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Abstract. We present the Wigner-Lohe model for quantum synchronization
which can be derived from the Schrödinger-Lohe model using the Wigner for-

malism. For identical one-body potentials, we provide a priori sufficient frame-

work leading the complete synchronization, in which L2-distances between all
wave functions tend to zero asymptotically.

1. Introduction. Synchronization represents a phenomenon in which rhythms of
weakly coupled oscillators are adjusted to the common frequency due to their weak
interactions. It is often observed in many complex systems, e.g., the flashing of
fireflies, clapping of hands in a concert hall, and heartbeat regulation by pacemaker
cells, etc., [1, 6, 7, 33, 35]. However, rigorous mathematical treatment of such col-
lective phenomena were begun only several decades ago by two scientists Winfree
[37] and Kuramoto [26, 27]. For the mathematical modeling of synchronization,
they adopted a continuous dynamical system approach based on their heuristic and
intuitive arguments. In this paper, we are mainly interested in quantum Lohe oscil-
lators with all-to-all couplings under one-body potential. To fix the idea, consider
a classical complete network consisting of N nodes, where each pair of nodes is
connected with an equal capacity which is assumed to be unity. We also assume
that quantum Lohe oscillators with the same unit mass are positioned on the nodes
of the underlying complete network. To avoid unnecessary physical complexity, we
ignore entanglement and decoherence effects inherent to the quantum many-body
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systems. For a better physical modeling, such genuine quantum effects need to be
taken into account.

Let ψi = ψi(t, x) be the wave function of the i-th Lohe oscillator on the spatial
domain Rd. Then, the dynamics of Lohe oscillators with unit mass is governed by
the Schrödinger-Lohe (S-L) model: for (t, x) ∈ R+ × Rd.

i∂tψi = −1

2
∆ψi + Viψi +

iK

2N

N∑
k=1

(‖ψi‖ψk
‖ψk‖

− 〈ψk, ψi〉ψi
‖ψi‖‖ψk‖

)
, 1 ≤ i ≤ N, (1)

where ‖ · ‖ := ‖ · ‖L2 and 〈·, ·〉 are the standard L2 norm and an inner product
on Rd, and Vi = Vi(x) and K correspond to the one-body potential and nonneg-
ative coupling strength, respectively. The S–L model (1) was first introduced by
Australian physicist Max Lohe [28] several years ago as an infinite state gener-
alization of the Lohe matrix model [29]. As discussed in [28, 29], quantum syn-
chronization has received much attention from the quantum optics community be-
cause of its possible applications in quantum computing and quantum information
[14, 23, 24, 25, 30, 36, 39, 40]. The emergent dynamics of the S-L system (1) has
been partially treated in [11, 12] for some restricted class of initial data and a large
coupling strength. Recently, a new approach based on the finite-dimensional reduc-
tion has been proposed in [5, 15] which significantly improve the previous results
[11, 12] by the Lyapunov functional approach. However, a complete resolution of
the synchronization problem for (1) is still far from complete.

Our main purpose of this paper is to present a quantum kinetic analogue of the
S-L model (1) and study its emergent dynamics. The study on the quantum kinetic
model for the Schrödinger equation dates back to Wigner’s paper [38], in which
Wigner considered the quantum mechanical motion of a large ensemble of electrons
in a vacuum under the action of the Coulomb force generated by the charge of the
electrons. For the modeling of large ensemble, he introduced a quasi one-particle
distribution function, so called the Wigner function and showed that it satisfies the
quantum Liouville equation [8, 9, 19, 20, 32, 41].

Before we briefly describe our main results, we first recall the Wigner transform
of wave function on Rd. For more basic facts on Wigner transforms we refer the
reader to [22, 21].

Definition 1.1. For any two wave functions ψ, φ ∈ L2, we define the Wigner
transform

w[ψ, φ](x, p) =
1

(2π)d

∫
Rd

eiy·pψ̄
(
x+

y

2

)
φ
(
x− y

2

)
dy.

If we choose ψ = φ, then we write w[ψ] := w[ψ,ψ].

In order to shorten the formulas, we are going to introduce the following notation:
if ψj , j = 1, . . . , N is the solution to the S-L system (1), then we write

wj := w[ψj ], wjk := w[ψj , ψk], w+
jk := Rewjk and w−jk := Imwjk.

Our main results of this paper are as follows. First, we show that the Wigner
transforms wi and w±ij satisfies a coupled non-local system:
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∂twj + p · ∇xwj + Θ[V ](wj) =
K

N

N∑
k=1

[
w+
jk −

(∫
w+
jkdpdx

)
wj

]
,

∂tw
+
jk + p · ∇xw+

jk + Θ[V ](w+
jk)

=
K

2N

N∑
`=1

[
w+
j` + w+

`k −
(∫

(w+
j` + w+

`k)dpdx
)
w+
jk +

(∫
(w−j` + w−`k)dpdx

)
w−jk

]
,

∂tw
−
jk + p · ∇xw−jk + Θ[V ](w−jk)

=
K

2N

N∑
`=1

[
w−j` + w−`k −

(∫
(w+

j` + w+
`k)dpdx

)
w−jk +

(∫
(w−j` + w−`k)dpdx

)
w+
jk

]
.

(2)
Second, we derive a sufficient condition for the complete synchronization of the
coupled system (2). Finally, we also investigate the hydrodynamic formulation
for the Schrödinger-Lohe system (1) and derive synchronization estimates in some
special cases.

The rest of this paper is organized as follows. In Section 2, we present the
Schrödinger-Lohe model for quantum synchronization and discuss previous works
on the complete synchronization of the S-L model. In Section 3, we derive our
augmented Wigner-Lohe model from the S-L model using the Wigner transform. In
Section 4, we present a priori complete synchronization estimates for some restricted
class of initial data. In Section 5, we also discuss a hydrodynamic model which can
be obtained from the S-L model for two-oscillator case.

2. Preliminaries. In this section, we briefly present the Schrödinger-Lohe (S-L)
model for Lohe synchronization, and review earlier results on the synchronization
problem for the S-L model.

2.1. The Schrödinger-Lohe model. As a phenomenological model for the quan-
tum synchronization generalizing classical Kuramoto synchronization, Lohe pro-
posed a coupled Schrödinger-type model in [28]. For (t, x) ∈ R+×Rd and 1 ≤ i ≤ N,

i∂tψi = −1

2
∆ψi + Viψi +

iK

2N

N∑
k=1

(‖ψi‖ψk
‖ψk‖

− 〈ψk, ψi〉ψi
‖ψi‖‖ψk‖

)
, (3)

where we normalized ~ = 1 and m = 1.

Lemma 2.1. [28] Let Ψ = (ψ1, · · ·ψN ) be a smooth solution to (3) with initial data
Ψ0 = (ψ0

1 , · · · , ψ0
N ). Then, the L2 norm of ψi is constant along the flow (3):

‖ψi(t)‖ = ‖ψ0
i ‖ for t ≥ 0, 1 ≤ i ≤ N.

In view of the previous lemma, from now on we will assume that ‖ψ0
i ‖ = 1,

1 ≤ i ≤ N , so that system (3) becomes

i∂tψj = −1

2
∆ψj + Vjψj +

iK

2N

N∑
k=1

(ψk − 〈ψk, ψj〉ψj) . (4)

For the space-homogeneous case, we set the spatial domain to be a periodic domain
Td and choose a special choice of Vi:

Vi(x) = Ωi : constant, ψi(t, x) = ψi(t), (t, x) ∈ R+ × Td.

system (3) can be reduced to the Kuramoto model which is a prototype model for
classical synchronization. In this special setting, the S-L model becomes
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i
dψi
dt

= Ωiψi +
iK

2N

N∑
k=1

( |ψi|ψk
|ψk|

− 〈ψi, ψk〉ψi
|ψi||ψk|

)
. (5)

We next simply take the ansatz for ψi:

ψi := e−iθi , 1 ≤ i ≤ N (6)

and substitute this ansatz into (5) to obtain

θ̇iψi = Ωiψi +
iK

2N

N∑
k=1

(
ψk − e−i(θi−θk)ψi

)
.

Then, we take the inner product of the above relation with ψi and compare the real
part of the resulting relation to get the Kuramoto model for classical synchronization
[1, 6, 13, 16, 17, 18]:

θ̇i = Ωi +
K

N

N∑
k=1

sin(θk − θi). (7)

Thus, the S-L model can be viewed as a quantum generalization of the Kuramoto
model.

2.2. Previous results. In this subsection, we briefly review the previous results
[11, 12, 15, 5] on the complete synchronization of the S-L model. For this, we first
recall the definition of the complete synchronization as follows.

Definition 2.2. Let Ψ = (ψ1, · · ·ψN ) be a smooth solution to (3) with initial data
Ψ0 = (ψ0

1 , · · · , ψ0
N ). Then, the S-L model exhibits an asymptotic phase-locking if

the following relations holds:

∃ lim
t→∞
〈ψi, ψj〉 = αij ∈ C. (8)

Remark 1. For the classical phase models such as (7), asymptotic phase-locking
is defined as the following condition:

∃ lim
t→∞

|θi(t)− θj(t)| = θ∞ij . (9)

Via the relation (6), we can see that (8) and (9) are closely related. In fact, in [12]
for identical potentials Vi = Vj , the complete synchronization is defined as

lim
t→∞

‖ψi(t)− ψj(t)‖ = 0, 1 ≤ i, j ≤ N. (10)

Note that the condition (10) and normalization condition ||ψi|| = 1 yield

lim
t→∞
〈ψi(t), ψj(t)〉 = 1.

Thus, the condition (10) satisfies the condition (8). Recently, in [5, 15] the case with
different one-body potentials was treated, at least for N = 2. In this framework it is
shown that, in some regimes, the limit in (8) is not 1 but depends on the difference
between the potentials. Hence the limit in (10) gives a non-zero constant. This
is indeed the more general case, when the system (4) exhibits complete frequency
synchronization but not phase synchronization. For more details we address the
reader to [5, 15].
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As mentioned in the Introduction, the S-L model was first considered in Lohe’s
work [28] for the non-Abelian generalization of the Kuramoto model. However, the
first rigorous mathematical studies of the S-L model were treated by the second
author and his collaborators in [12, 15] in two different methodologies. The first
methodology is to use L2-diameters for {ψi} as a Lyapunov functional and derive a
Gronwall type differential inequality to conclude the complete synchronization with
αij = 1. More precisely, we set

D(Ψ) := max
i,j
||ψi − ψj ||.

In [12], authors derived a differential inequality for the diameter D(Ψ):

d

dt
D(Ψ) ≤ K(D(Ψ))

(
D(Ψ)− 1

2

)
, t > 0.

This leads to an exponential synchronization of the (1).

Theorem 2.3. [12] Suppose that the coupling strength and initial data satisfy

K > 0, Vi = V, ‖ψ0
i ‖L2 = 1, 1 ≤ i ≤ N, D(Ψ0) <

1

2
.

Then, for any solution Ψ = (ψ1, . . . , ψN ) to (1), the diameter D(Ψ) satisfies

D(Ψ(t)) ≤ D(Ψ0)

D(Ψ0) + (1− 2D(Ψ0))eKt
, t ≥ 0.

Remark 2. For distinct one-body potentials, we do not have an asymptotic phase-
locking estimate for the S-L model yet, however in [11], for some restricted class
of initial data and large coupling strength, a weaker concept of synchronization,
namely practical synchronization estimates have been obtained:

lim
K→∞

lim sup
t→∞

max
i,j
||ψi − ψj || = 0.

On the other hand, at least in the two oscillator case, it is possible to improve con-
siderably the practical synchronization result: indeed in [5, 15] a complete picture of
different regimes is shown, where the system (4) exhibits complete synchronization
or dephasing, i.e. time periodic orbits for the correlation function.

Recently, an alternative approach to prove synchronization for the S-L model
was proposed both in [5] and [15], by using a finite dimensional reduction. More
precisely, in both papers the authors consider the correlations between the wave
functions,

zjk(t) := 〈ψj , ψk〉(t) = rjk(t) + isjk(t), (11)

and they study their asymptotic behavior. Moreover, in [5] the introduction of the
order parameter, defined in analogy with the classical Kuramoto model, allows to
give a more general result.

Theorem 2.4. [5] Let (ψ1, . . . , ψN ) ∈ C(R+;L2(Rd))N be the solution to (4) with
initial data (ψ1(0), . . . , ψN (0)) = (ψ0

1 , . . . , ψ
0
N ) ∈ L2(Rd)N , and we assume that

N∑
k=1

Re zjk(0) > 0, for any j = 1, . . . , N. (12)

Then we have

|1− zjk(t)| . e−Kt, as t→∞.
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As we will see in the next sections, the same approach used in [5, 15] will also be
exploited to infer the synchronization results for the Wigner-Lohe model (13) and
the hydrodynamical system (19). More precisely, for the quantum hydrodynamic
system (19) we are going to need also some synchronization estimates proved at the
H1 regularity level. Such estimates are proved in [5].

3. From Schrödinger-Lohe to Wigner-Lohe. In this section we present a ki-
netic quantum analogue “the Wigner-Lohe (W-L) model” for the quantum synchro-
nization, which can be derived from the Schrödinger-Lohe (S-L) model [28, 29] via
the Wigner transform. In this and following sections, we assume that all one-body
potentials are identical

Vj(x) = V (x), 1 ≤ j ≤ N.
Recall that for a given a solution ψ to the free Schrödinger equation:

i∂tψ = −1

2
∆ψ + V ψ,

then its Wigner transform w = w[ψ] satisfies

∂tw + p · ∇xw + Θ[V ]w = 0,

where the operator Θ[V ] is defined by

Θ[V ](w)(x, p) := − i

(2π)d

∫
ei(p−p

′)·y
(
V
(
x+

y

2

)
− V

(
x− y

2

))
w(x, p′) dp′dy.

Hence, to derive the Wigner-Lohe system (2) we just need to see how the nonlocal
coupling in (4) translates at the Wigner level. More precisely, let ψj be a solution
to (4), then by defining wj = w[ψj ], we see that it satisfies

∂twj + p · ∇wj + Θ[V ]wj = Rj ,

where the remainder term Rj is given by

Rj =
1

(2π)d
K

2N

N∑
k=1

∫
eip·y

[
ψ̄k

(
t, x+

y

2

)
ψj

(
t, x− y

2

)
+ ψ̄j

(
t, x+

y

2

)
ψk

(
t, x− y

2

) ]
dy − 1

(2π)d
K

2N

N∑
k=1

2rjkwj

=
K

N

N∑
k=1

(
w+
jk − rjkwj

)
,

where rjk(t) := Re〈ψj , ψk〉(t) =
∫
w+
jk(t, x, p) dxdp. Let us recall that this last

equality comes from one of the basic properties of Wigner transforms, namely∫
w[f, g](x, p) dxdp = 〈f, g〉,

for any f, g ∈ L2. Resuming, the equation for wj is given by

∂twj + p · ∇xwj + Θ[V ]wj =
K

N

N∑
k=1

(
w+
jk − rjkwj

)
.

We now need to derive the equation for wjk = w[ψj , ψk]. Since the linear part in
the S-L model (4) is common for every wave functions (remember we chose identical
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potentials, Vj ≡ V ), then the linear part in the Wigner equation for wjk will be
exactly the same as for wj . Consequently we also have

∂twjk + p · ∇xwjk + Θ[V ]wjk = Rjk,

where

Rjk =
1

(2π)d
K

2N

N∑
`=1

∫
eiy·p

(
ψ̄`

(
t, x+

y

2

)
ψk

(
t, x+

y

2

)
+ ψ̄j

(
t, x+

y

2

)
ψ`

(
t, x+

y

2

))
dy − 1

(2π)d
K

2N

N∑
`=1

(zj`wjk + z`kwjk) .

Let us recall that zjk is defined in (11) and we notice that zjk = zkj . Hence we
obtain

Rjk =
K

2N

N∑
`=1

(wj` + w`k − (zj` + z`k)wjk)

and the equation for wjk becomes

∂twjk + p · ∇wjk + Θ[V ]wjk =
K

2N

N∑
`=1

(wj` + w`k − (zj` + z`k)wjk) .

By using definitions for w±jk and the linearity of operator Θ[V ], we then obtain the
Wigner-Lohe system

∂twj + p · ∇xwjΘ[V ]wj =
K

N

N∑
k=1

(
w+
jk − rjkwj

)
,

∂tw
+
jk + p · ∇xw+

jkΘ[V ](w+
jk)

=
K

2N

N∑
`=1

[
w+
j` + w+

`k − (rj` + r`k)w+
jk − i(sj` + s`k)w−jk

]
,

∂tw
−
jk + p · ∇xw−jkΘ[V ](w−jk)

=
K

2N

N∑
`=1

[
w−j` + w−`k − (rj` +R`k)w−jk − i(sj` + s`k)w+

jk

]
,

(13)

4. Emergent dynamics of the W-L model for identical potentials. In this
section, we focus on the Wigner-Lohe model with N = 2. In this case, system (13)
becomes 

∂tw1 + p · ∇xw1 + Θ[V ]w1 =
K

2
(w+

12 − r12w1),

∂tw2 + p · ∇xw2 + Θ[V ]w2 =
K

2
(w+

12 − r12w2),

∂tw12 + p · ∇xw12 + Θ[V ]w12 =
K

4
(w1 + w2 − 2z12w12),

(14)

where we have

w+
12 = Rew12, z12 = z12(t) =

∫
w12 dxdp, r12 = Re z12. (15)

Let us remark that the system (14), complemented with the definitions (15) above,
can be considered independently on the S-L system (4). For such a system we will
prescribe initial data w0

1, w
0
2, w

0
12 such that w0

1 and w0
2 are real valued,

∫
w0

1 dxdp =
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w0

2 dxdp = 1, w0
12 is complex valued, |

∫
w0

12 dxdp| ≤ 1. Let us also notice that the
last equation is complex valued, so that we don’t split it into two coupled equations
for w+

12 and w−12 as in (13).
Let us now prove the synchronization for (14). First of all we remark that, by

integrating the last equation over the whole phase space, we find the following ODE

ż12 =
K

2
(1− z212), (16)

for which it is straightforward to give its asymptotic behavior.

Lemma 4.1. Let z12(0) ∈ C be such that |z12(0)| ≤ 1 and z12(0) 6= −1, then the
solution z12(t) to (16) satisfies

|1− z12(t)| . e−Kt.

Proof. By integrating (16) we obtain

z12(t) =
(1 + z12(0))eKt − (1− z12(0))

(1 + z12(0))eKt + (1− z12(0))
.

By using the Lemma above it is then possible to show the complete synchroniza-
tion for the W-L model (14).

Theorem 4.2. Let (w1, w2, w12) be a solution to (14) with initial data (w1(0), w2(0),
w12(0)) = (w0

1, w
0
2, w

0
12) such that∫

w0
1(x, p) dxdp =

∫
w0

2(x, p) dxdp = 1,

and ∣∣∣ ∫ w0
12(x, p) dxdp

∣∣∣ ≤ 1,

∫
w0

12(x, p) dxdp 6= −1.

Then we have
‖w1(t)− w2(t)‖2L2 ≤ e−Kt, as t→∞.

Proof. It follows from (14) that it is possible to write down the equation for the
difference w1 − w2,

∂t(w1 − w2) + p · ∇x(w1 − w2) + Θ[V ](w1 − w2) = −Kr12
2

(w1 − w2).

By multiplying it by 2(w1 − w2) and by integrating over the whole phase space we
obtain

d

dt
‖w1(t)− w2(t)‖2L2 = −Kr12(t)‖w1(t)− w2(t)‖2L2 .

By Lemma 4.1 we know that |1 − r12(t)| . e−Kt, hence by Gronwall’s inequality
we obtain the synchronization result.

Remark 3. In Theorem 4.2 the case
∫
w0

12 dxdp = −1 has been excluded. This
case can be treated under the additional hypothesis w0

1 = w0
2 = −w0

12, which can be
interpreted as a natural consistency assumption with the analogue Schrödinger-
Lohe model. Indeed, let us consider initial wave functions ψ0

1 , ψ
0
2 ∈ L2, such

that ‖ψ0
1‖L2 = ‖ψ0

2‖L2 = 1 and 〈ψ0
1 , ψ

0
2〉 =

∫
w[ψ0

1 , ψ
0
2 ] dxdp =

∫
w0

12 dxdp = −1,
then ψ0

1 = −ψ0
2 and hence w[ψ0

1 ] = w[ψ0
2 ] = −w[ψ0

1 , ψ
0
2 ]. In this particular case,

w1, w2, w12 in (14) evolve independently, according to the free Wigner equation

∂tw + p · ∇xw + Θ[V ]w = 0. (17)
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To see that, first of all we notice that w1, w2 both satisfy the same equation with the
same initial data, so they coincide. Moreover, under the above assumptions on the
initial data, we have z12(0) = −1 and hence z12(t) = −1 for all t > 0. Consequently
we have

∂tw12 + p · ∇xw12 + Θ[V ]w12 =
K

2
(w1 − w12)

and hence

‖w1(t) + w12(t)‖L2 = ‖w1(0) + w12(0)‖L2 = 0.

Concluding, we see that the right hand sides in (14) are all zero and the dynamics
is determined by (17). This case corresponds to complete decorrelation between the
quantum nodes.

5. Quantum hydrodynamics. In this Section, we derive the hydrodynamic equa-
tions associated to the Schrödinger-Lohe model (4). Here we follow the approach
developed in [2, 3, 4] where a polar factorisation method is exploited in order to de-
fine the hydrodynamical quantities also in the vacuum region. In order to simplify
the exposition we mainly focus on the case of two identical oscillators. In this case
the Schrödinger-Lohe model reads

i∂tψ1 =− 1

2
∆ψ1 + V ψ1 +

iK

4
(ψ2 − 〈ψ2, ψ1〉ψ1)

i∂tψ2 =− 1

2
∆ψ2 + V ψ2 +

iK

4
(ψ1 − 〈ψ1, ψ2, 〉ψ2).

(18)

The case with N non-identical oscillators can be treated similarly with obvious
modifications, but the study of this special case will simplify substantially the ex-
position.

In order to derive the hydrodynamics associated to system (18), we first need to
ensure that it is globally well-posed in H1(Rd). This is indeed a straightforward
application of the standard theory for nonlinear Schrödinger equations [10], see
for example Proposition 2.1 in [5]. Furthermore, let us notice that by defining
z12(t) = 〈ψ1, ψ2〉(t), then this function satisfies the ODE (16). This is not surprising
because the W-L model was indeed derived from (18) and because of the property∫
w[ψ1, ψ2] dxdp = 〈ψ1, ψ2〉. This implies that, under the same assumptions of

Lemma 4.1, in this case we also have

|1− z12(t)| . e−Kt.

However, this synchronization result is too weak to be exploited for quantum hy-
drodynamic system derived from (18). Indeed, as we already remarked above, the
natural space for the hydrodynamics is the finite energy space, namely H1 for the
wave functions. Hence we need to improve the result in the space of energy. Here we
will make use of Theorem 4.5 in [5], where we address the reader for more general
results in this direction.

Let us now consider the solution (ψ1, ψ2) ∈ C(R+;H1) to system (18), given by
Proposition 2.1 in [5]. To derive the hydrodynamic system associated with (18), we
first define the mass densities, namely ρ1 = |ψ1|2 and ρ2 = |ψ2|2. By differentiating
those quantities with respect to time and by using the equations above, we obtain

∂tρ1 + div J1 =
K

2
(ρ12 − r12ρ1),

∂tρ2 + div J2 =
K

2
(ρ12 − r12ρ2),
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where the associated current densities are respectively given by

J1 := Im(ψ̄1∇ψ1), J2 := Im(ψ̄2∇ψ2).

Furthermore, in the equation for the mass density we also find the interaction term
ρ12 = Re(ψ̄1ψ2), so that r12 = Re〈ψ1, ψ2〉 =

∫
ρ12 dx.

Let us notice that ρ12 is not a mass density, since in general it can also be
negative. By using those definitions we can derive the evolution equations for the
current densities J1 and J2. For instance, by differentiating J1 with respect to time
we find that

∂tJ1 + div(Re(∇ψ̄1 ⊗∇ψ1)) + ρ1∇V =
1

4
∇∆ρ1 +

K

2
(J12 − r12J1),

where the new interaction term here is given by

J12 =
1

2
Im(ψ̄1∇ψ2 + ψ̄2∇ψ1).

Next, we use the polar factorisation Lemma in [2, 3] to infer that, for ψ1 ∈ H1(Rd),
we have

Re(∇ψ̄1 ⊗∇ψ1) = ∇√ρ1 ⊗∇
√
ρ1 + Λ1 ⊗ Λ1, a.e. in Rd,

where
√
ρ1 = |ψ1|,Λ1 = Im(φ̄1∇ψ1), φ1 is the polar factor for the wave function ψ1

and we have
√
ρ1Λ1 = J1, see [2, 3, 4] for more details on the polar factorisation.

In this way we can write down the following equation for the current density J1:

∂tJ1 + div

(
J1 ⊗ J1
ρ1

)
+ ρ1∇V =

1

2
ρ1∇

(
∆
√
ρ1√
ρ1

)
+
K

2
(J12 − r12J1).

By using the equation for ψ2 we obtain an analogous equation for J2:

∂tJ2 + div

(
J2 ⊗ J2
ρ2

)
+ ρ2∇V =

1

2
ρ2∇

(
∆
√
ρ2√
ρ2

)
+
K

2
(J12 − r12J2).

Resuming, by defining the hydrodynamical quantities ρ1, J1, ρ2, J2 associated to
ψ1, ψ2, respectively, we can derive the following system:

∂tρ1 + div J1 =
K

2
(ρ12 − r12ρ1),

∂tρ2 + div J2 =
K

2
(ρ12 − r12ρ2),

∂tJ1 + div

(
J1 ⊗ J1
ρ1

)
+ ρ1∇V =

1

2
ρ1∇

(
∆
√
ρ1√
ρ1

)
+
K

2
(J12 − r12J1),

∂tJ2 + div

(
J2 ⊗ J2
ρ2

)
+ ρ2∇V =

1

2
ρ2∇

(
∆
√
ρ2√
ρ2

)
+
K

2
(J12 − r12J2).

Note that the above hydrodynamical system is not closed, as we need to derive also
the evolution equations for the quantities ρ12, J12. However, it is quite troublesome
to derive a hydrodynamical equation for the quantity J12. For this reason we
consider the following auxiliary variables

ρd := |ψ1 − ψ2|2, Jd := Im((ψ1 − ψ2)∇(ψ1 − ψ2)).

By using those variables, it is straightforward to derive their dynamical equations,
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∂tρd =2 Re

{
(ψ1 − ψ2)

(
i

2
∆(ψ1 − ψ2)− iV (ψ1 − ψ2)

+
K

4
(ψ2 − ψ1 − 〈ψ2, ψ1〉ψ1 + 〈ψ1, ψ2〉ψ2)

)}
=− div Jd +

K

2
Re
{

(ψ1 − ψ2) ((1 + 〈ψ1, ψ2〉)(ψ2 − ψ1) + 2i Im〈ψ1, ψ2〉ψ1)
}

=− div Jd −
K

2
(1 + r12)ρd +Ks12σ12,

where we denoted σ12 = Im(ψ̄1ψ2), so that

s12 = Im〈ψ1, ψ2〉 =

∫
Rd

σ12 dx.

Define ψd := ψ1 −ψ2, then by following some similar calculations as before we find
out

∂tJd =− 1

2
Re(∆ψ̄d∇ψd − ψ̄d∇∆ψd)− ρd∇V

+
K

4

[
−2Jd + Im

(
〈ψ2, ψ1〉(−ψ̄1∇ψd + ψ̄d∇ψ2)

+ 〈ψ1, ψ2〉(ψ̄2∇ψd − ψ̄d∇ψ1)
)]
.

After some simple algebra, we obtain that

Im
(
〈ψ2, ψ1〉(−ψ̄1∇ψd + ψ̄d∇ψ2) + 〈ψ1, ψ2〉(ψ̄2∇ψd − ψ̄d∇ψ1)

)
=− 2r12Jd − 4s12G12,

where G12 := 1
2 Re(ψ̄2∇ψ1 − ψ̄1∇ψ2). Hence the equation for Jd is given by

∂tJd + div

(
Jd ⊗ Jd
ρd

)
+ ρd∇V =

1

2
ρd∇

(
∆
√
ρd√
ρd

)
− K

2
((1 + r12)Jd + 2s12G12) .

Once again, to close the hydrodynamic equations, we still need to determine the
evolution for σ12, G12. As before, the equation derived for G12 would be too in-
volved, for this reason we alternatively define ψa = ψ1− iψ2 and its hydrodynamical
quantities ρa = 1

2 |ψa|
2, Ja = 1

2 Im(ψ̄a∇ψa). If we write down the equation for ψa,

i∂tψa = −1

2
∆ψa + V ψa +

K

4
(iψ2 + ψ1 − i〈ψ2, ψ1〉ψ1 − 〈ψ1, ψ2〉ψ2) ,

we can then infer the equations for ρa and Ja. By proceeding as before with some
straightforward but long calculations, we find out

∂tρa + div Ja =
K

2
((1− s12)ρ12 − r12ρa)

∂tJa + div

(
Ja ⊗ Ja
ρa

)
+ ρa∇V =

1

2
ρa∇

(
∆
√
ρa√
ρa

)
+
K

2

(
(1− s12)J12 − r12Ja

)
.
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We can now resume and write down the whole set of hydrodynamic equations
associated to the Schrödinger-Lohe system (18):

∂tρ1 + div J1 =
K

2
(ρ12 − r12ρ1)

∂tρ2 + div J2 =
K

2
(ρ12 − r12ρ2),

∂tJ1 + div

(
J1 ⊗ J1
ρ1

)
+ ρ1∇V =

1

2
ρ1∇

(
∆
√
ρ1√
ρ1

)
+
K

2
(J12 − r12J1),

∂tJ2 + div

(
J2 ⊗ J2
ρ2

)
+ ρ2∇V =

1

2
ρ2∇

(
∆
√
ρ2√
ρ2

)
+
K

2
(J12 − r12J2),

∂tρd + div Jd = −K
2

(1 + r12)ρd +Ks12σ12,

∂tJd + div

(
Jd ⊗ Jd
ρd

)
+ ρd∇V =

1

2
ρd∇

(
∆
√
ρd√
ρd

)
− K

2
((1 + r12)Jd + 2s12G12) ,

∂tρa + div Ja =
K

2
((1− s12)ρ12 − r12ρa)

∂tJa + div

(
Ja ⊗ Ja
ρa

)
+ ρa∇V =

1

2
ρa∇

(
∆
√
ρa√
ρa

)
+
K

2
((1− s12)J12 − r12Ja) ,

(19)
where

ρ12 :=
1

2
(ρ1 + ρ2 − ρd), J12 :=

1

2
(J1 + J2 − Jd),

σ12 := ρa −
1

2
(ρ1 + ρ2), G12 := Ja −

1

2
(J1 + J2).

By considering the system (19) above we can now prove the synchronization prop-
erty. In view of the previous synchronization results we expect that

lim
t→∞

(‖∇√ρ1 −∇
√
ρ2‖L2 + ‖Λ1 − Λ2‖L2) = 0

and furthermore

lim
t→∞

(‖∇√ρd‖L2 + ‖Λd‖L2) = 0.

To show the above properties we are going to use a synchronization result in H1 for
system (18) given in [5], which will be stated in the following Theorem. The result
below actually holds in a more general case, see [5] for more details, however here
we will only state the synchronization property we are going to use for our system
(19).

Theorem 5.1. [5] Let (ψ0
1 , ψ

0
2) ∈ H1 be such that

〈ψ0
1 , ψ

0
2〉 6= −1.

Then, for the solution (ψ1, ψ2) ∈ C(R+;H1) emanated from such initial data, we
have

‖ψ1(t)− ψ2(t)‖H1 . e−Kt, as t→∞. (20)

We apply now this result for the synchronization of system (19), First of all, from
(20) we then infer that

lim
t→∞

‖ψd(t)‖H1 = 0.
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This and the polar factorisation Lemma 3 in [3] then readily implies that

lim
t→∞

(‖∇√ρd(t)‖L2 + ‖Λd(t)‖L2) = 0.

Furthermore, from the fact that ψd → 0 in H1 as t→∞ and the polar factorisation
Lemma, again, we can also show that

lim
t→∞

(‖∇√ρ1(t)−∇√ρ2(t)‖L2 + ‖Λ1(t)− Λ2(t)‖L2) = 0.
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