Citation: Birgitte Zeuner, Isabel González-Delgado, Jesper Holck, Gabriel Morales, María-José López-Muñoz, Yolanda Segura, Anne S. Meyer, Jørn Dalgaard Mikkelsen. Characterization and immobilization of engineered sialidases from Trypanosoma rangeli for transsialylation[J]. AIMS Molecular Science, 2017, 4(2): 140-163. doi: 10.3934/molsci.2017.2.140
[1] | Bode L (2012) Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 22: 1147-1162. doi: 10.1093/glycob/cws074 |
[2] | Kunz C, Meyer C, Collado MC, et al. (2016) Influence of gestational age, secretor and Lewis blood group status on the oligosaccharide content of human milk. J Pediatr Gastroenterol Nutr in press. |
[3] | ten Bruggencate SJM, Bovee-Oudenhoven IMJ, Feitsma AL, et al. (2014) Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutr Rev 72: 377-389. |
[4] | Holck J, Larsen DM, Michalak M, et al. (2014) Enzyme catalysed production of sialylated human milk oligosaccharides and galactooligosaccharides by Trypanosoma cruzi trans-sialidase. New Biotechnol 31: 156-165. doi: 10.1016/j.nbt.2013.11.006 |
[5] | Wilbrink MH, ten Kate GA, van Leeuwen SS, et al. (2014) Galactosyl-lactose sialylation using Trypanosoma cruzi trans-sialidase as the biocatalyst and bovine κ-casein-derived glycomacropeptide as the donor substrate. Appl Environ Microbiol 80: 5984-5991. doi: 10.1128/AEM.01465-14 |
[6] | Wilbrink MH, ten Kate GA, Sanders P, et al. (2015) Enzymatic decoration of prebiotic galacto-oligosaccharides (Vivinal GOS) with sialic acid using Trypanosoma cruzi trans-sialidase and two bovine sialoglycoconjugates as donor substrates. J Agric Food Chem 63: 5976-5984. doi: 10.1021/acs.jafc.5b01505 |
[7] | Scudder P, Doom JP, Chuenkova M, et al. (1993) Enzymatic characterization of β-D-galactoside α2,3-transsialidase from Trypanosoma cruzi. J Biol Chem 268: 9886-9891. |
[8] | Pereira ME, Zhang K, Gong Y, et al. (1996) Invasive phenotype of Trypanosoma cruzi restricted to a population expressing trans-sialidase. Infect Immun 64: 3884-3892. |
[9] | Paris G, Ratier L, Amaya MF, et al. (2005) A sialidase mutant displaying trans-sialidase activity. J Mol Biol 345: 923-934. doi: 10.1016/j.jmb.2004.09.031 |
[10] | Jers C, Michalak M, Larsen DM, et al. (2014) Rational design of a new Trypanosoma rangeli trans-sialidase for efficient sialylation of glycans. PLoS One 9: e83902. doi: 10.1371/journal.pone.0083902 |
[11] | Pontes-de-Carvalho LC, Tomlinson S, Nussenzweig V (1993) Trypanosoma rangeli sialidase lacks trans-sialidase activity. Mol Biochem Parasitol 62: 19-25. doi: 10.1016/0166-6851(93)90173-U |
[12] | Amaya MF, Buschiazzo A, Nguyen T, et al. (2003) The high resolution structures of free and inhibitor-bound Trypanosoma rangeli sialidase and its comparison with T. cruzi trans-sialidase. J Mol Biol 325: 773-784. doi: 10.1016/S0022-2836(02)01306-2 |
[13] | Buschiazzo A, Tavares GA, Campetella O, et al. (2000) Structural basis of sialyltransferase activity in trypanosomal sialidases. EMBO J 19: 16-24. doi: 10.1093/emboj/19.1.16 |
[14] | Pierdominici-Sottile G, Palma J, Roitberg AE (2014) Free-energy computations identify the mutations required to confer trans-sialidase activity into Trypanosoma rangeli sialidase. Proteins 82: 424-435. doi: 10.1002/prot.24408 |
[15] | Zeuner B, Luo J, Nyffenegger C, et al. (2014) Optimizing the biocatalytic productivity of an engineered sialidase from Trypanosoma rangeli for 3'-sialyllactose production. Enzyme Microb Technol 55: 85-93. doi: 10.1016/j.enzmictec.2013.12.009 |
[16] | Michalak M, Larsen DM, Jers C, et al. (2014) Biocatalytic production of 3′-sialyllactose by use of a modified sialidase with superior trans-sialidase activity. Process Biochem 49: 265-270. doi: 10.1016/j.procbio.2013.10.023 |
[17] | Zeuner B, Holck J, Perna V, et al. (2016) Quantitative enzymatic production of sialylated galactooligosaccharides with an engineered sialidase from Trypanosoma rangeli. Enzyme Microb Technol 82: 42-50. |
[18] | Nyffenegger C, Nordvang RT, Jers C, et al. (2017) Design of Trypanosoma rangeli sialidase mutants with improved trans-sialidase activity. PLoS One 12: e0171585. doi: 10.1371/journal.pone.0171585 |
[19] | Kasche V (1986) Mechanism and yields in enzyme catalysed equilibrium and kinetically controlled synthesis of β-lactam antibiotics, peptides and other condensation products. Enzyme Microb Technol 8: 4-16. doi: 10.1016/0141-0229(86)90003-7 |
[20] | van Rantwijk F, Woudenberg-van Oosterom M, Sheldon RA (1999) Glycosidase-catalysed synthesis of alkyl glycosides. J Mol Catal B-Enzym 6: 511-532. |
[21] | Hansson T, Andersson M, Wehtje E, et al. (2001) Influence of water activity on the competition between β-glycosidase catalysed transglycosylation and hydrolysis in aqueous hexanol. Enzyme Microb Technol 29: 527-534. doi: 10.1016/S0141-0229(01)00421-5 |
[22] | Zeuner B, Jers C, Mikkelsen JD, et al. (2014) Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics. J Agric Food Chem 62: 9615-9631. doi: 10.1021/jf502619p |
[23] | Mateo C, Palomo JM, Fernandez-Lorente G, et al. (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40: 1451-1463. |
[24] | Rodrigues RC, Ortiz C., Berenguer-Murcia A, et al. (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42: 6290-6307. |
[25] | Barbosa O, Ortiz C, Berenguer-Murcia A, et al. (2014) Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 4: 1583-1600. doi: 10.1039/C3RA45991H |
[26] | Grimsley GR, Scholtz JM, Pace CN (2009) A summary of the measured pK values of the ionizable groups in folded proteins. Protein Sci 18: 247-251. |
[27] | Mateo C, Abian O, Bernedo M, et al. (2005) Some special features of glyoxyl supports to immobilize proteins. Enzyme Microb Technol 37: 456-462. doi: 10.1016/j.enzmictec.2005.03.020 |
[28] | Mateo C, Palomo JM, Fuentes M, et al. (2006) Glyoxyl agarose: A fully inert and hydrophilic support for immobilization and high stabilization of proteins. Enzyme Microb Technol 39: 274-280. doi: 10.1016/j.enzmictec.2005.10.014 |
[29] | Barbosa O, Ortiz C, Berenguer-Murcia A, et al. (2015) Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts. Biotechnol Adv 33: 435-456. |
[30] | Zucca P, Fernandez-Lafuente R, Sanjust E (2016) Agarose and its derivatives as supports for enzyme immobilization. Molecules 21: 1577. |
[31] | Calandri C, Marques DP, Mateo C, et al. (2013) Purification, immobilization, stabilization and characterization of commercial extract with β-galactosidase activity. J Biocatal Biotransformation 2: 1-7. |
[32] | Hartmann M, Kostrov X (2013) Immobilization of enzymes on porous silicas – benefits and challenges. Chem Soc Rev 42: 6277-6289. doi: 10.1039/c3cs60021a |
[33] | Bernal C, Urrutia P, Illanes A, et al. (2013) Hierarchical meso-macroporous silica grafted with glyoxyl groups: opportunities for covalent immobilization of enzymes. New Biotechnol 30: 500-506. doi: 10.1016/j.nbt.2013.01.011 |
[34] | Bernal C, Sierra L, Mesa M (2014) Design of β-galactosidase/silica biocatalysts: Impact of the enzyme properties and immobilization pathways on their catalytic performance. Eng Life Sci 14: 85-94. doi: 10.1002/elsc.201300001 |
[35] | González-Delgado I, Segura Y, Morales G, et al. (2017) Production of high galacto-oligosaccharides by Pectinex Ultra SP-L: optimization of reaction conditions and immobilization on glyoxyl-functionalized silica. J Agric Food Chem 65: 1649-1658. doi: 10.1021/acs.jafc.6b05431 |
[36] | Liu Y, Li Y, Li XM, et al. (2013) Kinetics of (3-aminopropyl)triethoxysilane (APTES) silanization of superparamagnetic iron oxide nanoparticles. Langmuir 29: 15275-15282. doi: 10.1021/la403269u |
[37] | Gunda NSK, Singh M, Norman L, et al. (2014) Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker. Appl Surf Sci 305: 522-530. |
[38] | Zhang D, Hegab HE, Lvov Y, et al. (2016) Immobilization of cellulase on a silica gel substrate modified using a 3-APTES self-assembled monolayer. SpringerPlus 5: 48. |
[39] | Nordvang RT, Nyffenegger C, Holck J, et al. (2016) It all starts with a sandwich: Identification of sialidases with trans-glycosylation activity. PLoS One 11: e0158434. doi: 10.1371/journal.pone.0158434 |
[40] | Alva V, Nam SZ, Söding J, et al. (2016) The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res 44: W410-W415. doi: 10.1093/nar/gkw348 |
[41] | Sayle R, Milner-White EJ (1995) RasMol: Biomolecular graphics for all. Trends Biochem Sci 20: 374-376. doi: 10.1016/S0968-0004(00)89080-5 |
[42] | Fersht AR, Serrano L (1993) Principles of protein stability derived from protein engineering experiments. Curr Opin Struct Biol 3: 75-83. doi: 10.1016/0959-440X(93)90205-Y |
[43] | Torrez M, Schultehenrich M, Livesay DR (2003) Conferring thermostability to mesophilic proteins through optimized electrostatic surfaces. Biophys J 85: 2845-2853. doi: 10.1016/S0006-3495(03)74707-9 |
[44] | Hagiwara Y, Sieverling L, Hanif F, et al. (2016) Consequences of point mutations in melanoma-associated antigen 4 (MAGE-A4) protein: Insights from structural and biophysical studies. Sci Rep 6: 25182. doi: 10.1038/srep25182 |
[45] | Lu Y, Zen KC, Muthukrishnan S, et al. (2002) Site-directed mutagenesis and functional analysis of active site acidic amino acid residues D142, D144 and E146 in Manduca sexta (tobacco hornworm) chitinase. Insect Biochem Mol Biol 32: 1369-1382. doi: 10.1016/S0965-1748(02)00057-7 |
[46] | Cha J, Batt CA (1998) Lowering the pH optimum of D-xylose isomerase: the effect of mutations of the negatively charged residues. Mol Cells 8: 374-382. |
[47] | Joshi MD, Sidhu G, Pot I, et al. (2000) Hydrogen bonding and catalysis: A novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. J Mol Biol 299: 255-279. doi: 10.1006/jmbi.2000.3722 |
[48] | Hirata A, Adachi M, Sekine A, et al. (2004) Structural and enzymatic analysis of soybean β-amylase mutants with increased pH optimum. J Biol Chem 279: 7287-7295. |
[49] | Amaya MF, Watts AG, Damager I, et al. (2004) Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Structure 12: 775-784. doi: 10.1016/j.str.2004.02.036 |
[50] | Vandekerckhove F, Schenkman S, Pontes de Carvalho L, et al. (1992) Substrate specificity of the Trypanosoma cruzi trans-sialidase. Glycobiology 2: 541-548. |
[51] | Bridiau N, Issaoui N, Maugard T (2010) The effects of organic solvents on the efficiency and regioselectivity of N-acetyl-lactosamine synthesis, using the β-galactosidase from Bacillus circulans in hydro-organic media. Biotechnol Prog 26: 1278-1289. |
[52] | Thiem J, Sauerbrei B (1991) Chemoenzymatic syntheses of sialyloligosaccharides with immobilized sialidase. Angew Chem Int Ed Engl 30: 1503-1505. doi: 10.1002/anie.199115031 |
[53] | Ajisaka K, Fujimoto H, Isomura M (1994) Regioselective transglycosylation in the synthesis of oligosaccharides: comparison of β-galactosidases and sialidases of various origins. Carbohydr Res 259: 103-115. doi: 10.1016/0008-6215(94)84201-9 |
[54] | Marques ME, Mansur AAP, Mansur HS (2013) Chemical functionalization of surfaces for building three-dimensional engineered biosensors. Appl Surf Sci 275: 347-360. |
[55] | Ferreira L, Ramos MA, Dordick JS, et al. (2003) Influence of different silica derivatives in the immobilization and stabilization of a Bacillus licheniformis protease (Subtilisin Carlsberg). J Mol Catal B-Enzym 21: 189-199. |
[56] | Thomä-Worringer C, Sørensen J, López-Fandiño R (2006) Health effect and technological features of caseinomacropeptide. Int Dairy J 16:1324-1333. doi: 10.1016/j.idairyj.2006.06.012 |
[57] | Koshland D (1953) Stereochemistry and the mechanism of enzymatic reactions. Biol Rev 28: 416-436. |