Research article

The function of guanylate binding protein 3 (GBP3) in human cancers by pan-cancer bioinformatics


  • Received: 25 January 2023 Revised: 05 March 2023 Accepted: 12 March 2023 Published: 20 March 2023
  • As a guanylate binding protein (GBPs) member, GBP3 is immune-associated and may participate in oncogenesis and cancer therapy. Since little has been reported on GBP3 in this field, we provide pan-cancer bioinformatics to investigate the role of GBP3 in human cancers. The GBP3 expression, related clinical outcomes, immune infiltrates, potential mechanisms and mutations were conducted using tools including TIMER2.0, GEPIA2.0, SRING, DAVID and cBioPortal. Results showed an increased risk of high GBP3 in Brain Lower Grade Glioma (LGG) and Lung Squamous Cell Carcinoma (LUSC) and a decreased risk of GBP3 in Sarcoma (SARC) and Skin Cutaneous Melanoma (SKCM) (p ≤ 0.05). GBP3 was negatively correlated with CAFs in Esophageal Adenocarcinoma (ESCA) and positively correlated with CAFs in LGG, LUSC and TGCG (p ≤ 0.05). In addition, GBP3 was positively correlated with CD8+ T cells in Bladder Urothelial Carcinoma (BLCA), Cervical Squamous Cell Carcinoma (CESC), Kidney Renal Clear Cell Carcinoma (KIRC), SARC, SKCM, SKCM-Metastasis and Uveal Melanoma (UVM) (p ≤ 0.05). Potentially, GBP3 may participate in the homeostasis between immune and adaptive immunity in cancers. Moreover, the most frequent mutation sites of GBP3 in cancers are R151Q/* and K380N. This study would provide new insight into cancer prognosis and therapy.

    Citation: Tongmeng Jiang, Pan Jin, Guoxiu Huang, Shi-Cheng Li. The function of guanylate binding protein 3 (GBP3) in human cancers by pan-cancer bioinformatics[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 9511-9529. doi: 10.3934/mbe.2023418

    Related Papers:

  • As a guanylate binding protein (GBPs) member, GBP3 is immune-associated and may participate in oncogenesis and cancer therapy. Since little has been reported on GBP3 in this field, we provide pan-cancer bioinformatics to investigate the role of GBP3 in human cancers. The GBP3 expression, related clinical outcomes, immune infiltrates, potential mechanisms and mutations were conducted using tools including TIMER2.0, GEPIA2.0, SRING, DAVID and cBioPortal. Results showed an increased risk of high GBP3 in Brain Lower Grade Glioma (LGG) and Lung Squamous Cell Carcinoma (LUSC) and a decreased risk of GBP3 in Sarcoma (SARC) and Skin Cutaneous Melanoma (SKCM) (p ≤ 0.05). GBP3 was negatively correlated with CAFs in Esophageal Adenocarcinoma (ESCA) and positively correlated with CAFs in LGG, LUSC and TGCG (p ≤ 0.05). In addition, GBP3 was positively correlated with CD8+ T cells in Bladder Urothelial Carcinoma (BLCA), Cervical Squamous Cell Carcinoma (CESC), Kidney Renal Clear Cell Carcinoma (KIRC), SARC, SKCM, SKCM-Metastasis and Uveal Melanoma (UVM) (p ≤ 0.05). Potentially, GBP3 may participate in the homeostasis between immune and adaptive immunity in cancers. Moreover, the most frequent mutation sites of GBP3 in cancers are R151Q/* and K380N. This study would provide new insight into cancer prognosis and therapy.



    加载中


    [1] J. V. Corte-Real, H. M. Baldauf, J. Abrantes, P. J. Esteves, Evolution of the guanylate binding protein (GBP) genes: Emergence of GBP7 genes in primates and further acquisition of a unique GBP3 gene in simians, Mol. Immunol., 132 (2021), 79–81. https://doi.org/10.1016/j.molimm.2021.01.025 doi: 10.1016/j.molimm.2021.01.025
    [2] S. Huang, Q. Meng, A. Maminska, J. D. MacMicking, Cell-autonomous immunity by IFN-induced GBPs in animals and plants, Curr. Opin. Immunol., 60 (2019), 71–80. https://doi.org/10.1016/j.coi.2019.04.017 doi: 10.1016/j.coi.2019.04.017
    [3] K. Tretina, E. S. Park, A. Maminska, J. D. MacMicking, Interferon-induced guanylate-binding proteins: Guardians of host defense in health and disease, J. Exp. Med., 216 (2019), 482–500. https://doi.org/10.1084/jem.20182031 doi: 10.1084/jem.20182031
    [4] K. Lipnik, E. Naschberger, N. Gonin-Laurent, P. Kodajova, H. Petznek, S. Rungaldier, et al., Interferon gamma-induced human guanylate binding protein 1 inhibits mammary tumor growth in mice, Mol. Med., 16 (2010), 177–187. https://doi.org/10.2119/molmed.2009.00172 doi: 10.2119/molmed.2009.00172
    [5] P. Godoy, C. Cadenas, B. Hellwig, R. Marchan, J. Stewart, R. Reif, et al., Interferon-inducible guanylate binding protein (GBP2) is associated with better prognosis in breast cancer and indicates an efficient T cell response, Breast Cancer, 21 (2014), 491–499. https://doi.org/10.1007/s12282-012-0404-8 doi: 10.1007/s12282-012-0404-8
    [6] H. Xu, L. Sun, Y. Zheng, S. Yu, J. Ou-Yang, H. Han, et al., GBP3 promotes glioma cell proliferation via SQSTM1/p62-ERK1/2 axis, Biochem. Biophys. Res. Commun., 495 (2018), 446–453. https://doi.org/10.1016/j.bbrc.2017.11.050 doi: 10.1016/j.bbrc.2017.11.050
    [7] W. J. Chen, L. Xiong, L. Yang, L. J. Yang, L. Li, L. Huang, et al., Long Non-Coding RNA LINC01783 Promotes the Progression of Cervical Cancer by Sponging miR-199b-5p to Mediate GBP1 Expression, Cancer Manag. Res., 12 (2020), 363–373. https://doi.org/10.2147/CMAR.S230171 doi: 10.2147/CMAR.S230171
    [8] L. Cheng, L. Gou, T. Wei, J. Zhang, GBP1 promotes erlotinib resistance via PGK1activated EMT signaling in nonsmall cell lung cancer, Int. J. Oncol., 57 (2020), 858–870. https://doi.org/10.3892/ijo.2020.5086 doi: 10.3892/ijo.2020.5086
    [9] J. Song, Q. Y. Wei, GBP1 promotes non-small cell lung carcinoma malignancy and chemoresistance via activating the Wnt/beta-catenin signaling pathway, Eur. Rev. Med. Pharmacol. Sci., 24 (2020), 5465–5472. https://doi.org/10.26355/eurrev_202005_21331 doi: 10.26355/eurrev_202005_21331
    [10] X. Ji, H. Zhu, X. Dai, Y. Xi, Y. Sheng, C. Gao, et al., Overexpression of GBP1 predicts poor prognosis and promotes tumor growth in human glioblastoma multiforme, Cancer Biomark., 25 (2019), 275–290. https://doi.org/10.3233/CBM-171177 doi: 10.3233/CBM-171177
    [11] J. Zhao, X. Li, L. Liu, J. Cao, M. A. Goscinski, H. Fan, et al., Oncogenic Role of Guanylate Binding Protein 1 in Human Prostate Cancer, Front. Oncol., 9 (2019), 1494. https://doi.org/10.3389/fonc.2019.01494 doi: 10.3389/fonc.2019.01494
    [12] S. Yu, X. Yu, L. Sun, Y. Zheng, L. Chen, H. Xu, et al., GBP2 enhances glioblastoma invasion through Stat3/fibronectin pathway, Oncogene, 39 (2020), 5042–5055. https://doi.org/10.1038/s41388-020-1348-7 doi: 10.1038/s41388-020-1348-7
    [13] F. Rahvar, M. Salimi, H. Mozdarani, Plasma GBP2 promoter methylation is associated with advanced stages in breast cancer, Genet. Mol. Biol., 43 (2020), 20190230. https://doi.org/10.1590/1678-4685-GMB-2019-0230 doi: 10.1590/1678-4685-GMB-2019-0230
    [14] J. Zhang, Y. Zhang, W. Wu, F. Wang, X. Liu, G. Shui, et al., Guanylate-binding protein 2 regulates Drp1-mediated mitochondrial fission to suppress breast cancer cell invasion, Cell Death Dis., 8 (2017), 3151. https://doi.org/10.1038/cddis.2017.559 doi: 10.1038/cddis.2017.559
    [15] B. Liu, R. Huang, T. Fu, P. He, C. Du, W. Zhou, et al., GBP2 as a potential prognostic biomarker in pancreatic adenocarcinoma, PeerJ, 9 (2021), 11423. https://doi.org/10.7717/peerj.11423 doi: 10.7717/peerj.11423
    [16] J. Wang, H. Min, B. Hu, X. Xue, Y. Liu, Guanylate-binding protein-2 inhibits colorectal cancer cell growth and increases the sensitivity to paclitaxel of paclitaxel-resistant colorectal cancer cells by interfering Wnt signaling, J. Cell. Biochem., 121 (2020), 1250–1259. https://doi.org/10.1002/jcb.29358 doi: 10.1002/jcb.29358
    [17] H. Xu, J. Jin, Y. Chen, G. Wu, H. Zhu, Q. Wang, et al., GBP3 promotes glioblastoma resistance to temozolomide by enhancing DNA damage repair, Oncogene, 41 (2022), 3876–3885. https://doi.org/10.1038/s41388-022-02397-5 doi: 10.1038/s41388-022-02397-5
    [18] A. Blum, P. Wang, J. C. Zenklusen, SnapShot: TCGA-analyzed tumors, Cell, 173 (2018), 530. https://doi.org/10.1016/j.cell.2018.03.059 doi: 10.1016/j.cell.2018.03.059
    [19] G. T. Consortium, Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans, Science, 348 (2015), 648–660. https://doi.org/10.1126/science.1262110 doi: 10.1126/science.1262110
    [20] T. Wu, Y. Dai, Tumor microenvironment and therapeutic response, Cancer Lett., 387 (2017), 61–68. https://doi.org/10.1016/j.canlet.2016.01.043 doi: 10.1016/j.canlet.2016.01.043
    [21] Z. Wang, L. Fu, J. Zhang, Y. Ge, C. Guo, R. Wang, et al., A comprehensive analysis of potential gastric cancer prognostic biomarker ITGBL1 associated with immune infiltration and epithelial-mesenchymal transition, Biomed. Eng. Online, 21 (2022), 30. https://doi.org/10.1186/s12938-022-00998-5 doi: 10.1186/s12938-022-00998-5
    [22] T. Jiang, T. Yang, Y. Chen, Y. Miao, Y. Xu, H. Jiang, et al., Emulating interactions between microorganisms and tumor microenvironment to develop cancer theranostics, Theranostics, 12 (2022), 2833–2859. https://doi.org/10.7150/thno.70719 doi: 10.7150/thno.70719
    [23] K. Li, Z. Zhang, Y. Mei, M. Li, Q. Yang, Q. Wu, et al., Targeting the innate immune system with nanoparticles for cancer immunotherapy, J. Mater. Chem. B, 10 (2022), 1709–1733. https://doi.org/10.1039/d1tb02818a doi: 10.1039/d1tb02818a
    [24] F. Petitprez, M. Meylan, A. de Reynies, C. Sautes-Fridman, W. H. Fridman, The tumor microenvironment in the response to immune checkpoint blockade therapies, Front. Immunol., 11 (2020), 784. https://doi.org/10.3389/fimmu.2020.00784 doi: 10.3389/fimmu.2020.00784
    [25] C. Guo, Z. Luo, D. Ismtula, X. Bi, H. Kong, Y. Wang, et al., TIGIT as a novel prognostic marker for immune infiltration in invasive breast cancer, Comb. Chem. High Throughput. Screen., 26 (2023), 639–651. https://doi.org/10.2174/1386207325666220629162823 doi: 10.2174/1386207325666220629162823
    [26] T. Li, J. Fan, B. Wang, N. Traugh, Q. Chen, J. S. Liu, et al., TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells, Cancer Res., 77 (2017), 108–110. https://doi.org/10.1158/0008-5472.CAN-17-0307 doi: 10.1158/0008-5472.CAN-17-0307
    [27] T. Li, J. Fu, Z. Zeng, D. Cohen, J. Li, Q. Chen, et al., TIMER2.0 for analysis of tumor-infiltrating immune cells, Nucleic Acids Res., 48 (2020), 509–514. https://doi.org/10.1093/nar/gkaa407 doi: 10.1093/nar/gkaa407
    [28] Z. Tang, B. Kang, C. Li, T. Chen, Z. Zhang, GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis, Nucleic Acids Res., 47 (2019), 556–560. https://doi.org/10.1093/nar/gkz430 doi: 10.1093/nar/gkz430
    [29] Z. Tang, C. Li, B. Kang, G. Gao, C. Li, Z. Zhang, GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses, Nucleic Acids Res., 45 (2017), 98–102. https://doi.org/10.1093/nar/gkx247 doi: 10.1093/nar/gkx247
    [30] D. Szklarczyk, A. L. Gable, K. C. Nastou, D. Lyon, R. Kirsch, S. Pyysalo, et al., The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets, Nucleic Acids Res., 49 (2021), 605–612. https://doi.org/10.1093/nar/gkaa1074 doi: 10.1093/nar/gkaa1074
    [31] G. D. Jr, B.T. Sherman, D. A. Hosack, J. Yang, W. Gao, H. C. Lane, et al., DAVID: database for annotation, visualization, and integrated discovery, Genome Biol., 4 (2003), 3. https://doi.org/10.1186/gb-2003-4-5-p3 doi: 10.1186/gb-2003-4-5-p3
    [32] E. Cerami, J. Gao, U. Dogrusoz, B. E. Gross, S. O. Sumer, B. A. Aksoy, et al., The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data, Cancer Discov., 2 (2012), 401–404. https://doi.org/10.1158/2159-8290.CD-12-0095 doi: 10.1158/2159-8290.CD-12-0095
    [33] Q. Wang, X. Wang, Q. Liang, S. Wang, L. Xiwen, F. Pan, et al., Distinct prognostic value of mRNA expression of guanylate-binding protein genes in skin cutaneous melanoma, Oncol. Lett., 15 (2018), 7914–7922. https://doi.org/10.3892/ol.2018.8306 doi: 10.3892/ol.2018.8306
    [34] S. Feng, D. E. Tuipulotu, A. Pandey, W. Jing, C. Shen, C. Ngo, et al., Pathogen-selective killing by guanylate-binding proteins as a molecular mechanism leading to inflammasome signaling, Nat. Commun., 13 (2022), 4395. https://doi.org/10.1038/s41467-022-32127-0 doi: 10.1038/s41467-022-32127-0
    [35] X. Li, D. Song, S. Su, X. He, F. Cao, C. Yang, et al., Critical role of guanylate binding protein 5 in tumor immune microenvironment and predictive value of immunotherapy response, Front. Genet., 13 (2022), 984615. https://doi.org/10.3389/fgene.2022.984615 doi: 10.3389/fgene.2022.984615
    [36] R. Kalluri, The biology and function of fibroblasts in cancer, Nat. Rev. Cancer, 16 (2016), 582–98. https://doi.org/10.1038/nrc.2016.73 doi: 10.1038/nrc.2016.73
    [37] H. Raskov, A. Orhan, J. P. Christensen, I. Gogenur, Cytotoxic CD8(+) T cells in cancer and cancer immunotherapy, Br. J. Cancer, 124 (2021), 359–367. https://doi.org/10.1038/s41416-020-01048-4. doi: 10.1038/s41416-020-01048-4
    [38] H. Rodriguez, R. Prados-Rosales, J. L. Lavin, M. Mazzone, J. Anguita, Editorial: Macrophage metabolism and immune responses, Front. Immunol., 11 (2020), 1078. https://doi.org/10.3389/fimmu.2020.01078 doi: 10.3389/fimmu.2020.01078
    [39] T. Liu, C. Han, S. Wang, P. Fang, Z. Ma, L. Xu, et al., Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy, J. Hematol. Oncol., 12 (2019), 86. https://doi.org/10.1186/s13045-019-0770-1 doi: 10.1186/s13045-019-0770-1
    [40] W. Shen, P. A. Yao, W. Li, C. Gu, T. Gao, Y. Cao, et al., Cancer-associated fibroblast-targeted nanodrugs reshape colorectal tumor microenvironments to suppress tumor proliferation, metastasis and improve drug penetration, J. Mater. Chem. B, (2022). https://doi.org/10.1039/d2tb02253b doi: 10.1039/d2tb02253b
    [41] B. Farhood, M. Najafi, K. Mortezaee, CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: A review, J. Cell. Physiol., 234 (2019), 8509–8521. https://doi.org/10.1002/jcp.27782 doi: 10.1002/jcp.27782
    [42] A. Mantovani, I. Barajon, C. Garlanda, IL-1 and IL-1 regulatory pathways in cancer progression and therapy, Immunol. Rev., 281 (2018), 57–61. https://doi.org/10.1111/imr.12614 doi: 10.1111/imr.12614
    [43] L. Ni, J. Lu, Interferon gamma in cancer immunotherapy, Cancer Med., 7 (2018), 4509–4516. https://doi.org/10.1002/cam4.1700 doi: 10.1002/cam4.1700
    [44] D. S. Chen, I. Mellman, Elements of cancer immunity and the cancer-immune set point, Nature, 541 (2017), 321–330. https://doi.org/10.1038/nature21349 doi: 10.1038/nature21349
    [45] J. Reiser, A. Banerjee, Effector, memory, and dysfunctional CD8(+) T cell fates in the antitumor immune response, J. Immunol. Res., 2016 (2016), 8941260. https://doi.org/10.1155/2016/8941260 doi: 10.1155/2016/8941260
    [46] C. Gerada, K. M. Ryan, Autophagy, the innate immune response and cancer, Mol. Oncol., 14 (2020), 1913–1929. https://doi.org/10.1002/1878-0261.12774 doi: 10.1002/1878-0261.12774
    [47] N. Karin, Chemokines and cancer: New immune checkpoints for cancer therapy, Curr. Opin. Immunol., 51 (2018), 140–145. https://doi.org/10.1016/j.coi.2018.03.004 doi: 10.1016/j.coi.2018.03.004
    [48] W. Zheng, D. R. E. Ranoa, X. Huang, Y. Hou, K. Yang, E. C. Poli, et al., RIG-I-like receptor LGP2 is required for tumor control by radiotherapy, Cancer Res., 80 (2020), 5633–5641. https://doi.org/10.1158/0008-5472.CAN-20-2324 doi: 10.1158/0008-5472.CAN-20-2324
    [49] C. Bourquin, A. Pommier, C. Hotz, Harnessing the immune system to fight cancer with Toll-like receptor and RIG-I-like receptor agonists, Pharmacol. Res., 154 (2020), 104192. https://doi.org/10.1016/j.phrs.2019.03.001 doi: 10.1016/j.phrs.2019.03.001
    [50] T. H. Tran, T. T. P. Tran, D. H. Truong, H. T. Nguyen, T. T. Pham, C. S. Yong, et al., Toll-like receptor-targeted particles: A paradigm to manipulate the tumor microenvironment for cancer immunotherapy, Acta Biomater., 94 (2019), 82–96. https://doi.org/10.1016/j.actbio.2019.05.043 doi: 10.1016/j.actbio.2019.05.043
    [51] P. Liu, Z. Lu, L. Liu, R. Li, Z. Liang, M. Shen, et al., NOD-like receptor signaling in inflammation-associated cancers: From functions to targeted therapies, Phytomedicine, 64 (2019), 152925. https://doi.org/10.1016/j.phymed.2019.152925 doi: 10.1016/j.phymed.2019.152925
    [52] J. Kwon, S. F. Bakhoum, The cytosolic DNA-sensing cGAS-STING pathway in cancer, Cancer Discov., 10 (2020), 26–39. https://doi.org/10.1158/2159-8290.CD-19-0761 doi: 10.1158/2159-8290.CD-19-0761
    [53] P. de Ron, S. Dremier, P. Winlow, A. Jenkins, E. Hanon, A. N. da Costa, Correlating behaviour and gene expression endpoints in the dopaminergic system after modafinil administration in mouse, Eur. Neuropsychopharmacol., 26 (2016), 729–740. https://doi.org/10.1016/j.euroneuro.2016.01.010 doi: 10.1016/j.euroneuro.2016.01.010
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2477) PDF downloads(100) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog