Research article

Signorini problem as a variational limit of obstacle problems in nonlinear elasticity

  • Received: 02 February 2024 Revised: 06 March 2024 Accepted: 06 March 2024 Published: 14 March 2024
  • An energy functional for the obstacle problem in linear elasticity is obtained as a variational limit of nonlinear elastic energy functionals describing a material body subject to pure traction load under a unilateral constraint representing the rigid obstacle. There exist loads pushing the body against the obstacle, but unfit for the geometry of the whole system body-obstacle, so that the corresponding variational limit turns out to be different from the classical Signorini problem in linear elasticity. However, if the force field acting on the body fulfils an appropriate geometric admissibility condition, we can show coincidence of minima. The analysis developed here provides a rigorous variational justification of the Signorini problem in linear elasticity, together with an accurate analysis of the unilateral constraint.

    Citation: Francesco Maddalena, Danilo Percivale, Franco Tomarelli. Signorini problem as a variational limit of obstacle problems in nonlinear elasticity[J]. Mathematics in Engineering, 2024, 6(2): 261-304. doi: 10.3934/mine.2024012

    Related Papers:

  • An energy functional for the obstacle problem in linear elasticity is obtained as a variational limit of nonlinear elastic energy functionals describing a material body subject to pure traction load under a unilateral constraint representing the rigid obstacle. There exist loads pushing the body against the obstacle, but unfit for the geometry of the whole system body-obstacle, so that the corresponding variational limit turns out to be different from the classical Signorini problem in linear elasticity. However, if the force field acting on the body fulfils an appropriate geometric admissibility condition, we can show coincidence of minima. The analysis developed here provides a rigorous variational justification of the Signorini problem in linear elasticity, together with an accurate analysis of the unilateral constraint.



    加载中


    [1] D. R. Adams, L. I. Hedberg, Function spaces and potential theory, Springer, 1999.
    [2] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Academic, 2000.
    [3] V. Agostiniani, G. Dal Maso, A. De Simone, , Linear elasticity obtained from finite elasticity by $\Gamma$-convergence under weak coerciveness conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 715–735. https://doi.org/10.1016/j.anihpc.2012.04.001 doi: 10.1016/j.anihpc.2012.04.001
    [4] R. Alicandro, G. Dal Maso, G. Lazzaroni, M. Palombaro, Derivation of a linearised elasticity model from singularly perturbed multiwell energy functionals, Arch. Rational Mech. Anal., 230 (2018), 1–45. https://doi.org/10.1007/s00205-018-1240-6 doi: 10.1007/s00205-018-1240-6
    [5] R. Alicandro, G. Lazzaroni, M. Palombaro, Derivation of linear elasticity for a general class of atomistic energies, SIAM J. Math. Anal., 53 (2021), 5060–5093. https://doi.org/10.1137/21M1397179 doi: 10.1137/21M1397179
    [6] G. Anzellotti, S. Baldo, D. Percivale, Dimension reduction in variational problems, asymptotic development in $\Gamma$-convergence and thin structures in elasticity, Asymptotic Anal., 9 (1994), 61–100. https://doi.org/10.3233/ASY-1994-9105 doi: 10.3233/ASY-1994-9105
    [7] H. Attouch, G. Buttazzo, G. Michaille, Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization, 2 Eds., Society for Industrial and Applied Mathematics, 2014. https://doi.org/10.1137/1.9781611973488
    [8] B. Audoly, Y. Pomeau, Elasticity and geometry, Oxford University Press, 2010.
    [9] C. Baiocchi, F. Gastaldi, F. Tomarelli, Inéquations variationnelles non coercives, C. R. Acad. Sci. Paris, 299 (1984), 647–650.
    [10] C. Baiocchi, F. Gastaldi, F. Tomarelli, Some existence results on noncoercive variational inequalities, Ann. Scuola Normale Sup. Pisa., Cl.Sci., 13 (1986), 617–659.
    [11] T. Bagby, Quasi topologies and rational approximation, J. Funct. Anal., 10 (1972), 259–268. https://doi.org/10.1016/0022-1236(72)90025-0 doi: 10.1016/0022-1236(72)90025-0
    [12] C. Baiocchi, G. Buttazzo, F. Gastaldi, F. Tomarelli, General existence theorems for unilateral problems in continuum mechanics, Arch. Rational Mech. Anal., 100 (1988), 149–189. https://doi.org/10.1007/BF00282202 doi: 10.1007/BF00282202
    [13] P. Bella, R. V. Kohn, Wrinkles as the result of compressive stresses in an annular thin film, Commun. Pure Appl. Math., 67 (2014), 693–747. https://doi.org/10.1002/cpa.21471 doi: 10.1002/cpa.21471
    [14] G. Buttazzo, F. Tomarelli, Compatibility conditions for nonlinear Neumann problems, Adv. Math., 89 (1991), 127–143. https://doi.org/10.1016/0001-8708(91)90076-J doi: 10.1016/0001-8708(91)90076-J
    [15] M. Carriero, A. Leaci, F. Tomarelli, Strong solution for an elastic-plastic plate, Calc. Var. Partial Differ. Equ., 2 (1994), 219–240. https://doi.org/10.1007/BF01191343 doi: 10.1007/BF01191343
    [16] G. Dal Maso, An introduction to $\Gamma$-convergence, Boston: Birkhäuser Boston Inc., 1993.
    [17] G. Dal Maso, P. Longo, $\Gamma$-limits of obstacles, Ann. Mat. Pura Appl., 128 (1981), 1–50. https://doi.org/10.1007/BF01789466 doi: 10.1007/BF01789466
    [18] G. Dal Maso, M. Negri, D. Percivale, Linearized elasticity as $\Gamma$-limit of finite elasticity, Set-Valued Anal., 10 (2002), 165–183. https://doi.org/10.1023/A:1016577431636 doi: 10.1023/A:1016577431636
    [19] L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, New York: Chapman and Hall/CRC, 2015. https://doi.org/10.1201/b18333
    [20] M. Egert, P. Tolksdorf, Characterizations of Sobolev functions that vanish on a part of the boundary, Discrete Cont. Dyn. Syst.-Ser. S, 10 (2016), 729–743. https://doi.org/10.3934/dcdss.2017037 doi: 10.3934/dcdss.2017037
    [21] G. Fichera, Sul problema elastostatico di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei, Ⅷ. Ser., Rend., Cl. Sci. Fis. Mat. Nat., 8 (1963), 138–142.
    [22] G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Atti. Acad. Naz. Lincei. Mem. Cl. Sci. Nat., 8 (1964), 91–140.
    [23] G. Fichera, Boundary value problems of elasticity with unilateral constraints, In: C. Truesdell, Linear theories of elasticity and thermoelasticity, Springer, 1972,391–424. https://doi.org/10.1007/978-3-662-39776-3_4
    [24] G. Frieseke, R. D. James, S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Commun. Pure Appl. Math., 55 (2002), 1461–1506. https://doi.org/10.1002/cpa.10048 doi: 10.1002/cpa.10048
    [25] G. Frieseke, R. D. James, S. Müller, A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence, Arch. Rational Mech. Anal., 180 (2006), 183–236. https://doi.org/10.1007/s00205-005-0400-7 doi: 10.1007/s00205-005-0400-7
    [26] D. Grandi, M. Kru$\check{\hbox{z}}$ik, E. Mainini, U. Stefanelli, Equilibrium for multiphase solids with Eulerian interfaces, J. Elast., 142 (2020), 409–431. https://doi.org/10.1007/s10659-020-09800-w doi: 10.1007/s10659-020-09800-w
    [27] M. E. Gurtin, An introduction to continuum mechanics, Academic Press, 1981.
    [28] V. P. Havin, Approximation in the mean by analytic functions, Dokl. Akad. Nauk SSSR, 178 (1968), 1025–1028.
    [29] R. Haller-Dintelmann, J. Rehberg, M. Egert, Hardy's inequality for functions vanishing on a part of the boundary, Potential Anal., 43 (2015), 49–78. https://doi.org/10.1007/s11118-015-9463-8 doi: 10.1007/s11118-015-9463-8
    [30] T. Kilpelainen, A remark on the uniqueness of quasicontinuous functions, Ann. Acad. Sci. Fenn. Math., 23 (1998), 261–262.
    [31] D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, New York: Academic Press, 1980.
    [32] A. E. Love, A treatise on the mathematical theory of elasticity, Dover, 1944.
    [33] J. L. Lions, G. Stampacchia, Variational inequalities, Commun. Pure Appl. Math., 20 (1967), 493–519. https://doi.org/10.1002/cpa.3160200302 doi: 10.1002/cpa.3160200302
    [34] F. Maddalena, D. Percivale, Variational models for peeling problems, Interfaces Free Bound., 10 (2008), 503–516. https://doi.org/10.4171/ifb/199 doi: 10.4171/ifb/199
    [35] F. Maddalena, D. Percivale, G. Puglisi, L. Truskinowsky, Mechanics of reversible unzipping, Continuum Mech. Thermodyn., 21 (2009), 251–268. https://doi.org/10.1007/s00161-009-0108-2 doi: 10.1007/s00161-009-0108-2
    [36] F. Maddalena, D. Percivale, F. Tomarelli, Adhesive flexible material structures, Discrete Cont. Dyn. Syst.-Ser. S, 17 (2012), 553–574. https://doi.org/10.3934/dcdsb.2012.17.553 doi: 10.3934/dcdsb.2012.17.553
    [37] F. Maddalena, D. Percivale, F. Tomarelli, Elastic structures in adhesion interaction, In: G. Buttazzo, A. Frediani, Variational analysis and aerospace engineering: mathematical challenges for aerospace design, Springer, 66 (2012), 289–304. https://doi.org/10.1007/978-1-4614-2435-2_12
    [38] F. Maddalena, D. Percivale, F. Tomarelli, Local and nonlocal energies in adhesive interaction, IMA J. Appl. Math., 81 (2016), 1051–1075. https://doi.org/10.1093/imamat/hxw044 doi: 10.1093/imamat/hxw044
    [39] F. Maddalena, D. Percivale, F. Tomarelli, Variational problems for Föppl-von Kármán plates, SIAM J. Math. Anal., 50 (2018), 251–282. https://doi.org/10.1137/17M1115502 doi: 10.1137/17M1115502
    [40] F. Maddalena, D. Percivale, F. Tomarelli, The gap between linear elasticity and the variational limit of finite elasticity in pure traction problems, Arch. Rational Mech. Anal., 234 (2019), 1091–1120. https://doi.org/10.1007/s00205-019-01408-2 doi: 10.1007/s00205-019-01408-2
    [41] F. Maddalena, D. Percivale, F. Tomarelli, A new variational approach to linearization of traction problems in elasticity, J. Optim. Theory Appl., 182 (2019), 383–403, https://doi.org/10.1007/s10957-019-01533-8 doi: 10.1007/s10957-019-01533-8
    [42] F. Maddalena, D. Percivale, F. Tomarelli, Elastic-brittle reinforcement of flexural structures, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., 32 (2021), 691–724. https://doi.org/10.4171/RLM/954 doi: 10.4171/RLM/954
    [43] E. Mainini, R. Ognibene, D. Percivale, Asymptotic behavior of constrained local minimizers in finite elasticity, J. Elast., 152 (2022), 1–27. https://doi.org/10.1007/s10659-022-09946-9 doi: 10.1007/s10659-022-09946-9
    [44] E. Mainini, D. Percivale, Variational linearization of pure traction problems in incompressible elasticity, Z. Angew. Math. Phys., 71 (2020), 146. https://doi.org/10.1007/s00033-020-01377-7 doi: 10.1007/s00033-020-01377-7
    [45] E. Mainini, D. Percivale, Sharp conditions for the linearization of finite elasticity, Calc. Var. Partial Differ. Equ., 60 (2021), 164. https://doi.org/10.1007/s00526-021-02037-y doi: 10.1007/s00526-021-02037-y
    [46] C. Maor, M. G. Mora, Reference configurations versus optimal rotations: a derivation of linear elasticity from finite elasticity for all traction forces, J. Nonlinear Sci., 31 (2021), 62. https://doi.org/10.1007/s00332-021-09716-2 doi: 10.1007/s00332-021-09716-2
    [47] M. G. Mora, F. Riva, Pressure live loads and the variational derivation of linear elasticity, Proc. Roy. Soc. Edinb., 153 (2022), 1929–1964. https://doi.org/10.1017/prm.2022.79 doi: 10.1017/prm.2022.79
    [48] D. Percivale, F. Tomarelli, Scaled Korn-Poincaré inequality in BD and a model of elastic plastic cantilever, Asymptotic Anal., 23 (2000), 291–311.
    [49] D. Percivale, F. Tomarelli, From SBD to SBH: the elastic-plastic plate, Interfaces Free Bound., 4 (2002), 137–165. https://doi.org/10.4171/ifb/56 doi: 10.4171/ifb/56
    [50] D. Percivale, F. Tomarelli, A variational principle for plastic hinges in a beam, Math. Mod. Meth. Appl. Sci., 19 (2009), 2263–2297. https://doi.org/10.1142/S021820250900411X doi: 10.1142/S021820250900411X
    [51] D. Percivale, F. Tomarelli, Smooth and broken minimizers of some free discontinuity problems, In: P. Colli, A. Favini, E. Rocca, G. Schimperna, J. Sprekels, Solvability, regularity, and optimal control of boundary value problems for PDEs, Springer INdAM Series, 22 (2017), 431–468, https://doi.org/10.1007/978-3-319-64489-9_17
    [52] P. Podio-Guidugli, On the validation of theories of thin elastic structures, Meccanica, 49 (2014), 1343–1352. https://doi.org/10.1007/s11012-014-9901-5 doi: 10.1007/s11012-014-9901-5
    [53] B. D. Reddy, F. Tomarelli, The obstacle problem for an elastoplastic body, Appl. Math. Optim., 21 (1990), 89–110. https://doi.org/10.1007/BF01445159 doi: 10.1007/BF01445159
    [54] A. Signorini, Questioni di elasticit non linearizzata e semilinearizzata, Rend. Mat. Appl., 18 (1959), 95–139.
    [55] F. Tomarelli, Signorini problem in Hencky plasticity, Ann. Univ. Ferrara, 36 (1990), 73–84. https://doi.org/10.1007/BF02837208 doi: 10.1007/BF02837208
    [56] C. Truesdell, W. Noll, The non-linear field theories of mechanics, In: The non-linear field theories of mechanics/die nicht-linearen feldtheorien der mechanik, Springer, 1965, 1–541. https://doi.org/10.1007/978-3-642-46015-9_1
    [57] W. P. Ziemer, Weakly differentiable functions, Springer, 1989.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(846) PDF downloads(220) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog