The Wigner-Lohe model for quantum synchronization and its emergent dynamics

  • Received: 01 February 2017 Revised: 01 June 2017
  • Primary: 35Q40; Secondary: 82C22, 93D20, 35B40

  • We present the Wigner-Lohe model for quantum synchronization which can be derived from the Schrödinger-Lohe model using the Wigner formalism. For identical one-body potentials, we provide a priori sufficient framework leading the complete synchronization, in which L2-distances between all wave functions tend to zero asymptotically.

    Citation: Paolo Antonelli, Seung-Yeal Ha, Dohyun Kim, Pierangelo Marcati. The Wigner-Lohe model for quantum synchronization and its emergent dynamics[J]. Networks and Heterogeneous Media, 2017, 12(3): 403-416. doi: 10.3934/nhm.2017018

    Related Papers:

  • We present the Wigner-Lohe model for quantum synchronization which can be derived from the Schrödinger-Lohe model using the Wigner formalism. For identical one-body potentials, we provide a priori sufficient framework leading the complete synchronization, in which L2-distances between all wave functions tend to zero asymptotically.



    加载中
    [1] The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. (2005) 77: 137-185.
    [2] The quantum hydrodynamics system in two space dimensions. Arch. Rational Mech. Anal. (2012) 203: 499-527.
    [3] On the finite weak solutions to a system in quantum fluid dynamics. Comm. Math. Phys. (2009) 287: 657-686.
    [4] P. Antonelli and P. Marcati, Some results on systems for quantum fluids, in Recent Advances in Partial Differential Equations and Applications an International Conference (in honor of H. Beirão da Veiga's 70th birthday), ed. by V. D. Radulescu, A. Sequeira, V. A. Solonnikov. Contemporary Mathematics, vol. 666 (American Mathematical Society, Providence, 2016).
    [5] P. Antonelli and P. Marcati, A model of Synchronization over Quantum Networks, J. Phys. A. , 50 (2017), 315101. doi: 10.1088/1751-8121/aa79c9
    [6] A shocking display of synchrony. Physica D (2000) 143: 21-55.
    [7] Biology of synchronous flashing of fireflies. Nature (1966) 211: 562-564.
    [8] Some remarks on the Wigner transform and the Wigner-Poisson system. Matematiche (1991) 46: 429-438.
    [9] The three-dimensional Wigner-Poisson problem: Existence, uniqueness and appproximation. Math. Methods Appl. Sci. (1991) 14: 35-61.
    [10] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics vol. 10, New York University, Courant Institute of Mathematical Sciences, AMS, 2003. doi: 10.1090/cln/010
    [11] S. -H. Choi, J. Cho and S. -Y. Ha Practical quantum synchronization for the Schrödinger-Lohe system, J. Phys. A, 49 (2016), 205203, 17pp. doi: 10.1088/1751-8113/49/20/205203
    [12] S. -H. Choi and S. -Y. Ha, Quantum synchronization of the Schrödinger-Lohe model, J. Phys. A, 47 (2014), 355104, 16pp. doi: 10.1088/1751-8113/47/35/355104
    [13] Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model. Physica D (2012) 241: 735-754.
    [14] L. -M. Duan, B. Wang and H. J. Kimble, Robust quantum gates on neutral atoms with cavityassisted photon scattering. Phys. Rev. A, 72 (2005), 032333. doi: 10.1103/PhysRevA.72.032333
    [15] Dynamical system approach to synchronization of the coupled Schrödinger-Lohe system. Quart. Appl. Math. (2017) 75: 555-579.
    [16] Emergence of phase-locked states for the Kuramoto model in a large coupling regime. Commun. Math. Sci. (2016) 14: 1073-1091.
    [17] Interplay of inertia and heterogeneous dynamics in an ensemble of Kuramoto oscillators. Analysis and Applications (2017) 15: 837-861.
    [18] Practical synchronization of generalized Kuramoto system with an intrinsic dynamics. Netw. Heterog. Media (2015) 10: 787-807.
    [19] uniqueness and asymptotic behavior of Wigner-Poisson and VlasovPoisson systems: A survey. Transp. Theory Stat. Phys. (1997) 26: 195-207.
    [20] Global existence, uniqueness and asymptotic behavior of solutions of the Wigner-Poisson and Schrödinger-Poisson systems. Math. Methods Appl. Sci. (1994) 17: 349-376.
    [21] Dispersion and moment lemmas revisited. J. Diff. Eq. (1999) 156: 254-281.
    [22] Homogenization limits and Wigner transforms. Comm. Pure Appl. Math. (1997) 50: 323-379.
    [23] I. Goychuk, J. Casado-Pascual, M. Morillo, J. Lehmann and P. Hänggi, , Quantum stochastic synchronization, Phys. Rev. Lett. , 97 (2006), 210601. doi: 10.1103/PhysRevLett.97.210601
    [24] G. L. Giorgi, F. Galve, G. Manzano, P. Colet and R. Zambrini, Quantum correlations and mutual synchronization, Phys. Rev. A, 85 (2012), 052101. doi: 10.1103/PhysRevA.85.052101
    [25] The quantum internet. Nature (2008) 453: 1023-1030.
    [26] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag. Berlin. 1984. doi: 10.1007/978-3-642-69689-3
    [27] Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture Notes in Theoretical Physics, 30 (1975), p420.
    [28] M. A. Lohe, Quantum synchronization over quantum networks, J. Phys. A, 43 (2010), 465301, 20pp. doi: 10.1088/1751-8113/43/46/465301
    [29] M. A. Lohe, Non-Abelian Kuramoto model and synchronization, J. Phys. A, 42 (2009), 395101, 25pp. doi: 10.1088/1751-8113/42/39/395101
    [30] Quantum synchronization effects in intrinsic Josephson junctions. Physica C (2008) 468: 689-694.
    [31] Quantentheorie in hydrodynamischer Form. Z. Phys. (1927) 40: 322-326.
    [32] On the equivalence of the Schrödinger and the quantum Liouville equation. Math. Methods Appl. Sci. (1989) 11: 459-469.
    [33] C. S. Peskin, Mathematical Aspects of Heart Physiology, Courant Institute of Mathematical Sciences, New York, 1975.
    [34] The one-dimensional Wigner-Poisson problem and a relation to the SchrödingerPoisson problem. SIAM J. Math. Anal. (1991) 22: 957-972.
    [35] From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators. Physica D (2000) 143: 1-20.
    [36] Superinsulator and quantum synchronization. Nature (2008) 452: 613-615.
    [37] Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. (1967) 16: 15-42.
    [38] On the quantum correction for thermodynamic equilibrium. Part Ⅰ: Physical Chemistry. Part Ⅱ: Solid State Physics (1997) 110-120.
    [39] O. V. Zhirov and D. L. Shepelyansky, Quantum synchronization and entanglement of two qubits coupled to a driven dissipative resonator, Phys. Rev. B, 80 (2009), 014519. doi: 10.1103/PhysRevB. 80. 014519
    [40] Quantum synchronization. Eur. Phys. J. D (2006) 38: 375-379.
    [41] The Wigner transform and the Wigner-Poisson system. Transp. Theory Stat. Phys. (1993) 22: 459-484.
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4950) PDF downloads(258) Cited by(7)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog