Issues and Empirical Studies, R. Duit, H. Goldberg and H. Niedderer, Editors. 1992, pp. 74–98. Leibniz-Institut für die Pädagogik der Naturwissenschaften und Mathematik. |
[25] |
Pérez-Sánchez, M., Galstyan-Sargsyan, R., Pérez-Sánchez, M. I. and López-Jiménez, P. A., Experimental Equipment to Develop Teaching of the Concept Viscosity. Education Sciences, 2018, 8(4): Article 179. https://doi.org/10.3390/educsci8040179. doi: 10.3390/educsci8040179![]() |
[26] |
Plotz, T., Krumphals, I. and Haagen-Schützenhöfer, C., Delphi study on the term 'students' conceptions'. Journal of Physics: Conference Series, 2021, 1929: Article 012006. https://doi.org/10.1088/1742-6596/1929/1/012006. doi: 10.1088/1742-6596/1929/1/012006![]() |
[27] |
Rivollet, I., Chatain, D. and Eustathopoulos, N., Simultaneous measurement of contact angles and work of adhesion in metal-ceramic systems by the immersion-emersion technique. Journal of Materials Science, 1990, 25: 3179–3185. https://doi.org/10.1007/BF00587671. doi: 10.1007/BF00587671![]() |
[28] |
Schecker, H., Wilhelm, T., Hopf, M. and Duit, R., Schülervorstellungen und Physikunterricht: ein Lehrbuch für Studium, Referendariat und Unterrichtspraxis, 2018, Berlin, Germany: Springer Spektrum. |
[29] |
Schreier, M., Qualitative Content Analysis in Practice, 2012, London, United Kingdom: Sage Publications. |
[30] |
Sprung, B., Froschl, M. and Campbell, P.B., What will happen if. . ., 1985, New York, United States, Educational Equity Concepts, Inc. |
[31] |
Stark, R., Conceptual Change: kognitiv oder situiert? Zeitschrift für Pädagogische Psychologie, 2003, 17(2): 133–144. |
[32] |
Stavy, R. and Tirosh, D., How students (mis-)understand science and mathematics: intuitive rules, 2000, New York, United States: Teachers College Press. |
[33] |
Susilawati, S., Satriawan, M., Rizal, R. and Sutarno, S., Fluid experiment design using video tracker and ultrasonic sensor devices to improve understanding of viscosity concept. Journal of Physics: Conference Series, 2020, 1521: Article 022039. https://doi.org/10.1088/1742-6596/1521/2/022039 doi: 10.1088/1742-6596/1521/2/022039![]() |
[34] |
Watteler, O. and Ebel, T., Datenschutz im Forschungsdatenmanagement, in Forschungsdatenmanagement sozialwissenschaftlicher Umfragedaten: Grundlagen und praktische Lösungen für den Umgang mit quantitativen Forschungsdaten, Jensen, U., Netscher, S. and Weller, K., Editors. 2019, pp. 57–79, Verlag Barbara Budrich. |
[35] |
Wirtz, M. and Caspar, F., Beurteilerübereinstimmung und Beurteilerreliabilität. Methoden zur Bestimmung und Verbesserung der Zuverlässigkeit von Einschätzungen mittels Kategoriensystemen und Ratingskalen, 2002, Göttingen, Germany: Hogrefe. |
1. | Erdal Bas, Funda Metin Turk, Ramazan Ozarslan, Ahu Ercan, Spectral data of conformable Sturm–Liouville direct problems, 2021, 11, 1664-2368, 10.1007/s13324-020-00428-6 | |
2. | Tom Cuchta, Dallas Freeman, Discrete Polylogarithm Functions, 2023, 84, 1338-9750, 19, 10.2478/tmmp-2023-0012 | |
3. | B. Shiri, Y. Guang, D. Baleanu, Inverse problems for discrete Hermite nabla difference equation, 2025, 33, 2769-0911, 10.1080/27690911.2024.2431000 | |
4. | Muhammad Sulthan Zacky, Heru Sukamto, Lila Yuwana, Agus Purwanto, Eny Latifah, The performance of space-fractional quantum carnot engine, 2025, 100, 0031-8949, 025306, 10.1088/1402-4896/ada9de |
x(t) | μ=0.3 | μ=0.35 | μ=0.4 | μ=0.45 | μ=0.5 |
x(1) | 1 | 1 | 1 | 1 | 1 |
x(2) | 0.612 | 0.714 | 1.123 | 0.918 | 1.020 |
x(3) | 0.700 | 0.900 | 1.515 | 1.370 | 1.641 |
x(5) | 0.881 | 1.336 | 2.402 | 2.747 | 3.773 |
x(7) | 1.009 | 1.740 | 3.352 | 4.566 | 7.031 |
x(9) | 1.099 | 2.100 | 4.332 | 6.749 | 11.461 |
x(12) | 1.190 | 2.570 | 5.745 | 10.623 | 20.450 |
x(15) | 1.249 | 2.975 | 6.739 | 15.149 | 32.472 |
x(16) | 1.264 | 3.098 | 7.235 | 16.793 | 37.198 |
x(18) | 1.289 | 3.330 | 8.233 | 20.279 | 47.789 |
x(20) | 1.309 | 3.544 | 9.229 | 24.021 | 59.967 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 7.37∗10−17 | 4.41∗10−17 | 5.77∗10−17 |
x(3) | −0.131 | −0.057 | −0.088 |
x(5) | −0.123 | −0.018 | −0.049 |
x(7) | −0.080 | −0.006 | −0.021 |
x(9) | −0.050 | −0.003 | −0.011 |
x(12) | −0.028 | −0.001 | −0.005 |
x(15) | −0.017 | −0.0008 | −0.003 |
x(16) | −0.015 | −0.0006 | −0.0006 |
x(18) | −0.012 | −0.0005 | −0.002 |
x(20) | −0.010 | −0.0003 | −0.001 |
x(t) | λ=0.1 | λ=0.11 | λ=0.12 |
x(1) | 1 | 1 | 1 |
x(2) | 1 | 1.025 | 1.052 |
x(3) | 1.668 | 1.751 | 1.841 |
x(5) | 3.876 | 4.216 | 4.595 |
x(7) | 7.243 | 8.107 | 9.095 |
x(9) | 11.941 | 13.707 | 12.130 |
x(12) | 22.045 | 26.197 | 25.237 |
x(15) | 36.831 | 45.198 | 46.330 |
x(16) | 43.042 | 53.369 | 55.687 |
x(18) | 57.766 | 73.092 | 78.795 |
x(20) | 76.055 | 98.154 | 127.306 |
x(t) | μ=0.3 | μ=0.35 | μ=0.4 | μ=0.45 | μ=0.5 |
x(1) | 1 | 1 | 1 | 1 | 1 |
x(2) | 0.612 | 0.714 | 1.123 | 0.918 | 1.020 |
x(3) | 0.700 | 0.900 | 1.515 | 1.370 | 1.641 |
x(5) | 0.881 | 1.336 | 2.402 | 2.747 | 3.773 |
x(7) | 1.009 | 1.740 | 3.352 | 4.566 | 7.031 |
x(9) | 1.099 | 2.100 | 4.332 | 6.749 | 11.461 |
x(12) | 1.190 | 2.570 | 5.745 | 10.623 | 20.450 |
x(15) | 1.249 | 2.975 | 6.739 | 15.149 | 32.472 |
x(16) | 1.264 | 3.098 | 7.235 | 16.793 | 37.198 |
x(18) | 1.289 | 3.330 | 8.233 | 20.279 | 47.789 |
x(20) | 1.309 | 3.544 | 9.229 | 24.021 | 59.967 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 7.37∗10−17 | 4.41∗10−17 | 5.77∗10−17 |
x(3) | −0.131 | −0.057 | −0.088 |
x(5) | −0.123 | −0.018 | −0.049 |
x(7) | −0.080 | −0.006 | −0.021 |
x(9) | −0.050 | −0.003 | −0.011 |
x(12) | −0.028 | −0.001 | −0.005 |
x(15) | −0.017 | −0.0008 | −0.003 |
x(16) | −0.015 | −0.0006 | −0.0006 |
x(18) | −0.012 | −0.0005 | −0.002 |
x(20) | −0.010 | −0.0003 | −0.001 |
x(t) | λ=0.1 | λ=0.11 | λ=0.12 |
x(1) | 1 | 1 | 1 |
x(2) | 1 | 1.025 | 1.052 |
x(3) | 1.668 | 1.751 | 1.841 |
x(5) | 3.876 | 4.216 | 4.595 |
x(7) | 7.243 | 8.107 | 9.095 |
x(9) | 11.941 | 13.707 | 12.130 |
x(12) | 22.045 | 26.197 | 25.237 |
x(15) | 36.831 | 45.198 | 46.330 |
x(16) | 43.042 | 53.369 | 55.687 |
x(18) | 57.766 | 73.092 | 78.795 |
x(20) | 76.055 | 98.154 | 127.306 |
Setup of the demonstration shown to the children: dropping two identical spoons into a honey-filled glass and a water-filled glass