We prove the well-posedness of a Cauchy problem of the kind:
$ \left\{\begin{array}{@{}l@{}c} \mathcal{L}u = f, & \text{ in }D'(\mathbb{R}^N\times(0,+\infty)),\\ u(x,0) = g(x),&\forall x\in\mathbb{R}^N, \end{array}\right. $
where $ f $ is Dini continuous in space and measurable in time and $ g $ satisfies suitable regularity properties. The operator $ \mathcal{L} $ is the degenerate Kolmogorov-Fokker-Planck operator
$ \mathcal{L} = \sum\limits_{i,j = 1}^q a_{ij}(t)\partial_{x_ix_j}^2+ \sum\limits_{k,j = 1}^N b_{kj}x_k\partial_{x_j}-\partial_t $
where $ \{a_{ij}\}_{ij = 1}^q $ is measurable in time, uniformly positive definite and bounded while $ \{b_{ij}\}_{ij = 1}^N $ have the block structure:
$ \{b_{ij}\}_{ij = 1}^N = \left( \begin{matrix}{} \mathbb{O} & \dots & \mathbb{O} & \mathbb{O} \\ \mathbb{B}_1 & \dots & \mathbb{O} & \mathbb{O} \\ \vdots & \ddots& \vdots & \vdots \\ \mathbb{O} & \dots & \mathbb{B}_\kappa & \mathbb{O} \end{matrix} \right) $
which makes the operator with constant coefficients hypoelliptic, 2-homogeneous with respect to a family of dilations and traslation invariant with respect to a Lie group.
Citation: Tommaso Barbieri. On Kolmogorov Fokker Planck operators with linear drift and time dependent measurable coefficients[J]. Mathematics in Engineering, 2024, 6(2): 238-260. doi: 10.3934/mine.2024011
We prove the well-posedness of a Cauchy problem of the kind:
$ \left\{\begin{array}{@{}l@{}c} \mathcal{L}u = f, & \text{ in }D'(\mathbb{R}^N\times(0,+\infty)),\\ u(x,0) = g(x),&\forall x\in\mathbb{R}^N, \end{array}\right. $
where $ f $ is Dini continuous in space and measurable in time and $ g $ satisfies suitable regularity properties. The operator $ \mathcal{L} $ is the degenerate Kolmogorov-Fokker-Planck operator
$ \mathcal{L} = \sum\limits_{i,j = 1}^q a_{ij}(t)\partial_{x_ix_j}^2+ \sum\limits_{k,j = 1}^N b_{kj}x_k\partial_{x_j}-\partial_t $
where $ \{a_{ij}\}_{ij = 1}^q $ is measurable in time, uniformly positive definite and bounded while $ \{b_{ij}\}_{ij = 1}^N $ have the block structure:
$ \{b_{ij}\}_{ij = 1}^N = \left( \begin{matrix}{} \mathbb{O} & \dots & \mathbb{O} & \mathbb{O} \\ \mathbb{B}_1 & \dots & \mathbb{O} & \mathbb{O} \\ \vdots & \ddots& \vdots & \vdots \\ \mathbb{O} & \dots & \mathbb{B}_\kappa & \mathbb{O} \end{matrix} \right) $
which makes the operator with constant coefficients hypoelliptic, 2-homogeneous with respect to a family of dilations and traslation invariant with respect to a Lie group.
[1] | T. Barbieri, On Kolmogorov Fokker Planck equations with linear drift and time dependent measurable coefficients, MS. Thesis, Politecnico di Milano, 2022. Available from: http://hdl.handle.net/10589/196258. |
[2] | S. Biagi, M. Bramanti, Schauder estimates for Kolmogorov-Fokker-Planck operators with coefficients measurable in time and Hölder continuous in space, J. Math. Anal. Appl., 533 (2024), 127996. https://doi.org/10.1016/j.jmaa.2023.127996 doi: 10.1016/j.jmaa.2023.127996 |
[3] | S. Biagi, M. Brmanti, B. Stroffolini, KFP operators with coefficients measurable in time and Dini continuous in space, J. Evol. Equ., unpublished work, 2023. |
[4] | M. Bramanti, S. Polidoro, Fundamental solutions for Kolmogorov-Fokker-Planck operators with time-depending measurable coefficients, Math. Eng., 2 (2020), 734–771. https://doi.org/10.3934/mine.2020035 doi: 10.3934/mine.2020035 |
[5] | M. Di Francesco, A. Pascucci, On a class of degenerate parabolic equations of Kolmogorov type, Appl. Math. Res. eXpress, 2005 (2005), 77–116. https://doi.org/10.1155/AMRX.2005.77 doi: 10.1155/AMRX.2005.77 |
[6] | A. Kolmogorov, Zufallige bewegungen (zur theorie der Brownschen bewegung), Ann. Math., 35 (1934), 116–117. |
[7] | L. P. Kuptsov, Fundamental solutions of certain degenerate second-order parabolic equations, Math. Notes Acad. Sci. USSR, 31 (1982), 283–289. https://doi.org/10.1007/BF01138938 doi: 10.1007/BF01138938 |
[8] | E. Lanconelli, S. Polidoro, On a class of hypoelliptic evolution operators, Rend. Sem. Mat.-Univ. Pol. Torino, 52 (1994), 29–63. |
[9] | G. Lucertini, S. Pagliarani, A. Pascucci, Optimal regularity for degenerate Kolmogorov equations with rough coefficients, arXiv, 2022. https://doi.org/10.48550/arXiv.2204.14158 |
[10] | I. Sonin, On a class of degenerate diffusion processes, Theory Prob. Appl., 12 (1967), 490–496. https://doi.org/10.1137/1112059 doi: 10.1137/1112059 |
[11] | M. Weber, The fundamental solution of a degenerate partial differential equation of parabolic type, Trans. Amer. Math. Soc., 71 (1951), 24–37. |