Citation: Chisato Kinoshita, Koji Aoyama, Toshio Nakaki. microRNA as a new agent for regulating neuronal glutathione synthesis and metabolism[J]. AIMS Molecular Science, 2015, 2(2): 124-143. doi: 10.3934/molsci.2015.2.124
[1] | Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-854. |
[2] | Lagos-Quintana M, Rauhut R, Lendeckel W, et al. (2001) Identification of novel genes coding for small expressed RNAs. Science 294: 853-858. doi: 10.1126/science.1064921 |
[3] | Lau NC, Lim LP, Weinstein EG, et al. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294: 858-862. doi: 10.1126/science.1065062 |
[4] | Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294: 862-864. doi: 10.1126/science.1065329 |
[5] | Pasquinelli AE, Reinhart BJ, Slack F, et al. (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408: 86-89. doi: 10.1038/35040556 |
[6] | Ardekani AM, Naeini MM (2010) The Role of MicroRNAs in Human Diseases. Avicenna J Med Biotechnol 2: 161-179. |
[7] | Reuter S, Gupta SC, Chaturvedi MM, et al. (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49: 1603-1616. doi: 10.1016/j.freeradbiomed.2010.09.006 |
[8] | Magenta A, Greco S, Gaetano C, et al. (2013) Oxidative stress and microRNAs in vascular diseases. Int J Mol Sci 14: 17319-17346. doi: 10.3390/ijms140917319 |
[9] | Rahal A, Kumar A, Singh V, et al. (2014) Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int 2014: 761264. |
[10] | Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62: 649-671. doi: 10.1016/S0301-0082(99)00060-X |
[11] | Jomova K, Vondrakova D, Lawson M, et al. (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345: 91-104. doi: 10.1007/s11010-010-0563-x |
[12] | Meister A (1988) On the discovery of glutathione. Trends Biochem Sci 13: 185-188. doi: 10.1016/0968-0004(88)90148-X |
[13] | Maruyama Y, Yasuda R, Kuroda M, et al. (2012) Kokumi substances, enhancers of basic tastes, induce responses in calcium-sensing receptor expressing taste cells. PLoS One 7: e34489. doi: 10.1371/journal.pone.0034489 |
[14] | Ueda Y, Yonemitsu M, Tsubuku T, et al. (1997) Flavor characteristics of glutathione in raw and cooked foodstuffs. Biosci Biotechnol Biochem 61: 1977-1980. doi: 10.1271/bbb.61.1977 |
[15] | Aoyama K, Watabe M, Nakaki T (2012) Modulation of neuronal glutathione synthesis by EAAC1 and its interacting protein GTRAP3-18. Amino Acids 42: 163-169. doi: 10.1007/s00726-011-0861-y |
[16] | Kinoshita C, Aoyama K, Matsumura N, et al. (2014) Rhythmic oscillations of the microRNA miR-96-5p play a neuroprotective role by indirectly regulating glutathione levels. Nat Commun 5: 3823. |
[17] | Ubhi K, Rockenstein E, Kragh C, et al. (2014) Widespread microRNA dysregulation in multiple system atrophy - disease-related alteration in miR-96. Eur J Neurosci 39: 1026-1041. doi: 10.1111/ejn.12444 |
[18] | Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15: 509-524. doi: 10.1038/nrm3838 |
[19] | Sevignani C, Calin GA, Siracusa LD, et al. (2006) Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 17: 189-202. doi: 10.1007/s00335-005-0066-3 |
[20] | Cipolla GA (2014) A non-canonical landscape of the microRNA system. Front Genet 5: 337. |
[21] | Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc Natl Acad Sci U S A 104: 9667-9672. doi: 10.1073/pnas.0703820104 |
[22] | Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4: 600-609. |
[23] | Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408: 239-247. doi: 10.1038/35041687 |
[24] | Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24: 981-990. doi: 10.1016/j.cellsig.2012.01.008 |
[25] | Lee S, Choi E, Cha MJ, et al. (2014) Looking into a Conceptual Framework of ROS-miRNA-Atrial Fibrillation. Int J Mol Sci 15: 21754-21776. doi: 10.3390/ijms151221754 |
[26] | Magenta A, Cencioni C, Fasanaro P, et al. (2011) miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ 18: 1628-1639. doi: 10.1038/cdd.2011.42 |
[27] | Brabletz S, Brabletz T (2010) The ZEB/miR-200 feedback loop--a motor of cellular plasticity in development and cancer? EMBO Rep 11: 670-677. doi: 10.1038/embor.2010.117 |
[28] | Mateescu B, Batista L, Cardon M, et al. (2011) miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med 17: 1627-1635. doi: 10.1038/nm.2512 |
[29] | Rosati J, Spallotta F, Nanni S, et al. (2011) Smad-interacting protein-1 and microRNA 200 family define a nitric oxide-dependent molecular circuitry involved in embryonic stem cell mesendoderm differentiation. Arterioscler Thromb Vasc Biol 31: 898-907. doi: 10.1161/ATVBAHA.110.214478 |
[30] | Lin Y, Liu X, Cheng Y, et al. (2009) Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. J Biol Chem 284: 7903-7913. doi: 10.1074/jbc.M806920200 |
[31] | Lin H, Qian J, Castillo AC, et al. (2011) Effect of miR-23 on oxidant-induced injury in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 52: 6308-6314. doi: 10.1167/iovs.10-6632 |
[32] | Papaioannou MD, Lagarrigue M, Vejnar CE, et al. (2011) Loss of Dicer in Sertoli cells has a major impact on the testicular proteome of mice. Mol Cell Proteomics 10: M900587MCP900200. |
[33] | Wang Q, Wang Y, Minto AW, et al. (2008) MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J 22: 4126-4135. doi: 10.1096/fj.08-112326 |
[34] | Xu Y, Fang F, Zhang J, et al. (2010) miR-17* suppresses tumorigenicity of prostate cancer by inhibiting mitochondrial antioxidant enzymes. PLoS One 5: e14356. doi: 10.1371/journal.pone.0014356 |
[35] | Zhang X, Ng WL, Wang P, et al. (2012) MicroRNA-21 modulates the levels of reactive oxygen species by targeting SOD3 and TNFalpha. Cancer Res 72: 4707-4713. doi: 10.1158/0008-5472.CAN-12-0639 |
[36] | Fleissner F, Jazbutyte V, Fiedler J, et al. (2010) Short communication: asymmetric dimethylarginine impairs angiogenic progenitor cell function in patients with coronary artery disease through a microRNA-21-dependent mechanism. Circ Res 107: 138-143. doi: 10.1161/CIRCRESAHA.110.216770 |
[37] | Zhao H, Tao Z, Wang R, et al. (2014) MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion. Brain Res 1592: 65-72. doi: 10.1016/j.brainres.2014.09.055 |
[38] | Xia XG, Zhou H, Samper E, et al. (2006) Pol II-expressed shRNA knocks down Sod2 gene expression and causes phenotypes of the gene knockout in mice. PLoS Genet 2: e10. doi: 10.1371/journal.pgen.0020010 |
[39] | Bai XY, Ma Y, Ding R, et al. (2011) miR-335 and miR-34a Promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol 22: 1252-1261. doi: 10.1681/ASN.2010040367 |
[40] | Togliatto G, Trombetta A, Dentelli P, et al. (2014) Unacylated ghrelin (UnAG) induces oxidative stress resistance in a glucose intolerance mouse model and peripheral artery disease by restoring endothelial cell miR-126 expression. Diabetes 64: 1370-82. |
[41] | Ji G, Lv K, Chen H, et al. (2013) MiR-146a regulates SOD2 expression in H2O2 stimulated PC12 cells. PLoS One 8: e69351. doi: 10.1371/journal.pone.0069351 |
[42] | Meng X, Wu J, Pan C, et al. (2013) Genetic and epigenetic down-regulation of microRNA-212 promotes colorectal tumor metastasis via dysregulation of MnSOD. Gastroenterology 145: 426-436 e421-426. doi: 10.1053/j.gastro.2013.04.004 |
[43] | Liu X, Yu J, Jiang L, et al. (2009) MicroRNA-222 regulates cell invasion by targeting matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 (SOD2) in tongue squamous cell carcinoma cell lines. Cancer Genom Proteom 6: 131-139. |
[44] | Kriegel AJ, Fang Y, Liu Y, et al. (2010) MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor beta 1: a novel role of miR-382. Nucleic Acids Res 38: 8338-8347. doi: 10.1093/nar/gkq718 |
[45] | Tu H, Sun H, Lin Y, et al. (2014) Oxidative stress upregulates PDCD4 expression in patients with gastric cancer via miR-21. Curr Pharm Des 20: 1917-1923. doi: 10.2174/13816128113199990547 |
[46] | Haque R, Chun E, Howell JC, et al. (2012) MicroRNA-30b-mediated regulation of catalase expression in human ARPE-19 cells. PLoS One 7: e42542. doi: 10.1371/journal.pone.0042542 |
[47] | Wang Q, Chen W, Bai L, et al. (2014) Receptor-interacting protein 1 increases chemoresistance by maintaining inhibitor of apoptosis protein levels and reducing reactive oxygen species through a microRNA-146a-mediated catalase pathway. J Biol Chem 289: 5654-5663. doi: 10.1074/jbc.M113.526152 |
[48] | Xu X, Wells A, Padilla MT, et al. (2014) A signaling pathway consisting of miR-551b, catalase and MUC1 contributes to acquired apoptosis resistance and chemoresistance. Carcinogenesis 35: 2457-2466. doi: 10.1093/carcin/bgu159 |
[49] | Espinosa-Diez C, Fierro-Fernandez M, Sanchez-Gomez FJ, et al. (2014) Targeting of gamma-glutamyl-cysteine ligase by miR-433 reduces glutathione biosynthesis and promotes TGF-beta-dependent fibrogenesis. Antioxid Redox Signal. |
[50] | Dong X, Liu H, Chen F, et al. (2014) MiR-214 promotes the alcohol-induced oxidative stress via down-regulation of glutathione reductase and cytochrome P450 oxidoreductase in liver cells. Alcohol Clin Exp Res 38: 68-77. doi: 10.1111/acer.12209 |
[51] | Wang L, Huang H, Fan Y, et al. (2014) Effects of downregulation of microRNA-181a on H2O2-induced H9c2 cell apoptosis via the mitochondrial apoptotic pathway. Oxid Med Cell Longev 2014: 960362. |
[52] | Maciel-Dominguez A, Swan D, Ford D, et al. (2013) Selenium alters miRNA profile in an intestinal cell line: evidence that miR-185 regulates expression of GPX2 and SEPSH2. Mol Nutr Food Res 57: 2195-2205. doi: 10.1002/mnfr.201300168 |
[53] | Jee MK, Jung JS, Choi JI, et al. (2012) MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury. Brain 135: 1237-1252. doi: 10.1093/brain/aws047 |
[54] | Mutallip M, Nohata N, Hanazawa T, et al. (2011) Glutathione S-transferase P1 (GSTP1) suppresses cell apoptosis and its regulation by miR-133alpha in head and neck squamous cell carcinoma (HNSCC). Int J Mol Med 27: 345-352. |
[55] | Moriya Y, Nohata N, Kinoshita T, et al. (2012) Tumor suppressive microRNA-133a regulates novel molecular networks in lung squamous cell carcinoma. J Hum Genet 57: 38-45. doi: 10.1038/jhg.2011.126 |
[56] | Uchida Y, Chiyomaru T, Enokida H, et al. (2013) MiR-133a induces apoptosis through direct regulation of GSTP1 in bladder cancer cell lines. Urol Oncol 31: 115-123. doi: 10.1016/j.urolonc.2010.09.017 |
[57] | Patron JP, Fendler A, Bild M, et al. (2012) MiR-133b targets antiapoptotic genes and enhances death receptor-induced apoptosis. PLoS One 7: e35345. doi: 10.1371/journal.pone.0035345 |
[58] | Zhang X, Zhu J, Xing R, et al. (2012) miR-513a-3p sensitizes human lung adenocarcinoma cells to chemotherapy by targeting GSTP1. Lung Cancer 77: 488-494. doi: 10.1016/j.lungcan.2012.05.107 |
[59] | Kraemer A, Barjaktarovic Z, Sarioglu H, et al. (2013) Cell survival following radiation exposure requires miR-525-3p mediated suppression of ARRB1 and TXN1. PLoS One 8: e77484. doi: 10.1371/journal.pone.0077484 |
[60] | Lerner AG, Upton JP, Praveen PV, et al. (2012) IRE1alpha induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab 16: 250-264. doi: 10.1016/j.cmet.2012.07.007 |
[61] | Knoll S, Furst K, Kowtharapu B, et al. (2014) E2F1 induces miR-224/452 expression to drive EMT through TXNIP downregulation. EMBO Rep 15: 1315-1329. doi: 10.15252/embr.201439392 |
[62] | Ragusa M, Statello L, Maugeri M, et al. (2012) Specific alterations of the microRNA transcriptome and global network structure in colorectal cancer after treatment with MAPK/ERK inhibitors. J Mol Med (Berl) 90: 1421-1438. doi: 10.1007/s00109-012-0918-8 |
[63] | Yan GR, Xu SH, Tan ZL, et al. (2011) Global identification of miR-373-regulated genes in breast cancer by quantitative proteomics. Proteomics 11: 912-920. doi: 10.1002/pmic.201000539 |
[64] | He HC, Zhu JG, Chen XB, et al. (2012) MicroRNA-23b downregulates peroxiredoxin III in human prostate cancer. FEBS Lett 586: 2451-2458. doi: 10.1016/j.febslet.2012.06.003 |
[65] | Jiang W, Min J, Sui X, et al. (2014) MicroRNA-26a-5p and microRNA-23b-3p up-regulate peroxiredoxin III in acute myeloid leukemia. Leuk Lymphoma: 1-12. |
[66] | Lee HK, Finniss S, Cazacu S, et al. (2014) Mesenchymal Stem Cells Deliver Exogenous miRNAs to Neural Cells and Induce Their Differentiation and Glutamate Transporter Expression. Stem Cells Dev 23: 2851-2861. doi: 10.1089/scd.2014.0146 |
[67] | Yang ZB, Zhang Z, Li TB, et al. (2014) Up-regulation of brain-enriched miR-107 promotes excitatory neurotoxicity through down-regulation of glutamate transporter-1 expression following ischaemic stroke. Clin Sci (Lond) 127: 679-689. doi: 10.1042/CS20140084 |
[68] | Morel L, Regan M, Higashimori H, et al. (2013) Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J Biol Chem 288: 7105-7116. doi: 10.1074/jbc.M112.410944 |
[69] | Moon JM, Xu L, Giffard RG (2013) Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss. J Cereb Blood Flow Metab 33: 1976-1982. doi: 10.1038/jcbfm.2013.157 |
[70] | Kaalund SS, Veno MT, Bak M, et al. (2014) Aberrant expression of miR-218 and miR-204 in human mesial temporal lobe epilepsy and hippocampal sclerosis-Convergence on axonal guidance. Epilepsia 55: 2017-2027. doi: 10.1111/epi.12839 |
[71] | Fridovich I (1978) The biology of oxygen radicals. Science 201: 875-880. doi: 10.1126/science.210504 |
[72] | Lu M, Zhang Q, Deng M, et al. (2008) An analysis of human microRNA and disease associations. PLoS One 3: e3420. doi: 10.1371/journal.pone.0003420 |
[73] | Aoyama K, Watabe M, Nakaki T (2008) Regulation of neuronal glutathione synthesis. J Pharmacol Sci 108: 227-238. doi: 10.1254/jphs.08R01CR |
[74] | Cooper AJ, Kristal BS (1997) Multiple roles of glutathione in the central nervous system. Biol Chem 378: 793-802. |
[75] | Janaky R, Varga V, Hermann A, et al. (2000) Mechanisms of L-cysteine neurotoxicity. Neurochem Res 25: 1397-1405. doi: 10.1023/A:1007616817499 |
[76] | Quintana-Cabrera R, Fernandez-Fernandez S, Bobo-Jimenez V, et al. (2012) gamma-Glutamylcysteine detoxifies reactive oxygen species by acting as glutathione peroxidase-1 cofactor. Nat Commun 3: 718. doi: 10.1038/ncomms1722 |
[77] | Seelig GF, Simondsen RP, Meister A (1984) Reversible dissociation of gamma-glutamylcysteine synthetase into two subunits. J Biol Chem 259: 9345-9347. |
[78] | Dalton TP, Chen Y, Schneider SN, et al. (2004) Genetically altered mice to evaluate glutathione homeostasis in health and disease. Free Radic Biol Med 37: 1511-1526. doi: 10.1016/j.freeradbiomed.2004.06.040 |
[79] | Yang Y, Dieter MZ, Chen Y, et al. (2002) Initial characterization of the glutamate-cysteine ligase modifier subunit Gclm(-/-) knockout mouse. Novel model system for a severely compromised oxidative stress response. J Biol Chem 277: 49446-49452. |
[80] | Ristoff E, Larsson A (2007) Inborn errors in the metabolism of glutathione. Orphanet J Rare Dis 2: 1-9. doi: 10.1186/1750-1172-2-1 |
[81] | Brigelius-Flohe R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830: 3289-3303. doi: 10.1016/j.bbagen.2012.11.020 |
[82] | Kryukov GV, Castellano S, Novoselov SV, et al. (2003) Characterization of mammalian selenoproteomes. Science 300: 1439-1443. doi: 10.1126/science.1083516 |
[83] | Arthur JR (2000) The glutathione peroxidases. Cell Mol Life Sci 57: 1825-1835. |
[84] | Power JH, Blumbergs PC (2009) Cellular glutathione peroxidase in human brain: cellular distribution, and its potential role in the degradation of Lewy bodies in Parkinson's disease and dementia with Lewy bodies. Acta Neuropathol 117: 63-73. doi: 10.1007/s00401-008-0438-3 |
[85] | Muse KE, Oberley TD, Sempf JM, et al. (1994) Immunolocalization of antioxidant enzymes in adult hamster kidney. Histochem J 26: 734-753. doi: 10.1007/BF00158205 |
[86] | Li S, Yan T, Yang JQ, et al. (2000) The role of cellular glutathione peroxidase redox regulation in the suppression of tumor cell growth by manganese superoxide dismutase. Cancer Res 60: 3927-3939. |
[87] | Knopp EA, Arndt TL, Eng KL, et al. (1999) Murine phospholipid hydroperoxide glutathione peroxidase: cDNA sequence, tissue expression, and mapping. Mamm Genome 10: 601-605. doi: 10.1007/s003359901053 |
[88] | Hall L, Williams K, Perry AC, et al. (1998) The majority of human glutathione peroxidase type 5 (GPX5) transcripts are incorrectly spliced: implications for the role of GPX5 in the male reproductive tract. Biochem J 333: 5-9. |
[89] | Nguyen VD, Saaranen MJ, Karala AR, et al. (2011) Two endoplasmic reticulum PDI peroxidases increase the efficiency of the use of peroxide during disulfide bond formation. J Mol Biol 406: 503-515. doi: 10.1016/j.jmb.2010.12.039 |
[90] | Lindenau J, Noack H, Asayama K, et al. (1998) Enhanced cellular glutathione peroxidase immunoreactivity in activated astrocytes and in microglia during excitotoxin induced neurodegeneration. Glia 24: 252-256. doi: 10.1002/(SICI)1098-1136(199810)24:2<252::AID-GLIA10>3.0.CO;2-Z |
[91] | Satoh J, Yamamoto Y, Asahina N, et al. (2014) RNA-Seq Data Mining: Downregulation of NeuroD6 Serves as a Possible Biomarker for Alzheimer's Disease Brains. Dis Markers 2014: 123165. |
[92] | Deponte M (2013) Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta 1830: 3217-3266. doi: 10.1016/j.bbagen.2012.09.018 |
[93] | Johnson JA, el Barbary A, Kornguth SE, et al. (1993) Glutathione S-transferase isoenzymes in ratbrain neurons and glia. J Neurosci 13: 2013-2023. |
[94] | Martin HL, Teismann P (2009) Glutathione--a review on its role and significance in Parkinson's disease. FASEB J 23: 3263-3272. doi: 10.1096/fj.08-125443 |
[95] | Zeevalk GD, Razmpour R, Bernard LP (2008) Glutathione and Parkinson's disease: is this the elephant in the room? Biomed Pharmacother 62: 236-249. doi: 10.1016/j.biopha.2008.01.017 |
[96] | Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264: 13963-13966. |
[97] | Kenchappa RS, Ravindranath V (2003) Glutaredoxin is essential for maintenance of brain mitochondrial complex I: studies with MPTP. FASEB J 17: 717-719. |
[98] | Lovell MA, Xie C, Gabbita SP, et al. (2000) Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer's disease brain. Free Radic Biol Med 28: 418-427. doi: 10.1016/S0891-5849(99)00258-0 |
[99] | Yoshihara E, Masaki S, Matsuo Y, et al. (2014) Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases. Front Immunol 4: 514. |
[100] | Dringen R, Pfeiffer B, Hamprecht B (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci 19: 562-569. |
[101] | Shanker G, Allen JW, Mutkus LA, et al. (2001) The uptake of cysteine in cultured primary astrocytes and neurons. Brain Res 902: 156-163. doi: 10.1016/S0006-8993(01)02342-3 |
[102] | Chen Y, Swanson RA (2003) The glutamate transporters EAAT2 and EAAT3 mediate cysteine uptake in cortical neuron cultures. J Neurochem 84: 1332-1339. doi: 10.1046/j.1471-4159.2003.01630.x |
[103] | Himi T, Ikeda M, Yasuhara T, et al. (2003) Role of neuronal glutamate transporter in the cysteine uptake and intracellular glutathione levels in cultured cortical neurons. J Neural Transm 110: 1337-1348. doi: 10.1007/s00702-003-0049-z |
[104] | Kanai Y, Hediger MA (2003) The glutamate and neutral amino acid transporter family: physiological and pharmacological implications. Eur J Pharmacol 479: 237-247. doi: 10.1016/j.ejphar.2003.08.073 |
[105] | Maragakis NJ, Rothstein JD (2004) Glutamate transporters: animal models to neurologic disease. Neurobiol Dis 15: 461-473. doi: 10.1016/j.nbd.2003.12.007 |
[106] | Zerangue N, Kavanaugh MP (1996) Interaction of L-cysteine with a human excitatory amino acid transporter. J Physiol 493: 419-423. doi: 10.1113/jphysiol.1996.sp021393 |
[107] | Aoyama K, Suh SW, Hamby AM, et al. (2006) Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 9: 119-126. doi: 10.1038/nn1609 |
[108] | Lin CI, Orlov I, Ruggiero AM, et al. (2001) Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3-18. Nature 410: 84-88. doi: 10.1038/35065084 |
[109] | Abdul-Ghani M, Gougeon PY, Prosser DC, et al. (2001) PRA isoforms are targeted to distinct membrane compartments. J Biol Chem 276: 6225-6233. doi: 10.1074/jbc.M009073200 |
[110] | Ruggiero AM, Liu Y, Vidensky S, et al. (2008) The endoplasmic reticulum exit of glutamate transporter is regulated by the inducible mammalian Yip6b/GTRAP3-18 protein. J Biol Chem 283: 6175-6183. doi: 10.1074/jbc.M701008200 |
[111] | Aoyama K, Wang F, Matsumura N, et al. (2012) Increased neuronal glutathione and neuroprotection in GTRAP3-18-deficient mice. Neurobiol Dis 45: 973-982. doi: 10.1016/j.nbd.2011.12.016 |
[112] | Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10: S18-25. doi: 10.1038/nrn1434 |
[113] | Selkoe DJ (2001) Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81: 741-766. |
[114] | Maciotta S, Meregalli M, Torrente Y (2013) The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci 7: 265. |
[115] | Schipper HM, Maes OC, Chertkow HM, et al. (2007) MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul Syst Bio 1: 263-274. |
[116] | Cogswell JP, Ward J, Taylor IA, et al. (2008) Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14: 27-41. |
[117] | Tanner CM, Goldman SM (1996) Epidemiology of Parkinson's disease. Neurol Clin 14: 317-335. doi: 10.1016/S0733-8619(05)70259-0 |
[118] | Fearnley JM, Lees AJ (1991) Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 114 : 2283-2301. |
[119] | Baba M, Nakajo S, Tu PH, et al. (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am J Pathol 152: 879-884. |
[120] | Kim J, Inoue K, Ishii J, et al. (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317: 1220-1224. doi: 10.1126/science.1140481 |
[121] | Gusella JF, MacDonald ME, Ambrose CM, et al. (1993) Molecular genetics of Huntington's disease. Arch Neurol 50: 1157-1163. doi: 10.1001/archneur.1993.00540110037003 |
[122] | Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57: 369-384. doi: 10.1097/00005072-199805000-00001 |
[123] | Novak MJ, Tabrizi SJ (2010) Huntington's disease. BMJ 340: c3109. doi: 10.1136/bmj.c3109 |
[124] | Browne SE, Ferrante RJ, Beal MF (1999) Oxidative stress in Huntington's disease. Brain Pathol 9: 147-163. |
[125] | Petr GT, Bakradze E, Frederick NM, et al. (2013) Glutamate transporter expression and function in a striatal neuronal model of Huntington's disease. Neurochem Int 62: 973-981. doi: 10.1016/j.neuint.2013.02.026 |
[126] | Packer AN, Xing Y, Harper SQ, et al. (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci 28: 14341-14346. doi: 10.1523/JNEUROSCI.2390-08.2008 |
[127] | Marti E, Pantano L, Banez-Coronel M, et al. (2010) A myriad of miRNA variants in control and Huntington's disease brain regions detected by massively parallel sequencing. Nucleic Acids Res 38: 7219-7235. doi: 10.1093/nar/gkq575 |
[128] | Mason RP, Casu M, Butler N, et al. (2013) Glutathione peroxidase activity is neuroprotective in models of Huntington's disease. Nat Genet 45: 1249-1254. doi: 10.1038/ng.2732 |
[129] | Kim C, Lee HC, Sung JJ (2014) Amyotrophic lateral sclerosis - cell based therapy and novel therapeutic development. Exp Neurobiol 23: 207-214. doi: 10.5607/en.2014.23.3.207 |
[130] | Sreedharan J, Brown RH, Jr. (2013) Amyotrophic lateral sclerosis: Problems and prospects. Ann Neurol 74: 309-316. doi: 10.1002/ana.24012 |
[131] | Synofzik M, Ronchi D, Keskin I, et al. (2012) Mutant superoxide dismutase-1 indistinguishable from wild-type causes ALS. Hum Mol Genet 21: 3568-3574. doi: 10.1093/hmg/dds188 |
[132] | Butovsky O, Siddiqui S, Gabriely G, et al. (2012) Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest 122: 3063-3087. doi: 10.1172/JCI62636 |
[133] | Koval ED, Shaner C, Zhang P, et al. (2013) Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum Mol Genet 22: 4127-4135. doi: 10.1093/hmg/ddt261 |
[134] | Baillet A, Chanteperdrix V, Trocme C, et al. (2010) The role of oxidative stress in amyotrophic lateral sclerosis and Parkinson's disease. Neurochem Res 35: 1530-1537. doi: 10.1007/s11064-010-0212-5 |
[135] | Golenia A, Leskiewicz M, Regulska M, et al. (2014) Catalase activity in blood fractions of patients with sporadic ALS. Pharmacol Rep 66: 704-707. doi: 10.1016/j.pharep.2014.02.021 |
[136] | Sturm E, Stefanova N (2014) Multiple system atrophy: genetic or epigenetic? Exp Neurobiol 23: 277-291. doi: 10.5607/en.2014.23.4.277 |
[137] | Wenning GK, Tison F, Ben Shlomo Y, et al. (1997) Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord 12: 133-147. doi: 10.1002/mds.870120203 |
[138] | Dallmann R, Brown SA, Gachon F (2014) Chronopharmacology: new insights and therapeutic implications. Annu Rev Pharmacol Toxicol 54: 339-361. doi: 10.1146/annurev-pharmtox-011613-135923 |
[139] | Bass J (2012) Circadian topology of metabolism. Nature 491: 348-356. doi: 10.1038/nature11704 |
[140] | Kondratov RV (2007) A role of the circadian system and circadian proteins in aging. Ageing Res Rev 6: 12-27. doi: 10.1016/j.arr.2007.02.003 |
[141] | Kondratov RV, Kondratova AA, Gorbacheva VY, et al. (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev 20: 1868-1873. doi: 10.1101/gad.1432206 |
[142] | Willison LD, Kudo T, Loh DH, et al. (2013) Circadian dysfunction may be a key component of the non-motor symptoms of Parkinson's disease: insights from a transgenic mouse model. Exp Neurol 243: 57-66. doi: 10.1016/j.expneurol.2013.01.014 |
[143] | Beaver LM, Klichko VI, Chow ES, et al. (2012) Circadian regulation of glutathione levels and biosynthesis in Drosophila melanogaster. PLoS One 7: e50454. doi: 10.1371/journal.pone.0050454 |
[144] | Xu YQ, Zhang D, Jin T, et al. (2012) Diurnal variation of hepatic antioxidant gene expression in mice. PLoS One 7: e44237. doi: 10.1371/journal.pone.0044237 |
[145] | Krishnan N, Davis AJ, Giebultowicz JM (2008) Circadian regulation of response to oxidative stress in Drosophila melanogaster. Biochem Biophys Res Commun 374: 299-303. doi: 10.1016/j.bbrc.2008.07.011 |
[146] | Pablos MI, Reiter RJ, Ortiz GG, et al. (1998) Rhythms of glutathione peroxidase and glutathione reductase in brain of chick and their inhibition by light. Neurochem Int 32: 69-75. doi: 10.1016/S0197-0186(97)00043-0 |
[147] | Filipski E, King VM, Etienne MC, et al. (2004) Persistent twenty-four hour changes in liver and bone marrow despite suprachiasmatic nuclei ablation in mice. Am J Physiol Regul Integr Comp Physiol 287: R844-851. doi: 10.1152/ajpregu.00085.2004 |
[148] | Arjona A, Sarkar DK (2005) Circadian oscillations of clock genes, cytolytic factors, and cytokines in rat NK cells. J Immunol 174: 7618-7624. doi: 10.4049/jimmunol.174.12.7618 |
[149] | Kochman LJ, Weber ET, Fornal CA, et al. (2006) Circadian variation in mouse hippocampal cell proliferation. Neurosci Lett 406: 256-259. doi: 10.1016/j.neulet.2006.07.058 |
[150] | Ma D, Panda S, Lin JD (2011) Temporal orchestration of circadian autophagy rhythm by C/EBPbeta. EMBO J 30: 4642-4651. doi: 10.1038/emboj.2011.322 |
[151] | Kondratova AA, Dubrovsky YV, Antoch MP, et al. (2010) Circadian clock proteins control adaptation to novel environment and memory formation. Aging (Albany NY) 2: 285-297. |