Increasing the longevity of people living with HIV (PLHIV) around the world has been accompanied by an increase in the prevalence of cardiovascular disease (CVD) risk factors and morbidity. The impact of these trends on the epidemiology of CVD among PLHIV is less clear. The aim of this study was to assess the risk factors for CVD, and to estimate these risks at 10 years in PLHIV aged 50 and above.
This was a descriptive and analytical study carried out at Mvog Ada District Hospital in Yaounde, Cameroon from January 2020 to January 2021. Descriptive bivariate analyses were used to present the data. The data are presented as frequencies and percentages for categorical variables, and in terms of means and standard deviations for continuous variables where appropriate. The 10-year CVD risk score was calculated using two tools: the validated Framingham risk score (FRS) (low < 10%, moderate 10–20% and high ≥ 20%) and SCORE score (SSC) (low < 3%, moderate 3–4% and high ≥ 5%). Multiple logistic regression models were constructed to examine the respective relationships between the binary dependent variable high CVD risk (FRS ≥ 20%) and the population group, alcohol consumption (more than 10 glasses of beer per week, or more than 35.7 cl/day) and hypertriglyceridemia (independent variables). A p-value less than or equal to 0.05 was considered statistically significant.
A total of 112 people aged 50 and above were enrolled in the study out of 180 people registered at the HIV care unit, that is a participation rate of 62.22%. The average age of the participants was 57.3 ± 6.4 years, and the female/male ratio was 1.6. The majority of participants (53.57%) had normal glycaemia levels (<1.10 g/L), 4.46% were diabetic and 46.40% had high blood pressure. The adherence rate for ARV treatment was 98.20%; most participants (77.20%) were alcohol consumers, and 28.10% of participants had hypertriglyceridemia. The estimates of overall cardiovascular risk in 10 years presented 50.90% of participants with low risk, 33% with moderate risk and 16.10% with high risk.
Our study indicated an overall risk of cardiovascular events in 10 years is 16.10%, with the main conditional risk factor being hypertriglyceridemia and alcohol consumption, which appeared to triple the risk of CVD among PLHIV.
Citation: Henri Olivier Tatsilong Pambou, Amandine Gagneux-Brunon, Bertrand Tatsinkou Fossi, Frederic Roche, Jessica Guyot, Elisabeth Botelho-Nevers, Caroline Dupre, Bienvenu Bongue, Celine Nguefeu Nkenfou. Assessment of cardiovascular risk factors among HIV-infected patients aged 50 years and older in Cameroon[J]. AIMS Public Health, 2022, 9(3): 490-505. doi: 10.3934/publichealth.2022034
Increasing the longevity of people living with HIV (PLHIV) around the world has been accompanied by an increase in the prevalence of cardiovascular disease (CVD) risk factors and morbidity. The impact of these trends on the epidemiology of CVD among PLHIV is less clear. The aim of this study was to assess the risk factors for CVD, and to estimate these risks at 10 years in PLHIV aged 50 and above.
This was a descriptive and analytical study carried out at Mvog Ada District Hospital in Yaounde, Cameroon from January 2020 to January 2021. Descriptive bivariate analyses were used to present the data. The data are presented as frequencies and percentages for categorical variables, and in terms of means and standard deviations for continuous variables where appropriate. The 10-year CVD risk score was calculated using two tools: the validated Framingham risk score (FRS) (low < 10%, moderate 10–20% and high ≥ 20%) and SCORE score (SSC) (low < 3%, moderate 3–4% and high ≥ 5%). Multiple logistic regression models were constructed to examine the respective relationships between the binary dependent variable high CVD risk (FRS ≥ 20%) and the population group, alcohol consumption (more than 10 glasses of beer per week, or more than 35.7 cl/day) and hypertriglyceridemia (independent variables). A p-value less than or equal to 0.05 was considered statistically significant.
A total of 112 people aged 50 and above were enrolled in the study out of 180 people registered at the HIV care unit, that is a participation rate of 62.22%. The average age of the participants was 57.3 ± 6.4 years, and the female/male ratio was 1.6. The majority of participants (53.57%) had normal glycaemia levels (<1.10 g/L), 4.46% were diabetic and 46.40% had high blood pressure. The adherence rate for ARV treatment was 98.20%; most participants (77.20%) were alcohol consumers, and 28.10% of participants had hypertriglyceridemia. The estimates of overall cardiovascular risk in 10 years presented 50.90% of participants with low risk, 33% with moderate risk and 16.10% with high risk.
Our study indicated an overall risk of cardiovascular events in 10 years is 16.10%, with the main conditional risk factor being hypertriglyceridemia and alcohol consumption, which appeared to triple the risk of CVD among PLHIV.
Antiretroviral therapy
Body mass index
Confident interval
Cardiovascular disease
Data collection on adverse effects of anti-HIV drugs
Diastolic blood pressure
Framingham Risk Score
High density lipoproteins-cholesterol
Human immunodeficiency virus
Low-density lipoproteins-cholesterol
People Living with HIV
Systolic blood pressure
Systemic coronary risk evaluation
Score of SCORE
Standard deviation
[1] | Fiche d'informationDernières statistiques sur l'état de l'épidémie de sida. UNAIDS (2021). Available from: http://www.unaids.org/fr/resources/fact-sheet |
[2] | Fiche d'informationDernières statistiques sur l'état de l'épidémie de sida. UNAIDS (2019). Available from: http://www.unaids.org/fr/resources/fact-sheet |
[3] | Smit M, Brinkman K, Geerlings S, et al. (2015) Future challenges for clinical care of an ageing population infected with HIV: A modelling study. Lancet Infect Dis 15: 810-818. https://doi.org/10.1016/S1473-3099(15)00056-0 |
[4] | Smith J, Flexner C (2017) The challenge of polypharmacy in an aging population and implications for future antiretroviral therapy development. AIDS 31: S173-S184. https://doi.org/10.1097/QAD.0000000000001401 |
[5] | Allavena C, Hanf M, Rey D, et al. (2018) Antiretroviral exposure and comorbidities in an aging HIV-infected population: The challenge of geriatric patients. PLoS One 13: e0203895. https://doi.org/10.1371/journal.pone.0203895 |
[6] | Marcus J, Chao C, Leyden W, et al. (2016) Narrowing the gap in life expectancy between HIV-Infected and HIV-uninfected individuals with access to care. J Acquir Immune Defic Syndr 73: 39-46. https://doi.org/10.1097/QAI.0000000000001014 |
[7] | Liang Y, Ketchum NS, Turner BJ, et al. (2020) Cardiovascular risk assessment varies widely by calculator and race/ethnicity in a majority Latinx cohort living with HIV. J Immigr Minor Health 22: 323-335. https://doi.org/10.1007/s10903-019-00890-w |
[8] | Damen JAAG, Hooft L, Schuit E, et al. (2016) Prediction models for cardiovascular disease risk in the general population: Systematic review. BMJ : 353. https://doi.org/10.1136/bmj.i2416 |
[9] | Khera R, Pandey A, Ayers CR, et al. (2020) Performance of the pooled cohort equations to estimate atherosclerotic cardiovascular disease risk by body mass index. JAMA Netw Open 3: e2023242. https://doi.org/10.1001/jamanetworkopen.2020.23242 |
[10] | D'Agostino RB, Pencina MJ, Massaro JM, et al. (2013) Cardiovascular disease risk assessment: Insights from Framingham. Glob Heart 8: 11-23. https://doi.org/10.1016/j.gheart.2013.01.001 |
[11] | Feinstein MJ, Hsue PY, Benjamin LA, et al. (2019) Characteristics, prevention, and management of cardiovascular disease in people living with HIV: A scientific statement from the American Heart Association. Circulation 140: e98-e124. https://doi.org/10.1161/CIR.0000000000000695 |
[12] | Achhra AC, Lyass A, Borowsky L, et al. (2021) Assessing cardiovascular risk in people living with HIV: Current tools and limitations. Curr HIV/AIDS Rep 18: 271-279. https://doi.org/10.1007/s11904-021-00567-w |
[13] | Ricci J, Gagnon L (2011) Evaluation du niveau d'activité physique et de condition physique. Clin Prosport : 1-26. |
[14] | National Cholesterol Education Program (US).Expert Panel on Detection, and Treatment of High Blood Cholesterol in Adults. Third report of the National Cholesterol Education Program on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III), The Program (2001) . https://doi.org/10.1001/jama.285.19.2486 |
[15] | Assman G, Cullen P, Schulte H (2002) Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation 105: 310-315. https://doi.org/10.1161/hc0302.102575 |
[16] | De Backer G, Ambrosioni E, Borch-Johnsen K, et al. (2004) European guidelines on cardiovascular disease prevention in clinical practice. Third Joint Task Force of European and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of eight societies and by invited experts). Atherosclerosis 173: 381-391. https://doi.org/10.1016/j.atherosclerosis.2004.02.013 |
[17] | Melo S, Antonini M, Christefany R, et al. (2020) Evaluation of cardiovascular risk factors in people living with HIV in São Paulo, Brazil. J Infect Dev Ctries 14: 89-96. https://doi.org/10.3855/jidc.11326 |
[18] | Pinto N, Dias F, Bressan F, et al. (2017) Comparison of the ACC/AHA and Framingham algorithms to assess cardiovascular risk in HIV-infected patients. Braz J Infect Dis 21: 577-580. https://doi.org/10.1016/j.bjid.2017.06.007 |
[19] | Mosepele M, Hemphill L, Palai T, et al. (2017) Cardiovascular disease risk prediction by the American College of Cardiology (ACC)/American Heart Association (AHA) Atherosclerotic Cardiovascular Disease (ASCVD) risk score among HIV-infected patients in sub-Saharan Africa. PLoS One 12: e0172897. https://doi.org/10.1371/journal.pone.0172897 |
[20] | Noumegni SR, Ama VJM, Assah FK, et al. (2017) Assessment of the agreement between the Framingham and DAD risk equations for estimating cardiovascular risk in adult Africans living with HIV infection: A cross-sectional study. Trop Dis Travel Med Vaccines 3: 12. https://doi.org/10.1186/s40794-017-0055-z |
[21] | D'Agostino RB, Vasan RS, Pencina MJ, et al. (2008) General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation 117: 743-753. https://doi.org/10.1161/CIRCULATIONAHA.107.699579 |
[22] | Zilbermint M, Hannah-Shmouni F, Stratakis CA (2019) Genetics of hypertension in African Americans and others of African descent. Int J Mol Sci 20: 1081. https://doi.org/10.3390/ijms20051081 |
[23] | Nyirenda M (2021) Assessment of cardiovascular disease risks using Framingham risk scores (FRS) in HIV-positive and HIV-negative older adults in South Africa. Prev Med Rep 22: 101352. https://doi.org/10.1016/j.pmedr.2021.101352 |
[24] | De Gaetano Donati K, Cauda R, Iacoviello L (2010) HIV infection, antiretroviral therapy and cardiovascular risk. Mediterr J Hematol Infect Dis 2: e2010034. https://doi.org/10.4084/mjhid.2010.034 |
[25] | Wu PY, Chen MY, Sheng WH, et al. (2019) Estimated risk of cardiovascular disease among the HIV-positive patients aged 40 years or older in Taiwan. J Microbiol Immunol Infect 52: 549-555. https://doi.org/10.1016/j.jmii.2019.03.006 |
[26] | Warren TY, Barry V, Hooker SP, et al. (2010) Sedentary behaviors increase risk of cardiovascular disease mortality in men. Med Sci Sports Exerc 42: 879-885. https://doi.org/10.1249/MSS.0b013e3181c3aa7e |
[27] | Policarpo S, Rodrigues T, Moreira AC, et al. (2019) Cardiovascular risk in HIV-infected individuals: A comparison of three risk prediction algorithms. Rev Port Cardiol 38: 463-470. https://doi.org/10.1016/j.repc.2019.08.002 |
[28] | Esser S, Gelbrich G, Brockmeyer N, et al. (2013) Prevalence of cardiovascular diseases in HIV-infected outpatients: Results from a prospective, multicenter cohort study. Clin Res Cardiol 102: 203-213. https://doi.org/10.1007/s00392-012-0519-0 |
[29] | Peyracchia M, De Lio G, Montrucchio C, et al. (2018) Evaluation of coronary features of HIV patients presenting with ACS: The CUORE, a multicenter study. Atherosclerosis 274: 218-226. https://doi.org/10.1016/j.atherosclerosis.2018.05.001 |
[30] | Baker JV, Henry WK, Neaton JD (2009) The consequences of HIV infection and antiretroviral therapy use for cardiovascular disease risk: Shifting paradigms. Curr Opin HIV AIDS 4: 176-182. https://doi.org/10.1097/COH.0b013e328329c62f |
[31] | Kelly Y AHA Offers CVD Guidance for Patients with HIV (2019). |