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Abstract: An energy functional for the obstacle problem in linear elasticity is obtained as a variational
limit of nonlinear elastic energy functionals describing a material body subject to pure traction load
under a unilateral constraint representing the rigid obstacle. There exist loads pushing the body against
the obstacle, but unfit for the geometry of the whole system body-obstacle, so that the corresponding
variational limit turns out to be different from the classical Signorini problem in linear elasticity.
However, if the force field acting on the body fulfils an appropriate geometric admissibility condition,
we can show coincidence of minima. The analysis developed here provides a rigorous variational
justification of the Signorini problem in linear elasticity, together with an accurate analysis of the
unilateral constraint.
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1. Introduction

In its original formulation (see [54]) the Signorini problem in linear elastostatics consists in finding
the equilibrium configuration of an elastic body Ω resting on a frictionless rigid support E ⊂ ∂Ω in
its natural configuration and subject to body forces and surface forces acting on ∂Ω\E; precisely, if
u : Ω → R3 denotes the displacement field of the body, C represents the classical linear elasticity
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tensor and E denotes the linear strain tensor, we assume that

Q(x,E) :=
1
2
ETC(x)E

is the corresponding strain energy density (see [27]) and that the body is subject to a load system of
forces f : Ω→ R3 and g : ∂Ω\E → R3 such that

L(u) :=
∫

Ω

f · u dx +

∫
∂Ω\E

g · u dH2 (1.1)

is the load potential, where H2 is the two-dimensional Hausdorff measure. Assuming that H2(E)>0,
the variational formulation of the Signorini problem consists in finding a minimizer of the functional

E(u) :=
∫

Ω

Q
(
x,E(u)

)
dx − L(u) (1.2)

among all u in the Sobolev space H1(Ω;R3) such that u·n ≥ 0 H2-a.e. on E, where n is the inward unit
vector normal to ∂Ω. A classical result (see [22]) states that a solution of (1.2) exists if the following
condition is verified: Every infinitesimal rigid displacement v fulfills L(v)≤0 if v · n≥0 H2-a.e. on
E andL(v)=0 if and only if v ·n ≡ 0 H2-a.e. on E. Moreover if E is planar, that is E ⊂ ∂Ω∩{x3 = 0},
and if L(e3) < 0, f ∈ C0,α(Ω;R3) and g ∈ L2(∂Ω \ E;R3) then a minimizer of (1.2) exists if and only if
the above condition holds (see [22, Theorem XXXII] and [10]): In particular if Ω is the cylinder

Ω := {x : (x1 − ax3)2 + x2
2 < R2, 0 < x3 < H},

E := {x : x2
1 + x2

2 < R2, x3 = 0},

with a ≥ 0, R > 0, H > 0, and f =−e3, g=0, then a minimum is attained if and only if aH < 2R that is
0 ≤ ϑ :=arctan a < arctan 2R/H where ϑ is the inclination of the cylinder with respect to the x3-axis.

More recent formulations of constrained problems in the calculus of variations use the notion of
capacity (see Section 2 for details) leading to consider more general geometries since any set of null
capacity has nullH2 measure (see [57, Theorem 4]) but there exist sets of nullH2 measure and strictly
positive capacity (see [1, Theorem 5.4.1]). Indeed, a proper generalization of the latter case is to
assume that the set E ⊂ {x3 ≥ 0} has positive capacity and accordingly modify the obstacle condition
by requiring x3 + u3(x) ≥ 0 on E up to a set of null capacity (shortly, q.e. on E): The existence of
minimizers for this general setting was proved by [12, Theorem 4.5]. Although the original obstacle
formulation given in [54] may look different from the generalized notion exploited in this work, it can
be shown (see Remark 2.3) that if the set E ⊂ ∂Ω is regular in an appropriate sense (see Remark 2.3)
then the two frameworks coincide.

Like in the analysis of many problems in linear elastostatics, it is quite natural to ask whether
there exists a sequence of functionals in finite elasticity whose minimizing sequences converge to a
minimizer of (1.2), possibly under suitable compatibility conditions on the functional L: Such an
approach provides a variational justification of the linearized theory and could help finding other
reasonable models rigorously deduced.

In this paper we show sharp conditions on L entailing that a wide class of energy functionals in
finite elasticity fulfill this variational property in the context of obstacle problems; in addition we also
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show examples of loads leading to the failure of this convergence. In this perspective, denoting by
y : Ω → R3 the deformation field and by h > 0 an adimensional parameter, we introduce a family of
energy functionals defined by

Fh(y) := h−2
∫

Ω

W
(
x,∇y(x)

)
dx − h−1L(y − x) (1.3)

where L is defined as in (1.1) and W : Ω × R3×3 → [0,+∞] is the strain energy density. For every
x ∈ Ω, the function W(x, ·) is assumed to be frame indifferent and attaining its minimum value 0 at
rigid deformations only. We also assume thatW is C2-regular in a neighborhood of rigid deformations
and satisfies a natural coercivity condition, see (2.22).

According to a standard approach in the deduction of linearized theories in continuum mechanics,
if yh is a minimizing sequence of Fh (see (2.40)) in a class Ah of deformations satisfying a suitable
obstacle constraint, we aim to investigate whether F (yh) converges, as h goes to 0, to the minimum of
E (with C = D2W(x, I)) among displacements fulfilling u3(x) + x3 ≥ 0 q.e. on E. Since here the aim
is the deduction of the Signorini problem in linear elasticity, it is natural to assume that the unilateral
constraint in nonlinear approximating problems takes the form x3 + h−1(yh,3 − x3) ≥ 0 on E that is

yh,3 ≥ (1 − h)x3 on E. (1.4)

We define the functionals Gh coupling the energies Fh with the unilateral constraint due to rigid
obstacle:

Gh(y) =

 Fh(y), if y3≥ (1 − h)x3 on E,
+∞, else,

(1.5)

where E, the portion of the elastic body sensitive to the obstacle, has an horizontal projection with non
negligible capacity. Moreover we have to assume that

L(y − x) ≤ 0 (1.6)

for every deformation y = y(x) fulfilling (1.4) and such that∫
Ω

W(x,∇y) dx = 0. (1.7)

On the contrary if y satisfied (1.4) and (1.7) but L(y − x) > 0 then

Gh(y) = −h−1L(y − x)→ −∞ as h→ 0+.

Under our assumptions onW, Eq (1.7) holds true if and only if y is rigid deformation, i.e., y(x) = Rx+c
for some R∈S O(3) and c ∈ R3, while (1.4) is fulfilled by these y if and only if (Rx)3 + c3 ≥ (1 − h)x3

on E, a condition which is satisfied for every h>0 if and only if

c3 ≥ − ((R − I)x)3 on E. (1.8)

Thus, due to (1.6) we have to assume this geometrical compatibility between load and obstacle

L((R − I)x + c) ≤ 0, ∀R ∈ S O(3), ∀c ∈ R3 verifying (1.8). (1.9)
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Nevertheless though (1.9) entails the compatibility assumptions of Theorem 4.5 in [12] and though
compatibility assumptions of Theorem 4.5 in [12] entail the existence of minimizers of the
Signorini functional in linear elasticity, these compatibility assumptions alone do not warrant the
equiboundedness from below of approximating functionals Gh (see Example 3.6 below). In the main
result of this paper (Theorem 2.4) we show that if L satisfies the necessary condition (1.9) together
with L(e3) < 0 and

L ( (Rx − x)1 e1 + (Rx − x)2 e2 ) ≤ 0, ∀R ∈ S O(3), (1.10)

then, under some capacitary assumptions on E (see (2.13)), we have

lim
h→0

(inf Gh) = minG, (1.11)

where

G(u) :=


∫

Ω

Q(x,E(u)) dx −max
SL,E

L(Ru), if x3 + u3≥0 on E,

+∞, else,
(1.12)

Q(x,F) :=
1
2

FT D2W(x, I) F, F ∈ R3×3, x ∈ Ω,

SL,E =

{
R ∈ S O(3) : L ((R − I) x) − min

x∈Eess

(
(Rx)3 − x3

)
L(e3) = 0

}
.

Along this paper Eess denotes the essential part of E with respect to the capacity (see (2.9)), a closed
canonical subset of E such that E \ Eess has null capacity.

Under the hypotheses detailed previously we will show (see Lemma 3.8) that either SL,E ≡ {I} or
SL,E = {R ∈ S O(3) : Re3 = e3} . If SL,E ≡ {I} then clearly G≡ E, hence in this case the minimum of
Signorini problem in linearized elasticity is the limit of the inf Gh but, quite surprisingly, the second
alternative is much more subtle and indeed we are able to exhibit examples such that

minG < minE, (1.13)

namely a gap between limh→0(inf Gh) and minE may appear (see Section 5). However the coincidence
of minimizers of G and Emay hold true even if SL,E is not reduced to the identity matrix: In particular,
if Ω is contained in the upper half-space, E is either Ω or ∂Ω, the load

L(v) :=
∫

Ω

f v3 dx +

∫
∂Ω

g v3 dH2

satisfies condition (1.9) and L(e3) < 0, then L(v) = L(Rv) for every R ∈ SL,E hence minG= minE,
say the energy of minimizing sequences for Gh converges to the minimum energy of E. On the other
hand, it is always possible to rotate the external forces in such a way that GR and ER (the functionals
obtained replacing the load functionalLwithLR defined byLR(v) := L(Rv)) have the same minimum
as shown in Theorem 5.5.

For several contributions facing issues strictly connected with the context of the present paper we
refer to [3–6, 8, 9, 11, 13–19, 21, 23, 25–29, 32–43, 46–53, 55, 56].
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2. Notation and main results

We set a+ := max{a, 0}, a− := max{−a, 0} for every a ∈ R; notations x = (x1, x2, x3) and y =

(y1, y2, y3) represent generic points in R3; e j, j = 1, 2, 3 denote the unitary basis vectors of R3, R3×3 is
the set of 3 × 3 real matrices, endowed with the Euclidean norm |F| =

√
Tr(FT F). R3×3

sym (resp. R3×3
skew)

denotes the subset of symmetric (resp. skew-symmetric) matrices. For every F ∈ R3×3 we define
sym F := 1

2 (F + FT ), S O(3) will denote the special orthogonal group and for every R ∈ S O(3) there
exist ϑ ∈ [0, 2π] and a ∈ R3, |a| = 1 such that the following Euler-Rodrigues representation formula
holds

Rx = x + sinϑ (a ∧ x) + (1 − cosϑ) (a ∧ (a ∧ x)), ∀ x ∈ R3. (2.1)

For every compact set K ⊂ RN we define the capacity of K by setting (see [1, Definition 2.2.1])

cap K = inf
{
‖w‖2H1(RN ) : w∈C∞0 (RN), w ≥ 1 on K

}
. (2.2)

If G ⊂ RN is open we define (see [1, Definition 2.2.2])

cap G := sup{cap K : K compact, K ⊂ G} (2.3)

and, since (see [1, Proposition 2.2.3])

cap K = inf{cap G : G open, K ⊂ G}, ∀K compact, (2.4)

we may extend the above definitions to an arbitrary set by setting (see [1, Definition 2.2.4])

cap E := inf{cap G : G open, E ⊂ G}, ∀ E ⊂ RN . (2.5)

A straightforward consequence of (2.3) and (2.5) is that

cap E1 ≤ cap E2, ∀ E1 ⊂ E2 ⊂ R
N . (2.6)

On the other hand, for every E ⊂ RN the Bessel capacity is defined as (see [1, Definition 2.3.3])

Cap E := inf
{
‖ f ‖2L2(RN ) : f ≥ 0, a.e. onRN , ( f ∗ g1)(x) ≥ 1 ∀ x ∈ E

}
, (2.7)

where g1 ∈ L1(R3) is the first-order Bessel kernel in RN defined as the inverse Fourier transform of
(1 + |ξ|2)−1/2, say

g1(x) := (2π)−N
∫
R3

(1 + |ξ|2)−1/2eix·ξ dξ =
1

2π

∫ ∞

0
t−(N+1)/2e−π|x|

2/te−t/(4π) dt.

Notice that since f ≥ 0 a.e. we have that f ∗ g1 is everywhere defined if we allow it to take the value
+∞ (see [1, Definition 2.3.1]) and that f ∗ g1 is l.s.c. by Proposition 2.3.2 of [1]. Thus inequality
( f ∗ g1)(x) ≥ 1 for every x ∈ E appearing in formula (2.7) has a precise meaning.

In addition it is possible to show that there exist two constants α, β > 0 such that

αCap E ≤ cap E ≤ βCap E, ∀E ⊂ RN , (2.8)
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(see [1, Definition 2.2.6 and Proposition 2.3.13]).
A property is said to hold quasi-everywhere (q.e. for short) if it holds true outside a set of zero

capacity. It is convenient to introduce (see [12]) a canonical representative of the set E, called the
essential part of E and denoted by Eess, which nevertheless coincides with E itself whenever it is a
smooth closed manifold or the closure of an open subset of RN .

For every set E ⊂ R3 we define the essential part Eess of E (with respect to the capacity) by

Eess :=
⋂
{C : C is closed and cap(E\C) = 0 }. (2.9)

It has been shown in [12] that
Eess is a closed subset of E, (2.10)

cap(E\Eess) = 0, (2.11)

cap E = 0 if and only if Eess = ∅. (2.12)

In the following co A, aff A, ri A, r∂A and proj A denote respectively, the closed convex hull of the
set A ⊂ R3 (say, the intersection of all convex sets containing A), the affine hull of the set A (say, the
smallest affine space containing A), the relative interior of A (say, the interior part of A with respect to
the affine hull of A), the relative boundary of A (say, the boundary of A with respect to the affine hull
of A: ri ∂A = A \ ri A) and the projection of A onto the horizontal plane {x3 = 0}.

Throughout the paper we will assume that

cap(proj(co Eess)) > 0. (2.13)

Notice that cap E > 0 does not imply (2.13) whereas the converse is true: Indeed, if cap E = 0 then
by (2.12) we get Eess =∅ so proj(co Eess)= ∅ and cap(proj(co Eess))=0, a contradiction to (2.13).

In the following Ω will denote the reference configuration of an elastic body and it is always
assumed to be a nonempty, bounded, connected, Lipschitz open set in R3. We need to show that any
function in the Sobolev space H1(Ω;R3) actually has a precise representative defined quasi-everywhere
on the whole Ω with respect to the capacity. Indeed, if u ∈H1(Ω;R3) and v ∈H1(R3;R3) is a Sobolev
extension of u, it is well known (see [1, Proposition 6.1.3]) that the limit

v∗(x) := lim
r↓0

1
|Br(x)|

∫
Br(x)

v(ξ) dξ (2.14)

exists for q.e. x∈R3. The function v∗ is called the precise representative of v and is a quasicontinuous
function in R3, that is to say, for every ε > 0 there exists an open set V ⊂ R3 such that cap V < ε and
v∗ is continuous in R3\V . We claim that if v1, v2 are two distinct Sobolev extensions of u then

v∗1(x) = v∗2(x), q.e. x ∈ Ω. (2.15)

The claim is trivial for q.e. x ∈ Ω, thus we are left to show (2.15) for q.e. x ∈ ∂Ω.
Ler R > 0 such that Ω ⊂ BR(0) and let ΩR := BR(0) \ Ω. Since Ω has Lipschitz boundary it is well

known (see [2]) that

lim
r↓0

|Br(x) ∩ΩR|

|Br(x)|
=

1
2

(2.16)
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and forH2 a.e. x ∈ ∂Ω,

u(x) = lim
r↓0

2
|Br(x)|

∫
Br(x)∩ΩR

v1(ξ) dξ = lim
r↓0

2
|Br(x)|

∫
Br(x)∩ΩR

v2(ξ) dξ, H2 a.e. x ∈∂Ω, (2.17)

where we have denoted again with u the trace of u on ∂Ω. Hence

1
|Br(x)|

∫
Br(x)∩ΩR

(v1(ξ) − v2(ξ)) dξ = 0, H2 a.e. x ∈ ∂Ω,

so, by taking account ∂Ω ⊂ ∂ΩR and by recalling that ∂Ω is Lipschitz, we may apply Theorem 2.1
of [20] to v1 − v2 ∈ H1(ΩR;R3) and we get

1
|Br(x)|

∫
Br(x)∩ΩR

(v1(ξ) − v2(ξ)) dξ = 0, q.e. x ∈ ∂Ω.

Since v1 = v2 = u a.e. in Br(x)\ΩR the claim follows easily by (2.14). Therefore if u ∈ H1(Ω;R3) we
may define its precise representative for quasi-every x on Ω by

u∗(x) = lim
r↓0

1
|Br(x)|

∫
Br(x)

v(ξ) dξ, q.e. x ∈ Ω, (2.18)

where v is any Sobolev extension of u.
The function u∗ is pointwise quasi-everywhere defined by (2.18) and is quasicontinuous on Ω i.e.,

for every ε > 0 there exists a relatively open set V ⊂ Ω such that cap V < ε and u∗ is continuous in
Ω \ V .

2.1. The elastic energy density

Let L3 and B3 denote respectively the σ-algebras of Lebesgue measurable and Borel measurable
subsets of R3 and let W : Ω × R3×3 → [0,+∞] be L3 ×B9-measurable satisfying the following
assumptions, see also [3, 45]:

W(x,RF) =W(x,F), ∀R∈S O(3), ∀ F∈R3×3, for a.e. x∈Ω, (2.19)

min
F
W(x,F) =W(x, I) = 0, for a.e. x ∈ Ω (2.20)

and as far as it concerns the regularity ofW, we assume that there exist an open neighborhood U of
S O(3) in R3×3, an increasing function ω : R+ → R satisfying limt→0+ ω(t) = 0 and a constant K > 0
such that for a.e. x ∈ Ω

W(x, ·) ∈ C2(U), |D2W(x, I)| ≤ K and

|D2W(x,F) − D2W(x,G)| ≤ ω(|F −G|), ∀ F,G ∈ U.
(2.21)

Moreover we assume that there exists C > 0 such that for a.e. x ∈ Ω

W(x,F) ≥ C(d(F, S O(3)))2, ∀F ∈ R3×3, (2.22)

where d( · , S O(3)) denotes the Euclidean distance function from the set of rotations.
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The frame indifference assumption (2.19) implies that there exists a functionV such that

W(x,F) = V(x, 1
2 (FT F − I)), for a.e. x ∈ Ω, ∀F ∈ R3×3. (2.23)

By (2.19)–(2.21), for a.e. x ∈ Ω, we haveW(x,R) = DW(x,R) = 0 for any R ∈ S O(3). By (2.23),
for a.e. x ∈ Ω, given B ∈ R3×3 and h > 0, we have

W(x, I + hB) = V(x, h symB + 1
2h2BT B)

and (2.20), (2.21) together imply

lim
h→0

h−2W(x, I + hB) =
1
2

symB D2V(x, 0) symB =
1
2

BT D2W(x, I) B, ∀B ∈ R3×3.

Hence, by (2.22) and polar decomposition [27], we obtain, for a.e. x∈Ω and every B∈R3×3, eventually
as h→ 0+ (since det(I + hB)>0 for small h)

1
2

BT D2W(x, I) B = lim
h→0

h−2W(x, I + hB) ≥ lim sup
h→0

Ch−2 d2(I + hB, S O(3))

= lim sup
h→0

Ch−2
∣∣∣∣ √(I + hB)T (I + hB) − I

∣∣∣∣2 = C|symB|2.

Moreover, as noticed also in [44], by expressing the remainder of Taylor’s expansion in terms of the
x-independent modulus of continuity ω of D2W(x, ·) on the setU from (2.21), we have∣∣∣∣∣∣W(x, I + hB) −

h2

2
symB D2W(x, I) symB

∣∣∣∣∣∣ ≤ h2ω(h|B|)|B|2 (2.24)

for any small enough h (such that hB ∈ U). Similarly, V(x, ·) is C2 in a neighborhood of the origin
in R3×3, with an x-independent modulus of continuity η : R+ → R, which is increasing and such that
limt→0+ η(t) = 0, and we have∣∣∣∣∣∣V(x, hB) −

h2

2
symB D2V(x, 0) symB

∣∣∣∣∣∣ ≤ h2η(h|B|)|B|2 (2.25)

for any small enough h.
We mention a general class of energy densities W (the so called Yeoh materials) fulfilling the

assumptions above (2.19)–(2.22) and for which the main result of the present paper (see Theorem 2.4
below) applies.

Example 2.1. For simplicity, we consider the homogeneous case and assume that a standard isochoric-
volumetric decomposition of elastic energy density by setting

W(F) :=

 Wiso

(
F

(det F)1/3

)
+Wvol(F), if det F > 0,

+∞, if det F ≤ 0,
(2.26)

whereWiso is an energy density of Yeoh type which is defined by choosing

Wiso(F) :=
3∑

k=1

ck(|F|2 − 3)k (2.27)
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with coefficients ck > 0 andWvol(F) = g(det F) for some convex g ∈ C2(R+) such that
g(t) ≥ 0 for all t > 0, g(t) = 0 if and only if t = 1,

g′′(1) > 0, limt→0+ g(t) = +∞,

there exists C′ > 0 and r ≥ 2 such that g(t) ≥ C′tr, for t > 0 sufficiently large.

(2.28)

It is easy to check that with this choice the energy density satisfies all assumptions from (2.19) to (2.21)
while inequality (2.22) has been proven in [43].

It is worth noticing that when material constants are suitably chosen then also Ogden-type energies
may fulfil assumptions (2.19)–(2.22) and we refer to [43] for all details.

2.2. External forces

We introduce a body force field f ∈ L6/5(Ω,R3) and a surface force field g ∈ L4/3(∂Ω,R3). From now
on, f and g will always be understood to satisfy these summability assumptions. The load functional is
the following linear functional

L(v) :=
∫

Ω

f · v dx +

∫
∂Ω

g · v dH2(x), v ∈ H1(Ω,R3). (2.29)

We note that since Ω is a bounded Lipschitz domain, the Sobolev embedding H1(Ω,R3) ↪→

L6(Ω,R3) and the Sobolev trace embedding H1(Ω,R3) ↪→ L4(∂Ω,R3) imply that L is a bounded
functional over H1(Ω,R3) and throughout the paper we denote its norm with ‖L‖∗.

For every R∈S O(3) we set

CR := {c : c3 ≥ − min
x∈Eess

((Rx)3 − x3)} (2.30)

and, as we have observed in the Introduction, we must assume the following geometrical compatibility
between load and obstacle

L((R − I)x + c) ≤ 0, ∀R ∈ S O(3), ∀c ∈ CR (2.31)

together with
L ((Rx − x)α eα) ≤ 0, ∀R ∈ S O(3), (2.32)

the summation convention over repeated index α = 1, 2 being understood all along this paper. It can
be shown that condition (2.31) is equivalent to (see Remark 3.4 below)

L(e3) ≤ 0 = L(e1) = L(e2), Φ(R, E,L) ≤ 0, ∀R∈S O(3), (2.33)

where we have set
Φ(R, E,L) := L((R − I)x) − L(e3) min

x∈Eess
{((Rx)3 − x3)}

and from now on we will use (2.33) in place of (2.31). On the other hand Remark 4.5 below will show
that also condition (2.32) is in fact unavoidable.
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2.3. Energy functionals

If E ⊂Ω ⊂ {x : x3 ≥ 0}, the classical Signorini problem in linear elasticity can be described as the
minimization of the functional E : H1(Ω,R3)→ R ∪ {+∞} defined by

E(u) :=


∫

Ω

Q(x,E(u)) dx − L(u), if u ∈ A,

+∞, otherwise in H1(Ω,R3),
(2.34)

where E(u) := sym∇u, Q(x,F) = 1
2 FTCF with C = D2W(x, I) and A denotes the set of admissible

displacements, defined by

A :=
{

u ∈ H1(Ω;R3) : u∗3(x) + x3 ≥ 0 q.e x∈E
}
. (2.35)

The meaning of such constraint is that, if the portion E of the elastic body is contained in {x3 ≥ 0} in
the reference configuration, then the deformed configuration of E, namely {y(x) := x + u(x), x∈E}, is
constrained to remain in {y3 ≥ 0}.

For every y ∈ H1(Ω,R3) we introduce the set

M(y) := argmin
{∫

Ω

|∇y − R|2 dx : R ∈ S O(3)
}
. (2.36)

Thus, due to the rigidity inequality of [24], there exists a constant C = C(Ω) > 0 such that for every
y ∈ H1(Ω,R3) and every R ∈ M(y)∫

Ω

(
d
(
∇y, S O(3)

))2
dx ≥ C

∫
Ω

|∇y − R|2 dx , (2.37)

where d
(
F, S O(3)

)
:= min{|F − R| : R ∈ S O(3)}.

We introduce the set of admissible deformations Ah as

Ah : = { y∈H1(Ω,R3) : y∗3(x) − x3 ≥ −hx3 q.e. x∈E } (2.38)

and the rescaled finite elasticity functionals Gh : H1(Ω,R3)→ R ∪ {+∞} by setting

Gh(y) =


h−2

∫
Ω

W(x,∇y) dx − h−1L(y − x), if y ∈ Ah,

+∞, otherwise.

(2.39)

It is readily seen that, for every R ∈ S O(3) and for every c ∈ R3 such that

c3 ≥ −min
Eess

((Rx)3 − x3)

the map y(x) := Rx + c belongs to Ah for every h > 0. In the sequel we use the short notations
G j := Gh j and A j := Ah j whenever {h j} j∈N is a sequence of strictly positive real numbers such that
h j → 0+ as j→ +∞.
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We say that (y j) j∈N⊂H1(Ω,R3) is a minimizing sequence of the sequence of functionals G j if

lim
j→+∞

(
G j(y j) − inf

H1(Ω,R3)
G j

)
= 0. (2.40)

The main focus of the paper is to investigate whether minimizers of (2.34) can be approximated by
minimizing sequences of the sequence of functionals G j, as defined by (2.39) and (2.40).

To this end we introduce the functionals I, G̃, G : H1(Ω,R3)→ R ∪ {+∞} defined by

I(u) := min
b∈R2

∫
Ω

Q(x,E(u) +
1
2

bα(eα ⊗ e3 + e3 ⊗ eα)) dx, (2.41)

G̃(u) :=

 I(u) − max
R∈SL,E

L(Ru), if u ∈ A,

+∞, otherwise in H1(Ω,R3),
(2.42)

and

G(u) :=


∫

Ω

Q(x,E(u) dx − max
R∈SL,E

L(Ru), if u ∈ A,

+∞, otherwise in H1(Ω,R3),
(2.43)

where
SL,E = {R ∈ S O(3) : Φ(R, E,L) = 0} . (2.44)

Remark 2.2. It is worth noticing that G ≤ E, since I ∈ SL,E and it is straightforward checking that
I, G̃, G are all continuous with respect to the strong convergence in H1(Ω;R3).

Before stating the main result in Theorem 2.4, we show the next Remark with some insight on
technicalities implied by precise obstacle formulation in the Sobolev space H1(Ω).

Remark 2.3. If w ∈ H1(Ω) then w− ∈H1(Ω) too. Moreover, both (w−)∗ and (w∗)− are quasicontinuous
in Ω and (w−)∗ = (w∗)− = w− a.e. in Ω. Then, by [30], (w−)∗ = (w∗)− q.e. in Ω. Therefore the condition
(w−)∗ = 0 q.e. in Eess is equivalent to w∗ ≥ 0 q.e. in Eess.

In particular we claim that
(w−)∗ = 0 q.e. in Ω (2.45)

is equivalent to
w ≥ 0 a.e. in Ω and w ≥ 0 H2 a.e. on ∂Ω. (2.46)

Indeed if w ≥ 0 a.e. in Ω then (w−)∗ = 0 a.e. in Ω and hence (w−)∗ = 0 q.e. in Ω.
If w ≥ 0 H2 a.e. on ∂Ω and v is a Sobolev extension of w− then

lim
r↓0

1
|Br(x)∩Ω|

∫
Br(x)∩Ω

v(ξ) dξ = lim
r↓0

1
|Br(x)\Ω|

∫
Br(x)\Ω

v(ξ) dξ = 0, H2 a.e. x∈∂Ω.

and by taking (2.16) into account we get

lim
r↓0

2
|Br(x)|

∫
Br(x)∩Ω

v(ξ) dξ = lim
r↓0

2
|Br(x)|

∫
Br(x)\Ω

v(ξ) dξ = 0, H2 a.e. x∈∂Ω.
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By recalling that Ω is a Lipschitz set, it is easily checked that ∂Ω is Ahlfors 2-regular, that is there are
constants c1, c2 > 0 such that

c1r2 ≤ H2(∂Ω ∩ Br(x)) ≤ c2r2 (2.47)

for every 0< r<diam(∂Ω) and for every x ∈ ∂Ω. Therefore if we choose R>0 such that Ω⊂BR(0) we
may apply Proposition 6.1.3. of [1] and Theorem 2.1 of [20] both in H1(Ω) and in H1(BR(0) \ Ω) and
we get

lim
r↓0

2
|Br(x)|

∫
Br(x)∩Ω

v(ξ) dξ = lim
r↓0

2
|Br(x)|

∫
Br(x)\Ω

v(ξ) dξ = 0, q.e. x ∈ ∂Ω,

that is (2.46) implies (2.45).
Conversely if (2.45) holds then (w−)∗ = 0 a.e. in Ω and H2 a.e. on ∂Ω. Therefore w ≥ 0 a.e. in Ω

and by recalling again that the negative part of the trace of w and the trace of its negative part coincide
H2 a.e. on ∂Ω we get w ≥ 0 H2 a.e. on ∂Ω thus proving (2.46) and the claim.

Similarly, again by Theorem 2.1 of [20], if Eess ⊂ ∂Ω is Ahlfors 2-regular then the condition w ≥ 0
q.e. on E is equivalent to w ≥ 0 H2 a.e. on E, so the classical framework of [12, 31, 54] is equivalent
to ours in this case as it was claimed in the Introduction.

2.4. The convergence result

The convergence result is stated in the next theorem, referring to (2.36) and (2.40).

Theorem 2.4. Assume (2.13), (2.19)–(2.22), (2.32)–(2.33) and L(e3) < 0. Let h j → 0+ as j → +∞

and let (y j) j∈N ⊂H1(Ω,R3) be a minimizing sequence of G j. If R j ∈M(y j) for every j ∈ N, then there
are c j∈R

3 such that the sequence

u j(x) := h j
−1RT

J

{(
y j − c j − R jx

)
α eα + (y j,3 − x3)e3

}
(2.48)

is weakly compact in H1(Ω,R3). Therefore up to subsequences, u j ⇀ u in H1(Ω,R3) and also

G j(y j)→ G̃(u) = min
H1(Ω,R3)

G̃ = min
H1(Ω,R3)

G, as j→ +∞. (2.49)

Remark 2.5. Since G̃ ≤ G then equality min G̃ = minG is equivalent to argminG ⊂ argmin G̃ with
possible strict inclusion (see Remark 5.6), thus in general u may not belong to argminG.

Remark 2.6. Conditions (2.32) and (2.33) are compatible. Indeed set

Ω := {x : x2
1 + x2

2 < 1, 0 < x3 < 1},

E := {x : x2
1 + x2

2 < 1, x3 = 0},
(2.50)

and f = 0, g=−e31E. It is readily seen that L(e3) < 0 = L(e1) = L(e2) and

L((Rx − x)αeα) = 0, Φ(R, E,L) = −π
√

1 − R2
33 ≤ 0, ∀R ∈ S O(3),

thus both (2.32) and (2.33) are fulfilled.
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On the other hand condition (2.32) does not entail (2.33). Indeed if Ω and E are as in (2.50),
f = −e3 g= 0 then is not since if R = e1 ⊗ e1 − e2 ⊗ e2 − e3 ⊗ e3 a direct calculation yields

Φ(R, E,L) = 2
∫

Ω

x3 dx + |Ω|min
Eess

(−2x3) = π > 0. (2.51)

Eventually (2.33) does not imply (2.32), see Remark 4.5.

Example 2.7. Here we show an example where the all the assumptions in Theorem 2.4 concerning the
geometry of the material body Ω and its portion E sensitive to the constraint and their compatibility
with the loads are fulfilled. Set

Ω := {x∈R3 : x2
1 + x2

2<1, 0< x3<1}, E :=Ω, (2.52)

f := p e3, g ≡ 0, p < 0. (2.53)

Then L(u) =
∫

Ω
f · u dx, condition (2.33) is satisfied and SL,E = {R ∈ S O(3) : Re3 = e3}.

Indeed it is readily seen that L(e3) = p|Ω| < 0 = L(e1) = L(e2); moreover if R ∈ S O(3) and we
denote its entries as Ri j i, j = 1, 2, 3 then, taking into account p < 0, we get

Φ(R, E,L) = π (R11 + R22 − 2) − p π minΩ

{
R31x1 + R32x2 + (R33 − 1)x3

}
=
πp
2

(R33 − 1) + pπ
√

R2
31 + R2

32 + pπ(1 − R33)+

=
πp
2

(1 − R33) + pπ
√

1 − R2
33 ≤ 0

(2.54)

and Φ(R, E,L) = 0 if and only if R33 = 1 that is Re3 = e3 as claimed.
Both conditions (2.13) and (2.32) are trivially fulfilled.
We emphasize that the above claims still hold true if the assumption on E in (3.21) is weakened by

allowing any E ⊂ Ω such that E fulfills co Eess = Ω.

3. Properties of admissible loads

This section makes explicit the properties of admissible loads by exploiting the conditions stated
by (2.32) and (2.33).

Lemma 3.1. Assume that (2.32) holds. Then

L((a ∧ x)α eα) = 0 and L((a ∧ (a ∧ x))α eα) ≤ 0 ∀ a ∈ R3. (3.1)

Proof. By the Euler-Rodrigues formula (2.32) entails

L

(
sinϑ
ϑ

(a ∧ x)αeα +
1 − cosϑ

ϑ
(a ∧ (a ∧ x))αeα

)
≤ 0 (3.2)

for every ϑ ∈ (0, 2π) and by letting ϑ → 0+ we get L((a ∧ x)αeα) ≤ 0 for every a ∈ R3 hence
L((a ∧ x)αeα) = 0 for every a ∈ R3. The second inequality in (3.1) follows by the previous one. �
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Remark 3.2. It is worth noticing that, by inserting a = e1 or a = e2, the condition (3.1) entails
L(x3e2) = 0 and L(x3e1) = 0 respectively.

Lemma 3.3. Assume (2.13) and (2.31). Then

(1) L(e1) = L(e2) = 0 and L(e3) ≤ 0;
(2) L(e3 ∧ x) = 0;
(3) L

(
e3 ∧ (e3 ∧ x)

)
≤ 0;

(4) there exists xL ∈ ri co Eess such that L
(

a ∧ (x − xL)
)

= 0 ∀a ∈ R3.

Proof. By choosing R = I in (2.31) we get L(c) ≤ 0 for every c ∈ CI = {c ∈ R3 : c3 ≥ 0}. Since
c1 e1 + c2 e2 ∈ CI for every c1, c2 ∈ R, we get L(e1) = L(e2) = 0. Moreover c3 e3 ∈ CI for c3 ≥ 0 entails
L(e3) ≤ 0. Thus (1) is proved and (2.31) entails

Φ(R, E,L) := L((R − I)x) − L(e3) min
x∈Eess

{((Rx)3 − x3)} ≤ 0, ∀R∈S O(3), (3.3)

that is by the Euler-Rodrigues formula

ϕa(ϑ) := L
(

sinϑ (a ∧ x) + (1 − cosϑ) a ∧ (a ∧ x)
)

(3.4)

− min
x∈Eess

(
sinϑ (a ∧ x)3 + (1 − cosϑ) a ∧ (a ∧ x)3

)
L(e3) ≤ 0,

∀a ∈ R3, |a| = 1, ∀ϑ ∈ [0, 2π].

If a=e3 then Re3 =e3 and (3.4) reads

ϕ(ϑ) := L
(

sinϑ (e3 ∧ x) + (1 − cosϑ) e3 ∧ (e3 ∧ x)
)
≤ 0, ∀ϑ ∈ [0, 2π]. (3.5)

By ϕ(0) = ϕ(2π) = 0 and ϕ(ϑ) ≤ 0 we get 0 ≥ ϕ′(0) = L(e3 ∧ x) = ϕ′(2π) ≥ 0. Thus (2) is
proved. By (2) and (3.5) we get L

(
e3 ∧ (e3 ∧ x)

)
≤ 0, say (3). In order to show (4), first we notice that

L(e1) = L(e2) = 0 entail for every ξ ∈ R3

L(a ∧ ξ) = L
(∑3

j=1 a je j ∧ ξ
)

=
∑3

j=1 a jL(e j ∧ ξ)

= a1L(−ξ3e2 + ξ2e3 ) + a2L( ξ3e1 − ξ1e3 ) + a3L(−ξ2e1 + ξ1e2 )

= a · ( ξ2e1 − ξ1e2 )L(e3) = (a ∧ ξ)3L(e3),

(3.6)

moreover, L(e3 ∧ x) = 0 entails

L(a ∧ x) = a1L(e1 ∧ x) + a2L(e2 ∧ x), ∀ a ∈ R3 . (3.7)

Let us assume first that L(e3) < 0. In this case we can set

x̃1 = −
L(e2 ∧ x)
L(e3)

, x̃2 =
L(e1 ∧ x)
L(e3)

, (3.8)

hence, by (3.6)–(3.8),

L(a ∧ x̃) = (a ∧ x̃)3L(e3) = (a1 x̃2 − a2 x̃1)L(e3) = a1L(e1 ∧ x) + a2L(e2 ∧ x) = L(a ∧ x)
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say
L(a ∧ x) = L(a ∧ x̃), ∀ a ∈ R3, ∀ x̃ ∈ {(x̃1, x̃2, z) : z ∈ R}. (3.9)

Since ϕa(0) = ϕa(2π) = 0 and ϕa(ϑ) ≤ 0 for every a ∈ R3, |a| = 1 and for every ϑ ∈ [0, 2π], (3.4) entails

0 ≥ lim sup
ϑ→0+

ϕa(ϑ)
ϑ

= L(a ∧ x) − min
x∈Eess

(a ∧ x)3L(e3), ∀ |a| = 1, (3.10)

0 ≤ lim inf
ϑ→2π−

ϕa(ϑ)
ϑ − 2π

= L(a ∧ x) − max
x∈Eess

(a ∧ x)3L(e3), ∀ |a| = 1. (3.11)

Hence
max
x∈Eess

(a ∧ x)3 L(e3) ≤ L(a ∧ x) ≤ min
x∈Eess

(a ∧ x)3 L(e3),

so, by (3.6), (3.8) and (3.9),

max
x∈Eess

(a ∧ x)3 L(e3) ≤ (a ∧ x̃)3L(e3) ≤ min
x∈Eess

(a ∧ x)3 L(e3). (3.12)

By taking account of L(e3) < 0, we find

min
x∈Eess

(a ∧ x)3 ≤ (a ∧ x̃)3 ≤ max
x∈Eess

(a ∧ x)3, ∀ a ∈ R3 : |a| = 1,

hence, by linearity and by homogeneity,

min
x∈co Eess

(a ∧ x)3 ≤ (a ∧ x̃)3 ≤ max
x∈co Eess

(a ∧ x)3, ∀ a ∈ R3. (3.13)

By subtracting (a ∧ x̃)3 on each term of inequality (3.13) we get

min
y∈ co Eess−x̃

(a ∧ y)3 ≤ 0 ≤ max
y∈ co Eess−x̃

(a ∧ y)3

for every a ∈ R3 and for every x̃ ∈ {(x̃1, x̃2, z) : z ∈ R}.
We claim that at least one of the above inequalities is strict for every a ∈ R3 such that a 2

1 + a 2
2 , 0.

Indeed, if by contradiction there was a = (a1, a2, a3) with a 2
1 + a 2

2 , 0 such that

min
x∈ co Eess−x̃

(a ∧ x)3 = max
x∈ co Eess−x̃

(a ∧ x)3 = 0, ∀ x̃ ∈ {(x̃1, x̃2, z), z ∈ R},

then (
co Eess − x̃

)
⊂

{
x : a1x2 − a2x1 = 0

}
.

Since the plane {a1x2 − a2x1 = 0} is orthogonal to {x3 = 0} we obtain

cap
(

proj{ x ∈ R3 : a1x2 − a2x1 = 0 }
)

= 0,

hence
0 = cap

(
proj

(
co Eess − x̃

))
= cap

(
proj(co Eess)

)
which contradicts (2.13).
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Without loss of generality we can proceed by assuming that the first inequality is strict, say

min
x∈ co Eess−x̃

(a ∧ x)3 < 0

for every a ∈ R3 such that a 2
1 + a 2

2 , 0 and for every x̃ ∈ {(x̃1, x̃2, z), z ∈ R}. Hence, by setting
T := proj(co Eess − x̃), we get

min
x∈T

(a ∧ x)3 < 0 (3.14)

for every a ∈ R3 such that a 2
1 + a 2

2 , 0. For every (a1, a2) ∈ R2 such that a 2
1 + a 2

2 , 0 we set now

Γ(a1, a2) :=
{
(x1, x2) ∈ R2 : a1x2 − a2x1 ≥ min

(x1,x2)∈T
(a1x2 − a2x1)

}
then

{
Γ(a1, a2) : a 2

1 + a 2
2 = 1

}
is the set of half-planes supporting T . Since T is closed and convex, we

get
T =

⋂
a 2

1 +a 2
2 =1

Γ(a1, a2).

By (3.14), we get

dist
(

(0, 0) , ∂Γ(a1, a2)
)

=

∣∣∣∣∣ min
x∈T

(a1x2 − a2x1)
∣∣∣∣∣ > 0.

Hence we deduce the existence of (̃a1, ã2) : ã 2
1 + ã 2

2 = 1 such that

min
ã 2

1 +ã 2
2 =1

dist
(

(0, 0) , ∂Γ(a1, a2)) = |min
x∈T

(̃
a1x2 − ã2x1

)
| > 0,

so (0, 0) ∈ ri T that is (x̃1, x̃2, 0) ∈ ri proj(co Eess).
We are left to show that there exists x̃3 such that xL := (x̃1, x̃2, x̃3)∈ ri co Eess. To this aim it is readily

seen that by taking account of cap(proj(co Eess)) > 0, we get aff(proj(co Eess))) = {x3 = 0} so there
exists r > 0 such that {

(x1, x2) : |x1 − x̃1|
2 + |x2 − x̃2|

2 < r2
}
⊂ proj(co Eess)).

Let now
J := {z : (x1, x2, z) ∈ co Eess} , ∅

and assume that (x1, x2, z) ∈ (co Eess)\ (ri co Eess) for every z ∈ J. Then

Br(x1, x2, z) ∩ co Eess , ∅, Br(x1, x2, z) ∩
(

(aff co Eess)\(co Eess) ) , ∅

for every z ∈ J and for every r > 0, therefore by recalling that aff proj co Eess = {x3 = 0}

proj Br(x1, x2, z) ∩ proj co Eess , ∅,

proj Br(x1, x2, z) ∩ ({x3 = 0} \ proj co Eess) , ∅

for every r > 0. This is a contradiction since

proj Br(x1, x2, z) ⊂
{
(x1, x2) : |x1 − x̃1|

2 + |x2 − x̃2|
2 < r2

}
⊂ proj(co Eess)
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for some r > 0 thus (4) is proved in this case since by construction L(a∧ (x−xL) = 0 for every a ∈ R3.
Eventually, if L(e3) = 0, (2.33) reduces to

L((R − I)x) ≤ 0, ∀R∈S O(3),

say sinϑL(a ∧ x) + (1 − cosϑ)L
(
a ∧ (a ∧ x)

)
≤ 0 for all a ∈ R3, thus, by repeating the analysis made

on (3.5), we get
L(a∧x) = 0, ∀ a ∈ R3,

and, since ri proj co Eess , ∅ due to (2.13), by exploiting identity (3.6) with ξ = x̃ we obtain, for
whatever choice of x̃ ∈ ri proj co Eess

L(a ∧
(
x − x̃)

)
= −L(a ∧ x̃) = −(a ∧ x̃)3L(e3) = 0, ∀ a ∈ R3,

that is (4) is proven also in this case. �

Remark 3.4. Conditions (2.31) and (2.33) are equivalent as claimed in Subsection 2.2.
Indeed, as it has been pointed out in the proof of Lemma 3.3, condition (2.31) implies that L(e3) ≤

0, L(e1) = L(e2) = 0 and

Φ(R, E,L) := L((R − I)x) − L(e3) min
x∈Eess

((Rx)3 − x3) ≤ 0, ∀R∈S O(3). (3.15)

Conversely if the latter condition holds and L(e3) ≤ 0, L(e1) = L(e2) = 0, then

L((R − I)x + c) = L((R − I)x + c3e3) ≤ 0

for every c ∈ R3 such that c3 ≥ −minx∈Eess((Rx)3 − x3)}.

Remark 3.5. We emphasize that conditions (1) and (4) in Lemma 3.3 together with (2.13) and
L(e3) < 0 coincide with conditions (4.9)–(4.11) of Theorem 4.5 of [12], which provides the solution
to Signorini problem in linear elasticity.

The whole set of conditions (1)–(4) appearing in the claim of Lemma 3.3 together with
condition (2.13) on the set E is not equivalent to admissibility of the loads as expressed by (2.33):
This phenomenon is made explicit by subsequent Example 3.6.

Example 3.6. Let Ω = {x : x2
1 + x2

2 < 1, 0 < x3 < H}, E = Eess = { (x1, x2, 0) : x2
1 + x2

2 ≤ 1} and
L(v) =

∫
Ω

p v3 dx with p < 0, say f = p e3, g = 0.
Then E fulfills (2.13), since cap E > 0 and proj( co Eess) = Eess ⊂ Ω ∩ {x3 = 0}; moreover all

claims (1)–(4) of Lemma 3.3 hold true: Indeed

L(e1) = L(e2) = 0, L(e3) = p|Ω| < 0,

L(e3 ∧ x) =

∫
Ω

(−e3) · (e3 ∧ x)dx = 0,

L(e3 ∧ (e3 ∧ x) =

∫
Ω

(−e3) ·
(
e3 ∧ (e3 ∧ x)

)
dx = 0,
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eventually, by choosing xL = (0, 0, 0) ∈ ri (co Eess) = E and by taking the symmetry of Ω into account,
we get

L
(
a ∧ (x − xL)

)
= L(a ∧ x) =

∫
Ω

(−e3) · (a ∧ x) dx = a ·
∫

Ω

(−x2e1 + x1e2) dx = 0.

Nevertheless, condition (2.33) is violated, since we can consider the π radians rotation around axis
e1 which keeps E above the horizontal plane (obstacle boundary) but capsizes the body below the
horizontal plane, namely R̃ ∈ S O(3) defined by R̃x = x1e1 − x2e2 − x3e3. Thus

L
(
(R̃ − I)x

)
− L(e3) min

Eess

(
(R̃x)3 − x3

)
= −2p

∫
Ω

x3 dx − p|Ω|min
Eess

(−2x3) = −pπH2 > 0.

The assumptions in Lemma 3.3 and in Theorem 2.4 cannot be weakened by assuming only cap E >

0 in place of (2.13) as it is shown in the next example, thus proving that Theorem 2.4 is a sharp result
with respect to the sets E subject to the constraint that are admissible.

Example 3.7. Choose f = −e3, g = 0 and

Ω = {x : x2
1 + x2

2 < 1, x2 > 0, 0 < x3 < 1},

E = Eess = {(x1, x2, x3) ∈ Ω : x2 = 0}.

It is readily seen that condition (2.32) is fulfilled since L((Rx − x)αeα) = 0 moreover, since L(e3) <
0 = L(e1) = L(e2),

Φ(R, E,L) = −2
3R32 + π

2 (1 − R33) + minEess {R31x1 + R32x2 + (R33 − 1)x3} |Ω|

= −π|R31| − π(R32)− −
2
3

R32 +
π

2
(R33 − 1)

= −π|R31| −
π

2
|R32| +

(
π

2
−

2
3

)
R32 +

π

2
(R33 − 1) ≤ 0

for every R ∈ S O(3), then also condition (2.33) is satisfied. Nevertheless it can be easily checked that
cap E > 0 but cap

(
proj( co Eess )

)
= 0, thus E does not fulfil (2.13).

If there was x ∈ ri co Eess such that L(a ∧ (x − x)) = 0 for every a ∈ R3 then we get

L(a ∧ x) = L(a ∧ x) = −

∫
Ω

e3 · (a ∧ x) dx = −

∫
Ω

(a1x2 − a2x1) dx = −
2
3

a1;

then, since L(e1) = L(e2) = 0, we could apply (3.6) and find

−
2
3

a1 = L(a ∧ x) = (a ∧ x)3L(e3) = −π(a1x2 − a2x1), ∀ a ∈ R3,

hence x1 = 0, x2 = 2
3π , thus

x < ri co Eess = {(x1, x2, x3)∈Ω : x2 = 0},
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a contradiction. Thus claim (4) of Lemma 3.3 cannot hold true in this case.
Moreover if we set wk(x) := −k ( x2 e3 − x3 e2 ), then E(wk) = 0, wk,3 + x3 ≡ x3 ≥ 0 on E whence

wk ∈ A and it is readily seen that

L(Rv) = L(v), ∀ R ∈ SL,E, (3.16)

hence
G(wk) = −L(wk) =

∫
Ω

e3 · wk dx = −k
∫

Ω

x2 dx = −
2
3

k → −∞, as k→+∞

that is infAG = −∞ so the convergence of the energies claimed in Theorem 2.4 fails to be true in this
case thus showing sharpness of condition (2.13).

Lemma 3.8. Assume that (2.13), (2.33) hold and that L(e3) < 0. Then

either SL,E = { I } or SL,E = {R ∈ S O(3) : Re3 = e3 }. (3.17)

Proof. First, we prove the inclusion

SL,E ⊂ {R ∈ S O(3) : Re3 = e3 }.

Indeed if R belongs to SL,E and a is a rotation axis of R with |a| = 1, then

ϕa(ϑ) := Φ(R, E,L) = L
(
sinϑ(a ∧ x) + (1 − cosϑ)

(
a ∧ (a ∧ x)

))
−min

Eess

{
sinϑ(a ∧ x)3 + (1 − cosϑ)

(
a ∧ (a ∧ x)

)
3

}
L(e3)

= 0

(3.18)

for every ϑ ∈ [0, 2π]. By arguing now as in the proof of (4) of Lemma 3.3, we get

0 ≥ lim
ϑ→0+

ϕa(ϑ)
ϑ

= L(a ∧ x) − min
x∈Eess

(a ∧ x)3L(e3)

≥ lim
ϑ→2π−

ϕa(ϑ)
ϑ − 2π

= L(a ∧ x) − max
x∈Eess

(a ∧ x)3L(e3)

≥ 0

(3.19)

and, since L(e3) < 0, we get
min
x∈Eess

(a ∧ x)3 = max
x∈Eess

(a ∧ x)3 (3.20)

that is the function
x→ (a ∧ x)3 = a1x2 − a2x1

is constant on Eess hence it is constant in co(Eess) thus cap proj co Eess > 0 entails a1 = a2 = 0 that is
Re3 = e3 as claimed.

We notice that I ∈ SL,E and, the other hand, if SL,E . { I } then there is

R̃ ∈ SL,E ⊂ {R ∈ S O(3) : Re3 = e3 }

such that R̃ , I and

R̃x = x + sin ϑ̃ (e3 ∧ x) +
(
1 − cos ϑ̃

) (
e3 ∧ (e3 ∧ x)

)
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for every x ∈ R3 and for some suitable ϑ̃ ∈ (0, 2π). By taking (2) of Lemma 3.3 into account, we get

0 = Φ(R̃, E,L) = L
(
(R̃ − I) x

)
− L(e3) min

x∈Eess

(
(R̃ − I)x)

)
3

= L
(
(R̃ − I) x

)
= sin ϑ̃L(e3 ∧ x) +

(
1 − cos ϑ̃

)
L
(
e3 ∧ (e3 ∧ x)

)
=

(
1 − cos ϑ̃

)
L
(
e3 ∧ (e3 ∧ x)

)
,

thus L
(
e3 ∧ (e3 ∧ x)

)
= 0.

Therefore for any other R ∈ S O(3), R , I such that Re3 = e3 there is ϑ ∈ (0, 2π) such that

Rx = x + sinϑ (e3 ∧ x) +
(
1 − cosϑ

) (
e3 ∧ (e3 ∧ x)

)
, ∀ x ∈ R3,

thus, by taking again (2) of Lemma 3.3 into account, we get

L
(
(R − I) x

)
− L(e3) min

x∈Eess

(
(R − I)x)

)
3

= L
(
(R − I) x

)
= sinϑL(e3 ∧ x) +

(
1 − cosϑ

)
L
(
e3 ∧ (e3 ∧ x)

)
=

(
1 − cosϑ

)
L
(
e3 ∧ (e3 ∧ x)

)
= 0

that is R belongs to SL,E thus concluding the proof of the lemma. �

Remark 3.9. It is possible to show that both alternatives in Lemma 3.8 can actually occur. Indeed in
Example 2.7 we have exhibited an example in which SL,E = {R ∈ S O(3) : Re3 = e3} and we show here
that also the other alternative may occur. Indeed set

Ω := {x∈R3 : x2
1 + x2

2<1, 0< x3<1}, E :=Ω, (3.21)

f := −e3, g = 1∂lΩn, (3.22)

where ∂lΩ is the lateral boundary of Ω and n the unit outward vector normal to ∂lΩ. If R ∈ S O(3) and
we denote its entries as Ri j i, j = 1, 2, 3, then

L ((Rx − x)α eα) =
∑
i=1,2

(Rii − 1)
∫
∂lΩ

x2
i dH2 ≤ 0

that is condition (2.32) is satisfied. Moreover since

L(e3) = −|Ω| < 0 = L(e1) = L(e2)

and

Φ(R, E,L) = L
(∑3

j=1(Rx − x) je j

)
+ π (R11 + R22 − 2) + π min

Ω

{
R31x1 + R32x2 + (R33 − 1)x3

}
= −

π

2
(R33 − 1) − π

√
R2

31 + R2
32 − π(1 − R33)+

∑
i=1,2

(Rii − 1)
∫
∂lΩ

x2
i dH2

= −
π

2
(1 − R33) − π

√
1 − R2

33 +
∑
i=1,2

(Rii − 1)
∫
∂lΩ

x2
i dH2 ≤ 0

(3.23)
and equality holds if and only if R11 = R22 = R33 = 1 then condition (2.33) is satisfied and SL,E ≡ {I}
as claimed.
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Lemma 3.10. Assume (2.13), (2.33) and L(e3) < 0. Let R j ∈ S O(3) be a sequence of rotations such
that R je3 , e3, R je3 → e3 as j→ +∞. Then

lim sup
j→+∞

Φ(R j, E,L)
|R je3 − e3| |L(e3)|

< 0. (3.24)

Proof. Φ(R j, E,L) ≤ 0, by (2.33). Hence the lim sup in (3.24) cannot be strictly positive.
We assume by contradiction

lim sup
j→+∞

Φ(R j, E,L)
|R je3 − e3| |L(e3)|

= 0. (3.25)

By Euler-Rodrigues formula there are sequences a j ∈ R
3 and ϑ j ∈ [0, 2π], such that |a j| = 1 and

R jx = x + (sinϑ j)(a j ∧ x) + (1 − cosϑ j)
(
(a j ∧ (a j ∧ x)

)
, ∀x ∈ R3, (3.26)

thus a direct computation yields

|R je3 − e3| =

√
a 2

1, j + a 2
2, j

√
2 (1 − cosϑ j). (3.27)

By taking account of R je3,e3 and R je3 → e3 as j→+∞, we get a j , e3, ϑ j∈ (0, 2π) and therefore, up
to subsequences, we may assume: that a j → a, ϑ j → ϑ ∈ [0, 2π], that either ϑ ∈ {0, 2π} or a3 = 1 and
that µ j ai, j → αi, i = 1, 2 with α2

1 + α2
2 = 1, where we have set

µ j := (a 2
1, j + a 2

2, j)
− 1

2 .

For every x ∈ Ω and v ∈ R2, |v| = 1, set

pv(x) =
(

(x1 − x̃1)e1 + (x2 − x̃2)e2 + (x3 − x̃3)e3
)
∧ (−v1e2 + v2e1)

= (v1(x1 − x̃1) + v2(x2 − x̃2)) e3 + (x3 − x̃3)(v1e1 + v2e2),
(3.28)

where (x̃1, x̃2, x̃3) = xL ∈ ri co Eess is chosen as in the proof of (4) in Lemma 3.3. Hence, by taking
account of (1) and (4) of Lemma 3.3, we have

0 = L
(
pv

)
= L

(
(v1x1 + v2x2) e3

)
− (v1 x̃1 + v2 x̃2)L(e3) +L

(
x3(v1e1 + v2e2)

)
that is

(v1 x̃1 + v2 x̃2)L(e3) = L
(
(v1x1 + v2x2)e3

)
+L

(
x3(v1e1 + v2e2)

)
. (3.29)

By (2) of Lemma 3.3 we know L(e3 ∧ x) = 0, then (3.8) entails

µ jL(a j ∧ x) = a1, jµ jL(e1 ∧ x) + a2, jµ jL(e2 ∧ x)→ (α1 x̃2 − α2 x̃1)L(e3) (3.30)

and by (3) of Lemma 3.3 we have

0 ≥ L
(
e3 ∧ (e3 ∧ x)

)
= L(x3e3 − x) = −L(x1e1 + x2e2).
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By taking (3.29) into account and by recalling that either ϑ ∈ {0, 2π} or a3 = 1, we get

µ jL
(
a j ∧ (a j ∧ x)

)
sin

ϑ j

2
= µ jL

(
(a j · x) a j − x

)
sin

ϑ j

2

= µ j sin
ϑ j

2

(
a1, jL

(
(a j · x) e1

)
+ a2, jL

(
(a j · x) e2

)
+L

(
(a 2

3, j − 1) x3 e3
)
−L(x1e1 + x2e2)

)
≤ L

(
α1x3e1 + α2x3e2 + (α1x1 + α2x2) e3

)
sin

ϑ

2
+ o(1)

= (α1 x̃1 + α2 x̃2) sin
ϑ

2
L(e3) + o(1),

that is

lim sup
j→+∞

µ jL
(
a j ∧ (a j ∧ x)

)
sin

ϑ j

2
≤ (α1 x̃1 + α2 x̃2) sin

ϑ

2
L(e3) . (3.31)

Let now η ∈ C([0, 2π]) such that η(ϑ) = (2(1 − cosϑ))−
1
2 sin(ϑ) for every ϑ ∈ (0, 2π).

By recalling that either a3 = 1 or ϑ ∈ {0, 2π} we get

µ j(a j ∧ x)3 −→ α1x2 − α2x1, µ j(a j ∧ (a j ∧ x))3 sin
ϑ j

2
−→ (α1x1 + α2x2) sin

ϑ

2
, (3.32)

so, by taking (3.30)–(3.32) into account we obtain

0 = lim sup
j→+∞

Φ(R j, E,L)
|R je3 − e3| |L(e3)|

= lim sup
j→+∞

µ j

|L(e3)|

{
η(ϑ j)L(a j ∧ x) +L

(
a j ∧ (a j ∧ x)

)
sin

ϑ j

2
+

− min
x∈Eess

{
η(ϑ j)(a j ∧ x)3 + sin

ϑ j

2
(a j ∧ (ah ∧ x))3

}
L(e3)

}
≤ min

x∈Eess

{
η(ϑ)(α1x2 − α2x1) + (α1x1 + α2x2) sin

ϑ

2

}
+

−η(ϑ)(α1 x̃2 − α2 x̃1) − (α1 x̃1 + α2 x̃2) sin
ϑ

2

= min
x∈co(Eess)

{
η(ϑ)(α1(x2 − x̃2) − α2(x1 − x̃1)) +

(
α1(x1 − x̃1) + α2(x2 − x̃2)

)
sin

ϑ

2

}
≤ 0,

since (x̃1, x̃2, x̃3) ∈ ri co Eess. Therefore the function

g(x1, x2) := η(ϑ)(α1(x2 − x̃2) − α2(x1 − x̃1)) +
(
α1(x1 − x̃1) + α2(x2 − x̃2)

)
sin

ϑ

2

attains its minimum on proj(co Eess) at (x̃1, x̃2) ∈ ri(proj(co Eess)) hence, by taking into account of
aff(proj(co Eess)) = {x3 = 0}, we get

0 = |∇g(x̃1, x̃2)|2 =

(
η(ϑ)α1 + α2 sin

ϑ

2

)2

+

(
α1 sin

ϑ

2
− α2η(ϑ)

)2

= 2
(
η2(ϑ) + sin2 ϑ

2

)
> 0,
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a contradiction. Thus

lim sup
j→+∞

Φ(R j, E,L)
|R je3 − e3| |L(e3)|

< 0

and the proof is achieved. �

Remark 3.11. If cap(proj(co Eess)) = 0 then the claim of Lemma 3.10 may be false even if cap E > 0.
For instance, set for every j ∈ N \ {0}

R j := e1 ⊗ e1 + (1 − j−1)(e2 ⊗ e2 + e3 ⊗ e3) +
√

2 j−1 − j−2 (e3 ⊗ e2 − e2 ⊗ e3),

let
Ω := {x : x2

1 + x2
2 < 1, 0 < x3 < 1},

E := Ω ∩ {x2 = 0, 0 < x3 <
1
2
},

and f := −e3, g = 0. It is straightforward checking that R je3 , e3, R j → I, moreover since L(e3) <
0 = L(e1) = L(e2),

L((R − I)x) − min
x∈Eess

((Rx)3 − x3)} L(e3) = − π |R31| ≤ 0, ∀R ∈ S O(3) (3.33)

and
L((R − I)x)αeα) = 0, ∀R ∈ S O(3), (3.34)

conditions (2.32) and (2.33) are satisfied. Nevertheless

L((R j − I)x) −min
Eess

((R j − I)x)3)L(e3) = 0 (3.35)

and the claim of Lemma 3.10 cannot be true in this case.

4. Proof of the variational convergence result

This section contains the proof of our main result. We start by showing that sequences of
deformations with equibounded energy correspond (up to suitably tuned rotations and translations of
the horizontal components) to displacements that are equibounded in H1.

Lemma 4.1. (compactness) Assume that E,L andW fulfil (2.13), (2.19)–(2.22), (2.33) andL(e3) < 0.
If 0 < h j → 0+ as j → +∞ then for every y j ∈ H1(Ω;R3) with G j(y j) ≤ M < +∞ there are
R j ∈ S O(3), c j ∈ CR j such that

R j → R ∈ SL,E (4.1)

and the sequence
h j
−1( y j − R jx − c j

)
αeα + h j

−1(y j,3 − x3)e3

is bounded in H1(Ω;R3).
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Proof. Referring to (2.36), we can choose R j ∈ M(y j) in such a way that, up to subsequence and
without relabelling, R j → R. Then we define c j = (c j,1, c j,2, c j,3) by

c j,α = |Ω|−1
∫

Ω

(y j(x) − R jx)α dx, α = 1, 2, (4.2)

c j,3 = − min
x∈Eess

((R j − I)x)3. (4.3)

By the rigidity inequality ( [24]) there exists a constant C = C(Ω) > 0 such that

M ≥ G j(y j) ≥ C h−2
j

∫
Ω

|∇y j − R j|
2 dx − h−1

j L(y j − x)

= C h−2
j

∫
Ω

|∇y j − R j|
2 dx − h−1

j L(y j − R jx − c j) − h−1
j L(R jx − x + c j).

(4.4)

Thus, by (2.33), L(e1)=L(e2)=0 and the definition of c j,3, we get

M ≥ C h−2
j

∫
Ω

|∇y j − R j|
2 dx − h−1

j L(y j − R jx − c j) (4.5)

and Poincaré inequality entails, for every ε>0,

h−1
j

2∑
α=1

L
(

(y j − R jx − c j)α eα
)
≤ h−1

j CP‖L‖∗

(∑2
α=1

∫
Ω
| (∇y j − R j)α |2 dx

)1/2

≤
CP‖L‖

2
∗

2ε
+
ε h−2

j CP

2

2∑
α=1

∫
Ω

|(∇y j − R j)α|2 dx.

(4.6)

Estimates (4.5) and (4.6) together with Young inequality provide

M ≥ h−2
j

(
C −

εCP

2

)∫
Ω

|∇y j−R j|
2dx −

CP ‖L‖
2
∗

2 ε
− h−1

j L
(
(y j − R jx − c j)3 e3

)
(4.7)

≥ h−2
j

(
C −

εCP

2

)∫
Ω

|∇y j−R j|
2 dx −

CP‖L‖
2
∗

2 ε
−h−1

j ‖L‖∗
(
‖(y j − R jx − c j)3‖L2(Ω) + ‖∇(y j − R jx)3‖L2(Ω)

)
≥ h−2

j

(
C −

εCP

2
−
ε

2

)∫
Ω

|∇y j−R j|
2 dx −

(
CP

2 ε
+

1
2 ε

)
‖L‖2∗

−h−1
j ‖L‖

2
∗

(
‖(y j − Rhx − c j)3‖L2(Ω).

By choosing ε = C/(CP + 1), we get

h−2
j

C
2

∫
Ω

|∇y j−R j|
2 dx (4.8)

≤ M +
(CP + 1)2

2C
‖L‖2∗ + h−1

j ‖L‖
2
∗ ‖(y j − R jx − c j)3‖L2(Ω).

Thus, if we show that h−1
j ‖(y j − R jx − c j)3‖L2(Ω) is uniformly bounded then, due to estimate (4.8),

‖h−1
j (∇y j−R j)‖L2(Ω) is equibounded too. So h−1

j (y j−R jx− c j) is uniformly bounded in H1(Ω;R3) and
we set

M1 := sup
j
‖L‖∗‖y j − R jx − c j‖H1(Ω;R3) > 0. (4.9)
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To this aim we assume by contradiction that, up to subsequences,

t j := h−1
j ‖ (y j − R jx − c j)3 ‖L2(Ω) → +∞ (4.10)

and set w j := t−1
j h−1

j (y j − R jx − c j)3. Then

‖w j‖L2(Ω) = 1, |∇y j−R j|
2 =

2∑
α=1

| ∇(y j−R jx)α |2 + h 2
j t 2

j |∇w j|
2, (4.11)

Ct 2
j

∫
Ω

|∇w j|
2 dx − t jL(w j e3) (4.12)

≤ M −C h−2
j

2∑
α=1

∫
Ω

| ∇(y j−R jx)α |2 dx + h−1
j

2∑
α=1

L
(

(y j−R jx − c j)α eα
)

≤ M −C h−2
j

2∑
α=1

∫
Ω

| ∇(yh−R jx)α |2 dx +
CP ‖L‖

2
∗

2 ε

+
h−2

j εCP

2

2∑
α=1

∫
Ω

|∇(y j−R jx)α |2 dx,

and by choosing ε = 2C/CP in (4.12) we get

C t 2
j

∫
Ω

|∇w j|
2 dx − t jL(w j e3) ≤

C2
P ‖L‖

2
∗

4 C
+ M (4.13)

while, by choosing ε = C/CP, (4.12) yields

1
2

C h−2
j

2∑
α=1

∫
Ω

| ∇(yh−R jx)α |2 dx + C t 2
j |∇w j|

2 − t jL(wh e3) (4.14)

≤
C2

P

2C
‖L‖2∗ + M.

Thus
1
2

C
h−2

j

t 2
j

2∑
α=1

∫
Ω

| ∇(y j−R jx)α |2 dx ≤
1
t j
L(w j e3) +

1
t j

2

C2
P

2C
‖L‖2∗ +

M
t2

j

. (4.15)

Normalization ‖w j‖L2 = 1 entails, for every ε > 0,

L
(
w j e3

)
≤ ‖L‖∗

(
‖w j‖L2 + ‖∇w j‖L2

)
= ‖L‖∗

(
1 + ‖∇w j‖L2

)
(4.16)

≤ ‖L‖∗ +
‖L‖2∗

2 ε
+
ε

2
‖∇w j‖

2
L2 ,

and choosing ε = C t2
j therein we get, by (4.13),

C
2

t2
j

∫
Ω

|∇w j|
2 dx ≤ t j ‖L‖∗ +

‖L‖2∗

2C t j
+ M, (4.17)
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thus
∫

Ω
|∇w j|

2 dx → 0 so by (4.11) w j → w in H1(Ω;R3) with ∇w = 0 a.e. in Ω that is w is a constant
function since Ω is a connected open set.

Combining estimates (4.15)–(4.17), we get

1
2

C
h−2

j

t 2
j

2∑
α=1

∫
Ω

| ∇(y j−R jx)α |2 dx (4.18)

≤
1
t j

(
‖L‖2∗ +

‖L‖2∗

2
+

1
2
‖∇w j‖

2
Lp

)
+

1
t j

2

C2
P

2 CR C
‖L‖2∗ +

M
t2

j

,

hence
1

h j t j
∇
(
y j − R jx

)
α → 0, in L2(Ω), if α = 1, 2 (4.19)

and
h−1

j t−1
j

(
y j − R jx − c j

)
→ w e3, q.e. x ∈ E. (4.20)

Moreover, by (4.13), we get

L(w j e3) ≥ −
C 2

P

4 C t j
‖L‖2∗.

Hence, due to L(w j e3) → L(w e3) = wL(e3), we have wL(e3) ≥ 0, thus, by taking into account of
L(e3) < 0, we get w ≤ 0 and eventually, by ‖w j‖L2 = 1, we obtain w < 0. Then, by (2.33), (4.4)
and (4.9), we get

0 ≤ −Φ(R j, E,L) = L
(

x − R jx − c j

)
≤ (M + M1) h j. (4.21)

Hence, due to R j → R, we have Φ(R, E,L) = 0 thus R ∈ SL,E and (4.1) is proven.
We notice that either R je3 , e3 for j large enough or R je3 = e3 for infinitely many j. In the first

case, by taking account of L(e3) < 0, Lemma 3.10 entails

lim sup
j→+∞

Φ(R j, E,L)
|R je3 − e3| |L(e3)|

< 0. (4.22)

By (4.21) we get Φ(R j, E,L) ≥ −(M + M1)h j hence

γ := lim inf
j→+∞

h j

|R je3 − e3|
> 0 (4.23)

and for large enough j (4.23) yields

|R je3 − e3| ≤
2h j

γ
. (4.24)

Therefore, for every x ∈ Ω

|(R jx)3 − x3|

h j t j
≤
|x||RT

j e3 − e3|

h j t j

j→+∞
−→ 0, (4.25)

hence, by taking into account of c j,3 =−min
{

(R jx)3 − x3 : x ∈ Eess

}
, we get for q.e. x∈E

y∗j,3 − x3

h j t j
=

y∗j,3 − (R jx)3 − c j,3

h j t j
+

(R jx)3 − x3 + c j,3

h j t j

=
y∗h j,3
− (R jx)3 − c j,3

h j t j
+ o(1)

j→+∞
−→ w < 0,

(4.26)
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a contradiction since y∗j,3 ≥ (1 − h j)x3 for q.e. x ∈ E, that is (h j t j)−1(y∗j,3 − x3
)
≥ − x3/t j −→ 0 as

j → +∞ for q.e. x ∈ Eess. Therefore in this case the sequence t j is bounded so h−1
j

(
y j − R jx − c j

)
is

equibounded in H1(Ω;R3) and in particular h−1
j

(
y j − R jx − c j

)
α

eα is equibounded in H1(Ω;R3).
In the second case we may assume that R je3 = e3 for every j so c j,3 = 0 for every j. By arguing as

in the previous case we may assume that

t j := h−1
j ‖ (y j − R jx − c j)3 ‖L2(Ω) = h−1

j ‖y j,3 − x3‖L2(Ω) → +∞

and by setting w j := t−1
j h−1

j (y j,3 − x3) we get w j → w < 0 as before which is again a contradiction,
so t j is a bounded sequence. Eventually we are left to show that, in the first case, h−1

j (y j,3 − x3) is
equibounded in H1(Ω;R3). To this aim let C > 0 such that∥∥∥∥h−1

j

(
y j,3 − (R jx)3 − c j,3

)∥∥∥∥
H1(Ω;R3)

≤ C

for every j ∈ N and assume that for every n ∈ N there exists jn such that∥∥∥h−1
jn (y jn,3 − x3)

∥∥∥
H1(Ω;R3)

≥ n. (4.27)

Then for every n > C we have R jne3 , e3 otherwise c jn,3 = 0 and

n ≤
∥∥∥h−1

jn (y jn,3 − x3)
∥∥∥

H1(Ω;R3)
=

∥∥∥∥h−1
jn

(
y jn,3 − (R jnx)3 − c jn,3

)∥∥∥∥
H1(Ω;R3)

≤ C,

a contradiction. By taking account of (4.23) and (4.25) there exists C̃ > 0 such that

|R jne3 − e3| ≤ C̃h jn

for every n > C, hence ∣∣∣h−1
jn (y jn,3 − x3)

∣∣∣
≤

∣∣∣h−1
jn (y jn,3 − (R jnx)3 − c jn,3)

∣∣∣ + h−1
jn |(R jnx)3 − x3|

≤
∣∣∣h−1

jn (y jn,3 − (R jnx)3 − c jn,3)
∣∣∣ + h−1

jn |R jne3 − e3||x|

≤
∣∣∣h−1

jn (y jn,3 − (R jnx)3 − c jn,3)
∣∣∣ + C̃ sup

Ω

|x|

(4.28)

thus showing that ∥∥∥h−1
jn (y jn,3 − x3)

∥∥∥
H1(Ω;R3)

≤ C + C̃ sup
Ω

|x||Ω|

which contradicts (4.27) and proves that h−1
j (y j,3 − x3) is equibounded in H1(Ω;R3). �

Remark 4.2. If cap(proj(co Eess)) = 0, the claim of Lemma 4.1 may fail even if cap E > 0. Indeed,
choose Ω, E, f, g,R j as in Remark 3.11 and set h j = j−1. Thus both (2.32) and (2.33) are satisfied
but (2.13) is not. It is readily seen that y j(x) := R jx belongs to A j since y j,3 = (1 − j−1)x3 on E and
that G j(y j) = π|Ω|/2 for every j, but

j (y j,3 − x3) = j (x2

√
2 j−1 − j−2 − x3 j−1)

is not equibounded in H1(Ω;R3) as j→+∞: thus claim of Lemma 4.1 fails in this case.
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Lemma 4.3. Assume that E, L and W fulfil conditions (2.13), (2.19)–(2.22), (2.33) and L(e3) < 0.
Choose y j, R j as in Lemma 4.1 and set

z j(x) := h−1
j {(R jx)3 − x3) − min

x∈Eess

(
(R jx)3 − x3

)
}e3. (4.29)

Then there exist b1, b2, b3 ∈ R such that by setting

z(x) := (b1x1 + b2x2 + b3)e3 (4.30)

we have, up to subsequences, z j ⇀ z in w∗ −W1,∞(Ω;R3).

Proof. We may assume that R je3 , e3 for infinitely many j otherwise z j ≡ 0 for j large enough and
thesis is obvious. Therefore by Euler-Rodrigues formula, there are sequences a j ∈ R

3 and ϑ j ∈ (0, 2π),
s.t. |a j| = 1, a j , e3 and

R jx = x + (sinϑ j)(a j ∧ x) + (1 − cosϑ j)
(
(a j ∧ (a j ∧ x)

)
, ∀x ∈ R3. (4.31)

By recalling (3.27) and (4.1) we have, up to subsequences, R je3 → e3. Then, up to subsequences, we
may assume: that a j → a, ϑ j → ϑ ∈ [0, 2π], that either ϑ ∈ {0, 2π} or a3 = 1 and that µ j ai, j → αi, i =

1, 2 with α2
1 + α2

2 = 1, where we set µ j := (a 2
1, j + a 2

2, j)
− 1

2 . By recallling (4.24) we may assume that, up
to subsequences,

h−1
j min

x∈Eess

(
(R jx)3 − x3

)
→ β

for some β ∈ R. Moreover by exploiting (3.27), (4.31), we get

h−1
j ((R jx)3 − x3)

=
µ j√

2 (1 − cosϑ j)

(
sinϑ j(a j ∧ x)3 + (1 − cosϑ j)

(
(a j ∧ (a j ∧ x)3

)) |R je3 − e3|

h j

=

(
µ jη(ϑ j)(a j ∧ x)3 + µ j

(
(a j ∧ (a j ∧ x)

)
3 sin

ϑ j

2

)
|R je3 − e3|

h j

(4.32)

where η ∈ C([0, 2π]) is such that η(ϑ) = (2(1 − cosϑ))−
1
2 sinϑ for every ϑ ∈ (0, 2π).

By arguing as in (3.32) and by taking (4.24) into account we get, up to subsequences,

h−1
j ((R jx)3 − x3)→ λ

(
η(ϑ)(α1x2 − α2x1) + (α1x1 + α2x2) sin

ϑ

2

)
, ∀ x ∈ Ω (4.33)

for some λ ≥ 0. On the other hand ∇z j = h−1
j (R je3 − e3) and (4.24) entail ‖∇z j‖∞ ≤ C for some C > 0

so z j ⇀ z in w∗ −W1,∞(Ω : R3) whenever b1 = λ(−α2η(ϑ) + α1 sin ϑ
2 ), b2 = λ(α1η(ϑ) + α2 sin ϑ

2 ), b3 =

−β. �

Lemma 4.4. (Lower bound) Assume that E, L, W fulfil the conditions (2.13)–(2.22), (2.32), (2.33)
and L(e3) < 0. If h j → 0+ as j → +∞ then, for every sequence of deformations y j ∈ H1(Ω;R3) such
that G j(y j) ≤ M < +∞ and for every R j ∈ M(y j) there exist c j ∈ CR j such that by setting

u j(x) := h j
−1RT

j

{(
y j − c j − R jx

)
α eα + (y j,3 − x3)e3

}
, (4.34)
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there is u ∈ A such that up to subsequences u j ⇀ u weakly in H1(Ω;R3) and

lim inf
j→+∞

G j(y j) ≥ G̃(u). (4.35)

Proof. Due to Lemma 4.1, the sequence defined in (4.34) is equibounded in H1(Ω;R3) hence there
exists u ∈ H1(Ω;R3) such that up to subsequences u j ⇀ u in H1(Ω;R3). By recalling Lemma A1
of [12] we get, again up to subsequences, u∗j(x)→ u∗(x) for q.e. x ∈ E hence by taking account of

u∗j,3 = h j
−1(y∗j,3 − x3) ≥ h j

−1(x3 − h jx3 − x3) = −x3

for q.e. x ∈ E we get u∗3 ≥ −x3 for q.e. x ∈ E that is u ∈ A.
By taking account of G j(y j) ≤ M and by arguing as in Lemma 4.1 the sequence h−1

j (y j −R j − c j) is
bounded in H1(Ω;R3) hence (4.4) entails

0 ≤ L
(
x − R jx − c j

)
≤ (M + M1) h j. (4.36)

Therefore, by recalling (4.2), (4.3) and that, up to subsequences, R j → R we get R ∈ SL,E. By defining
z j as in Lemma 4.3 and by setting

D j := E(u j) + 1
2h j∇uT

j ∇u j, F j := E(RT
j z j) + 1

2h j∇(RT
j z j)T∇(RT

j z j)

a straightforward calculation shows that

∇yT
j ∇y j − I = 2h j(D j + F j). (4.37)

If now
B j := {x ∈ Ω :

√
h j|∇u j| ≤ 1},

we immediately notice that, by Tchebycheff inequality, |Ω \ B j| → 0 as j → +∞ and that for large
enough j

h j|D j| ≤

√
h j

(√
h j|∇v j| +

1
2h3/2

j |∇vT
j ||∇v j|

)
≤ 2

√
h j, on B j. (4.38)

Moreover by Lemma 4.3 there exists C > 0 such that

h j|F j| ≤ Ch j, in Ω (4.39)

hence by defining z as in (4.30) and by taking account of R j → R ∈ SL,E, we get

F j ⇀ E(z), w∗ − L∞(Ω;R3×3). (4.40)

By taking account of L(eα) = 0 for α = 1, 2, (2.32) entails

L(y j − x) = L((y j,3 − x3)e3) +L((y j − R jx − c j)αeα)

+L((R jx − x)αeα) ≤ h jL(R ju j)
(4.41)
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thus, since η is increasing, by (2.21)–(2.23), (2.25), (4.37)–(4.40) we get for large j

G j(y j) ≥
1
h2

j

∫
B j

V(x, h jD j + h jF j) dx − L(R ju j)

≥

∫
B j

Q(x,D j + F j) dx −
∫

B j

η(h jD j + h jF j)|D j + F j|
2 dx − L(R ju j)

≥

∫
Ω

Q(x, 1B j(D j + F j)) dx − η(3
√

h j)
∫

Ω

|1B j(D j + F j)|2 dx − L(R ju j).

(4.42)

Since h j∇uT
j ∇u j → 0 a.e. in Ω and |1B jh j∇uT

j ∇u j| ≤ 1, by taking account of |Ω \ B j| → 0 as
j→ +∞ we get 1B jh j∇uT

j ∇u j ⇀ 0 weakly in L2(Ω,R3×3). By taking account of 1B j∇u j ⇀ ∇u weakly
in L2(Ω,R3×3) and (4.40), we then obtain

1B j(D j + F j) ⇀ E(u) + E(z) = E(u) +
1
2

bα(eα ⊗ e3 + e3 ⊗ eα) (α = 1, 2) (4.43)

weakly in L2(Ω,R3×3). Since R j → R ∈ SL,E, then

lim
j→+∞

L(−R ju j) = −L(Ru)

and by (2.21) and (4.42), the weak L2(Ω,R3×3) lower semicontinuity of the map B 7→
∫

Ω
Q(x,B)dx

entails
lim inf

j→+∞
G j(y j) ≥

∫
Ω

Q(x,E(u) + E(z)) dx − L(Ru) ≥ G̃(u)

which, by recalling (4.30), ends the proof. �

Remark 4.5. If condition (2.32) is not satisfied then the thesis of Lemma 4.4 may fail. Indeed let
f := −e3 + 6(x3 −

1
2 )e1, g = 0 and

E = Ω := {x : x2
1 + x2

2 < 1, 0 < x3 < 1}.

It is straightforward checking that L(e3) < 0 = L(e1) = L(e2) and

L((R − I)x) − min
x∈Eess

((Rx)3 − x3)} L(e3)

=
π

2
R13 −

π

2
(1 − R33) − π

√
1 − R2

33

≤
π

2

√
1 − R2

33 −
π

2
(1 − R33) − π

√
1 − R2

33

= −
π

2

√
1 − R33

{ √
1 − R33 +

√
1 + R33

}
≤ −

π
√

2
2

√
1 − R33 ≤ 0

(4.44)

for every R ∈ S O(3). On the other hand if R13 > 0 we have

L((Rx − x)αeα) =
π

2
R13 > 0,
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so (2.33) is satisfied while (2.32) is not. Choose now h j := j−1,

R j := e2 ⊗ e2 + (1 − j−2)(e1 ⊗ e1 + e3 ⊗ e3) + j−1
√

2 − j−2 (−e3 ⊗ e1 + e1 ⊗ e3)

and set y j := R jx + j−1
√

2 − j−2e3. It is readily seen that

y j,3 = − j−1
√

2 − j−2x1 + (1 − j−2)x3 + j−1
√

2 − j−2

≥ (1 − j−2)x3 ≥ x3 − j−1x3

(4.45)

hence y j ∈ A j and by taking (4.2) into account we get (y j−R jx−c j)α ≡ 0, α = 1, 2. Therefore bearing
in mind that RT

j → I we have

u j = jRT
j ((y j,3 − x3)e3) = RT

j

{
(
√

2 − j−2(1 − x1) + j−1x3)e3

}
→ u :=

√
2(1 − x1)e3

and by Lemma 3.8 we get Ru = u for every R ∈ SL,E, hence

G̃(u) ≥ − max
R∈SL,E

L(Ru) = −L(u) = π
√

2.

On the other hand by taking account of

y j,1 − x1 = − j−2x1 + j−1
√

2 − j−2x3, y j,2 − x2 = 0

and
y j,3 − x3 = j−1

√
2 − j−2(1 − x1) + j−2x3

it is straightforward checking that

G j(y j) = − jL(y j − x) = π
√

2 − j−2 + π j−1 −
π

2

√
2 − j−2 →

π
√

2
2

< G̃(u)

thus proving that the claim of Lemma 4.4 fails in this case.

Lemma 4.6. (Upper bound) Assume (2.13), (2.19)–(2.22), (2.32), (2.33),L(e3)<0 and let 0 < h j →

0+ as j→ +∞. For every u ∈ C1(Ω,R3) there exists ỹ j ∈ C1(Ω,R3) such that

lim sup
j→+∞

G j(̃y j) ≤ G̃(u).

Proof. We assume without loss of generality that u ∈ A and let

b∗ ∈ argmin
{∫

Ω

Q(x,E(u) +
1
2

bα(eα ⊗ e3 + e3 ⊗ eα)) dx : b ∈ R2
}
,

ũ(x) := u(x) + x3(b∗1e1 + b∗2e2). (4.46)

It is readily seen that ũ ∈ A, that E(̃u) = E(u) + 1
2b∗α(eα ⊗ e3 + e3 ⊗ eα) hence

I(u) =

∫
Ω

Q(x,E(̃u)) dx. (4.47)
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Moreover, by (3.1) of Lemma 3.1 and Remark 3.2 we obtain

L(Rũ) = L(Ru) +L(x3(b∗1Re1 + b∗2Re2)) = L(Ru), ∀R ∈ SL,E. (4.48)

Therefore by choosing
R̃ ∈ argmin

{
−L(Rũ) : R ∈ SL,E

}
we get

G̃(u) =

∫
Ω

Q(x,E(̃u)) dx − L(R̃ũ).

By setting ỹ j := R̃(x+h jũ), taking accountSL,E ⊂ {R : Re3 = e3} and Lemma 3.8, we getL(R̃x−x) = 0
and for q.e. x ∈ E

ỹ∗j,3 = x3 + h j̃u3 ≥ (1 − h j)x3.

Therefore ỹ j ∈ A j and by (2.24) we get

lim sup
j→+∞

|Gh j(y j) − G̃(u)| ≤ lim sup
j→+∞

∫
Ω

∣∣∣∣∣∣∣ 1
h2

j

W(x, I + h j∇ũ) − Q(x,E(̃u))

∣∣∣∣∣∣∣ dx = 0

which proves the lemma. �

We are now in a position to prove our main theorem.

Proof of Theorem 2.4. If (y j) j∈N ⊂ H1(Ω,R3) is a minimizing sequence forG j thenG j(y j) ≤ G j(x) = 0,
moreover if R j belong A(y j) and c j is defined by (4.2) and (4.3), then Lemma 4.1 entails that the
sequence

u j(x) := h j
−1RT

j

{(
y j − R jx − c j

)
αeα + (y j,3 − x3)e3

}
is bounded in H1(Ω;R3). Therefore up to subsequences u j → u weakly in H1(Ω;R3), so, by
Lemma 4.4, we have u ∈ A and

lim inf
j→+∞

G j(y j) ≥ G̃(u).

On the other hand, by Lemma 4.6, for every u ∈ C1(Ω,R3) ∩A there exists a sequence y j ∈ C1(Ω,R3)
such that

lim sup
j→+∞

G j(y j) ≤ G̃(u).

Since
G j(y j) + o(1) = inf

H1(Ω,R3)
G j ≤ G j(y j), as j→ +∞, (4.49)

by passing to the limit as j→ +∞, we get

G̃(u) ≤ G̃(u), ∀u ∈ C1(Ω,R3) ∩A. (4.50)

Now fix a generic u ∈A and denote again by u a Sobolev extension of u to the whole R3. We claim
that there exists u j ∈ C1(Ω,R3) ∩ A such that u j → u in H1(Ω;R3): Indeed, since ũ3(x) + x3 ≥ 0
for q.e. x ∈ E, by Lemma A.4 it is enough to choose u3, j := η j − x3 where η j ∈ C1(R3), η j ≥
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0 q.e. in E, η j → u3 + x3 in H1(R3) (here u3 + x3 denotes also an extension to the whole H1(R3) ) and
uα, j := uα ∗ ρ j, α = 1, 2 where ρ j is a sequence of smooth mollifiers. By (4.50) we have

G̃(u) ≤ G̃(u j)

whence by Remark 2.2,
G̃(u) ≤ lim

j→+∞
G̃(u j) = G̃(u), ∀u ∈ A,

that is u ∈ argmin G̃.
We show that G j(y j) → G̃(u): By Lemma A.4 in the Appendix, for every ε > 0 there is uε ∈

C1(Ω;R3)) ∩A such that
G̃(uε) < G̃(u) + ε

and by Lemma 4.6 there exists y j,ε ∈ C1(Ω;R3) such that by taking account of (4.49) we have

lim sup
j→+∞

G j(y j) ≤ lim sup
j→+∞

G j(y j,ε) ≤ G̃(uε) < G̃(u) + ε

for every ε > 0. Since by Lemma 4.4,

lim inf
j→+∞

G j(y j) ≥ G̃(u),

we get G j(y j)→ G̃(u) as claimed.
We are only left to show that min G̃ = minG. To this aim we show first that for every u ∈ A there

exists u∗ ∈ A such that G(u∗) = G̃(u). Indeed if ũ is defined as in (4.46) then by (4.47) and (4.48) we
get

G̃(u) = I(u) − max
R∈SL,E

L(Ru) =

∫
Ω

Q(x,E(̃u) dx − max
R∈SL,E

L(Rũ) = G(̃u) (4.51)

as claimed. By recalling that G̃(u) = min G̃ ≤ inf G let us assume that inequality is strict. Then
by (4.51) there exists u∗ ∈ A such that G(u∗) = G̃(u) < inf G, a contradiction. Thus again by (4.51)
G(u∗) = G̃(u) = minG. �

5. The gap with Signorini problem

In this section we will exhibit a choice of energy density W, open set Ω, dead loads f, g and set
E⊂Ω fulfilling all the assumptions of Theorem 2.4 but such that the minimum of the limit functional G
is strictly less than the minimum of the Signorini functional (see [45] for a counterexample exhibiting
an analogous gap for unconstrained pure traction problem).

We shall consider the energy density already defined in (2.26) by setting

W(F) :=

 Wiso

(
F

(det F)1/3

)
+Wvol(F), if det F > 0,

+∞, if det F ≤ 0,
(5.1)

where Wiso is the energy density of Yeoh type defined in (2.27) with 2c1 = µ > 0 and Wvol(F) =

g(det F) where g : R+ → R is the convex C2 function (satisfying (2.28) with r = 2) defined by

g(t) =
µ

6
(t2 − 1 − 2 log t).
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By recalling Example 2.1 it is readily seen thatW satisfies (2.14)–(2.17) and by taking into account
of

det(I + hB) = 1 + h TrB + (h2/2)
(
(TrB)2 − Tr B2) + h3 det B

and Tr(BT B)= |B|2 for every B ∈ R3×3, we obtain as h→ 0

|I + hB|2

det(I + hB)2/3 − 3 = h2( 2 |B|2 − 2
3 |TrB|2

)
+ o(h2)

for every B ∈ R3×3
sym. Moreover by recalling (2.27) (with 2c1 = µ)

Wvol(I + hB) = g(det(I + hB)) =
h2

2
|TrB|2 + o(h2) =

µ

3
|TrB|2 h2 + o(h2),

Wiso(I + hB) =
µ

2
h2

(
2 |B|2 −

2
3

(TrB)2
)

+ o(h2),

so
1
2

B D2W(I) B = µ |B|2. (5.2)

Let
Ω := {x ∈ R3 : x2

1 + x2
2 < 1, 0 < x3 < 1}, E := {x ∈ R3 : x2

1 + x2
2 < 1, x3 = 0} (5.3)

and ϕ ∈ C2(E) such that

∆ϕ . 0 , ϕ(x1, x2) = φ(r) , r :=
√

x2
1 + x2

2 , φ(1)=φ′(1)=

∫ 1

0
r2φ′(r) dr = 0 (5.4)

(for instance φ(r) := 1− 6r2 + 9r4 − 4r6 fulfills (5.4)). It is readily seen that condition (2.13) is fulfilled
and that Eess = E. We define

R∗ := −e1 ⊗ e2 + e2 ⊗ e1 + e3 ⊗ e3,

L(u) :=
∫

Ω
uα ∇αϕ dx −

∫
E

u3(x1, x2, 0) dx1 dx2.

(5.5)

Condition (2.32) is satisfied since

L((Rx − x)αeα) = π (R11 + R22 − 2)
∫ 1

0
r2φ′(r) dr = 0, ∀R ∈ S O(3).

Moreover L(e1) = L(e2) = 0, L(e3) < 0 and

Φ(R, E,L) = π (R11 + R22 − 2)
∫ 1

0
r2φ′(r) dr + π min

Eess

{
R31x1 + R32x2 + (R33 − 1)x3

}
= −π

√
R2

31 + R2
32 ≤ 0.

(5.6)

so (2.33) is fulfilled too. By taking account of R∗e3 = e3, we get

Φ(R∗, E,L) = −2π
∫ 1

0
r2φ′(r) dr = 0
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whence R∗ ∈ SL,E and Lemma 3.8 entails SL,E = {R : Re3 = e3}. Since E fulfills (2.13), W
satisfies (2.14)–(2.17) and L satisfies (2.27) together with L(e3) < 0 then, by taking into account
of (5.2), Theorem 2.4 entails

inf G j → min
u∈A
G = min

{
µ

∫
Ω

|E(u)|2 dx − max
R∈SL,E

L(Ru) : u ∈ A
}
. (5.7)

We set
E(u) := µ

∫
Ω

|E(u)|2 dx − L(u) (5.8)

and, for every R ∈ SL,E,

ER(u) := µ

∫
Ω

|E(u)|2 dx − L(Ru). (5.9)

We aim to show
min{ER∗(u) : u ∈ A} < min{E(u) : u ∈ A} (5.10)

so that, once (5.10) is proved, we deduce

min
u∈A
G < min

u∈A
E. (5.11)

In order to show inequality (5.10) we need some properties of minimizers of E which have been
essentially proven in [45]. In the following E(·) will denote the upper-left 2 × 2 submatrix of E(·)
and R ∈ S O(2) the upper-left 2 × 2 submatrix of any R ∈ SL,E.

Lemma 5.1. Let u ∈ A and let

v(x) := vα(x1, x2)eα + v3(x3)e3, α=1, 2 (5.12)

where

vα(x1, x2) :=
∫ 1

0
uα(x) dx3, α=1, 2, v3(x3) := π−1

∫
E
u3(x)dx1dx2.

Then v ∈ A and
ER(u) ≥ JR(v), ∀R ∈ .SL,E, (5.13)

where v := vαeα, and

JR(v) := µ

∫
E
|E(v)|2 dx1dx2 −

∫
E

R
T
∇ϕ · v dx1dx2. (5.14)

In particular if R = I, then (5.13) reduces to E(u) ≥ J(v) having set J := JI.

Proof. Since u∗3 ≥ 0 q.e. on E = ∂Ω ∩ {x3 = 0} then by Remark 2.3 we get u3 ≥ 0 H2- q.e. in E that
is v3(0) ≥ 0 hence, again by Remark 2.3, v ∈ A. Moreover, by using the notation u3,3 := ∂3u3, Jensen
inequality entails

ER(u) ≥ µ

∫
E

∣∣∣∣∣∣
∫ 1

0
E(u) dx3

∣∣∣∣∣∣2 dx1 dx2 + µ π

∫ 1

0

∣∣∣∣∣1π
∫

E
u3,3 dx1 dx2

∣∣∣∣∣2 dx3

−

∫
E

Rβα∇βϕ

(∫ 1

0
uα dz

)
dx1 dx2 +

∫
E

u3(x1, x2, 0) dx1 dx2

≥ JR(v) + µ π

∫ 1

0
|v̇3|

2 dx3 + πv3(0) ≥ JR(v),

(5.15)
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thus proving the lemma. �

We need now the following characterization of minimizers of J which has been given in [45].

Lemma 5.2. There exists Φ ∈ H2(E) such that

min
u∈H1(E)

J(u) = J(∇Φ) ≥ min
Φ∈H2(E)

∫
E
(2 µΦ2

,12 + µΦ2
,11 + µΦ2

,22 + Φ∆ϕ) dx1dx2, (5.16)

where we have used the notation Φ,αβ := ∂2
αβΦ.

A straightforward application of Lemma 5.1 ( with R = I) and Lemma 5.2 yields the following
precise calculation of the energy level of u ∈ argminA E.

Lemma 5.3. There holds

min
u∈A
E(u) = min

Φ∈H2(E)

∫
E
(2µΦ2

,12 + µΦ2
,11 + µΦ2

,22 + Φ∆ϕ) dx1dx2. (5.17)

Proof. It is readily seen that any displacement of the kind (∇Φ(x1, x2), v3(x3)) ∈ A if and only if
Φ ∈ H2(E), v3 ∈ H1(0, 1) and v3(0) ≥ 0. Therefore, by Lemmas 5.1 and 5.2, we get

min
u∈A
E(u) ≥ min

Φ∈H2(E)

∫
E
(2µΦ2

,12 + µΦ2
,11 + µΦ2

,22 + Φ∆ϕ) dx1dx2

+ inf
{
µ π

∫ 1

0
|v̇3|

2 dx3 + π v3(0) : v3 ∈ H1(0, 1), v3(0) ≥ 0
}

= min
Φ∈H2(E)

∫
E
(2µΦ2

,12 + µΦ2
,11 + µΦ2

,22 + Φ∆ϕ) dx1dx2.

The opposite inequality follows by choosing v := (∇Φ, 0) with Φ ∈ H2(B) and by taking into account
of

min
u∈A
E(u) ≤ E(v)

for every choice of Φ ∈ H2(E). �

Let now Φ ∈ H2(E). Then v := Φ,2e1 − Φ,1e2 ∈ A and a direct computation shows that

min
A
ER∗ ≤ min

Φ∈H2(E)

∫
E
(2µΦ,12

2 +
µ

2
(Φ,22 − Φ,11)2 + Φ∆ϕ) dx1dx2. (5.18)

Therefore inequality (5.10) is an immediate consequence of the next proposition.

Proposition 5.4. There holds

min
Φ∈H2(E)

∫
E
(2µΦ,12

2 +
µ

2
(Φ,22 − Φ,11)2 + Φ∆ϕ) dx1dx2

< min
Φ∈H2(E)

∫
E
(2µΦ2

,12 + µΦ2
,11 + µΦ2

,22 + Φ∆ϕ) dx1dx2.

(5.19)
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Proof. The proof is the same of formula (5.14) of [45]. �

The previous explicit example shows that a gap phenomenon may actually develop. Nevertheless
one can prove that whenever f, g satisfy (2.33) then they can be suitable rotated in order to avoid the
gap. In order to state such result, we introduce suitable notation: Set

LR(v) := L(Rv) =

∫
Ω

RT f · v dx +

∫
∂Ω

RT g · v dH2, ∀R ∈ S O(3), (5.20)

say LR is the load functional associated to the external forces RT f,RT g and let ER be the functional
defined by replacing L with LR in the definition of E.

Theorem 5.5. Assume (2.13), (2.33), L(e3) < 0 and R ∈ SL,E. Then the functional LR fulfills (2.33)
and SL,E ≡ SLR,E. Moreover, if u minimizes G over H1Ω,R3), R ∈ SL,E attains the maximum in
definition (2.42) of G(u) then u ∈ argminER and

min
H1(Ω,R3)

G = min
H1(Ω,R3)

ER. (5.21)

Proof. By Lemma 3.8 we have either SL,E ≡ {I} or SL,E = {R : Re3 = e3}: In the first case there is
nothing to prove, in the second one by (2.33) we get

0 = Φ(R, E,L) = L((R − I)x). (5.22)

Therefore for any other S ∈ S O(3) by taking account of Re3 = e3 and (5.22) we have

Φ(S, E,LR) = Φ(RS, E,L) ≤ 0 (5.23)

that is LR satisfies (2.33). By Remark 3.5 conditions (4.9)–(4.11) of Theorem 4.5 in [12] are fulfilled
hence ER achieves a finite minimum. Moreover since Re3 = e3 implies R2e3 = e3, (5.23) together with
Lemma 3.8 entails

Φ(R, E,LR) = Φ(R2, E,L) = 0, (5.24)

whence R ∈ SLR,E whenever R ∈ SL,E. Then since LR(e3) = L(Re3) = L(e3) < 0 we get, again by
Lemma 3.8, SLR,E . {I} hence SLR,E = {R : Re3 = e3} = SL,E as claimed.

We conclude by checking that if u minimizes G then it is also a minimizer of ER over H1(Ω,R3). If
u ∈ H1(Ω,R3) minimizes G and R attains the maximum then

min
H1(Ω,R3)

G = G(u) =

∫
Ω

Q(x,E(u)) dx − L(Ru) = ER(u).

Thus since G ≤ ER then (5.21) is proven. �

Remark 5.6. By choosingW as in (5.1), Ω, E as in (5.3) we provide an example where the inclusion
argminG ⊂ argmin G̃ is strict. Indeed Lemma 5.1 shows that for every R ∈ SL,E there exists w ∈
argminER such that w(x) = wα(x1, x2)eα. By Theorem 5.5 there exists u ∈ argminG ⊂ argmin G̃ such
that u(x) = uα(x1, x2)eα. Then we can set u∗(x) := u(x) + x3e1. By taking account of Lemma 3.1 and
Remark 3.2, we get L(Ru) = L(Ru∗) for every R ∈ SL,E hence G̃(u) = G̃(u∗) and u∗ ∈ argmin G̃.
Moreover, again by taking account of Lemma 3.1 and Remark 3.2, we have

G(u∗) − G(u) = µ

∫
Ω

|E(u∗)|2 dx − µ
∫

Ω

|E(u)|2 dx =
µ

2
|Ω| > 0,

thus u∗ < argminG and the inclusion is strict in this case.
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6. Conclusions

We have showed a rigorous variational linearization for a classical obstacle problem in nonlinear
elasticity, namely an elastic body subject to pure traction load, supported on a unilateral rigid plane.
Under suitable geometric admissibility conditions on the loads we obtain coincidence of minima with
the classical Signorini problem in linear elasticity. On the other hand, we have shown the existence
of loads violating such admissibility condition and entailing a gap between the minimum of the two
problems.
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Appendix

For reader’s convenience and aiming to the precise formulation of unilateral constraint, in this
section we encompass some results about capacity theory which are essential to achieve the results
of present paper and somehow present in the literature, though they are spread in several different
contexts and not easy to find as stated in this form: In particular Proposition A.1 and Eq (A.2) can be
proven as like as Propositions 5.8.3 and 5.8.4 in [7] although the results seem slightly different.

Proposition A.1. Let G an open bounded subset of RN . Then

cap G = inf
{
‖w‖2H1(RN ) : w∈C∞0 (RN), w ≥ 1 on G

}
. (A.1)

The above property can be generalized to every bounded subset of RN by the following:

Proposition A.2. Let E a bounded subset of RN . Then

cap E = inf
{
‖w‖2H1(RN ) : w∈C∞0 (RN), w ≥ 1 on a neighborhood of E

}
= inf

{
‖w‖2H1(RN ) : w∈C∞0 (RN; [0, 1]), w ≡ 1 on a neighborhood of E

}
.

(A.2)

We state and prove some results which play a crucial role in the proof of our main theorem.
In the sequel Ω will denote an open bounded subset of RN with Lipschitz boundary and E will

denote a subset of Ω such that cap E > 0.

Lemma A.3. Let u ∈ H1(Ω), u ≥ 0 a.e. in Ω such that u∗(x) = 0 for q.e. x ∈ D, where D is a closed
subset of Ω. Then there is an extension v ∈ H1(RN) of u such that spt v is compact, v ≥ 0 a.e. in RN and

lim
r→0+

1
|Br(x)|

∫
Br(x)

v(ξ) dξ = 0

for q.e. x ∈ D.

Proof. We recall that u∗ is defined as

u∗(x) = lim
r→0+

1
|Br(x)|

∫
Br(x)

w(ξ) dξ (A.3)

for q.e. x ∈ Ω, where w is any Sobolev extension of u. Therefore the claim follows easily by choosing
a cut off function ϕ ∈ C∞0 (RN), ϕ ≡ 1 on Ω and by setting v := w+ϕ which is a Sobolev extension of u
with compact support since v = u a.e. in Ω, and spt v ⊂ sptϕ. �

Lemma A.4. Let u ∈ H1(RN) with compact support such that u ≥ 0 a.e. in RN and u∗(x) = 0 for q.e.
x ∈ E. Then there exists a sequence u j ∈ C1(RN) ∩ H1(RN), u j ≥ 0 in RN such that u j(x) = 0 for q.e.
x ∈ E and u j → u in H1(R3).

Proof. For every j ∈ N, j ≥ 1 let u j := min{u, j
1
4 } ∈ H1(RN). By Theorem 3.11.6 and Remark 3.11.7

of [57], there exists v j ∈ C1(RN) ∩ H1(RN) with spt v j ⊂ {x : d(x, spt u j) ≤ j−1} such that if F j := {x :
v j(x) , u j(x)} then

Cap F j <
1
j
, ‖v j − u j‖H1(RN ) <

1
j
, (A.4)
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so (2.8) entails
cap F j < β j−1. (A.5)

By recalling that spt u j is compact we get that F j is bounded so, by taking account of (A.2), there exists
w j ∈ C∞0 (RN; [0, 1]), w j ≡ 1 in a neighbourhood U j of F j such that

‖w j‖
2
H1(RN ) < β j−1. (A.6)

We define u j := (1 − w j)v j: it is readily seen that u j ∈ C1(RN) ∩ H1(RN), u j ≥ 0 in RN , that u j(x) = 0
for q.e. x ∈ E ∩ U j and that u j ≡ u j(1 − w j) outside U j, hence, by recalling that u j

∗(x) = u∗(x) = 0 for
q.e. x ∈ E, we get u j(x) = 0 for q.e. x ∈ E \ U j that is u j(x) = 0 for q.e. x ∈ E. We claim that u j → u
in H1(RN): to this aim, by noticing that u j − u = v j − u j + u j − u − v jw j and that u j → u in H1(RN),
thanks to (A.4) we have only to show that v jw j → 0 in H1(RN). We first notice that by setting

B j := {x : |w j(x)| ≥ j−
1
4 },

then by (A.6) and Tchebichev inequality we get |B j| ≤ β j−
1
2 , therefore∫

RN
|w j|

2|v j|
2 dx =

∫
B j

|w j|
2|v j|

2 dx +

∫
R3\B j

|w j|
2|v j|

2 dx

≤

∫
B j

|v j|
2 dx + j−

1
2

∫
RN\B j

|v j|
2 dx

≤ 2
∫

B j

|v j − u j|
2 dx + 2

∫
B j

|u j|
2 dx

+2 j−
1
2

∫
RN
|v j − u j|

2 dx + 2 j−
1
2

∫
RN
|u j|

2 dx→ 0,

(A.7)

since
‖v j − u j‖H1(RN ) <

1
j
, u j → u in H1(RN), |B j| → 0.

Analogously by recalling (A.6), that w j ≡ 1 on U j, that v j ≡ u j outside U j and ‖u j‖
2
∞ ≤

√
j, we get∫

RN
|∇(w jv j)|2 dx ≤ 2

∫
RN
|w j|

2|∇v j|
2 dx + 2

∫
RN\U j

|v j|
2|∇w j|

2 dx

≤ 2
∫
RN
|w j|

2|∇v j|
2 dx + 2‖u j‖

2
∞

∫
RN\U j

|∇w j|
2 dx

≤ 2
∫
RN\B j

|w j|
2|∇v j|

2 dx + 2
∫

B j

|w j|
2|∇v j|

2 dx + 2 j−
1
2 → 0,

(A.8)

as in (A.7) thus proving the lemma. �

Lemma A.5. Let u ∈ H1(Ω) such that u∗(x) ≥ 0 for q.e. x ∈ E. Then there exists a sequence u j ∈ C1(Ω)
such that u j(x) ≥ 0 for q.e. x ∈ E and u j → u in H1(Ω).
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Proof. We recall that by Remark 2.3 u∗(x) ≥ 0 for q.e. x ∈ E if and only if (u−)∗(x) = 0 for q.e. x ∈ Eess

and that Eess is a closed subset of Ω. By Lemma A.3 there exists a Sobolev extension v of u− such that
spt v is compact, v ≥ 0 a.e. in R3 and

lim
r→0+

1
|Br(x)|

∫
Br(x)

v(ξ) dξ = 0

for q.e. x ∈ Eess, so by Lemma A.4, there exists a sequence v j ∈ C1(RN) ∩ H1(RN), v j ≥ 0 in RN such
that v j(x) = 0 for q.e. x ∈ Eess and v j → v in H1(RN). Let now w be a Sobolev extension of u+. We may
assume without loss of generality that w ≥ 0 a.e. in RN and if ρ j is a sequence of smooth mollifiers
then w j := w ∗ ρ j ≥ 0 and w j → w in H1(RN). Therefore by setting u j := w j − v j, we have u j ∈ C1(Ω),
u j(x) ≥ 0 for q.e. x ∈ E and u j → u in H1(Ω) thus proving the lemma. �

Remark A.6. If E is a non empty subset of Ω and u ∈ H1(Ω) we say that u ≥ 0 on E in the sense of
H1(Ω) if there exists a sequence u j ∈ C1(Ω) such that u j ≥ 0 on E and u j → u in H1(Ω) (according
to [31, Definition 5.1]). We claim that (u−)∗ = 0 q.e. in E (or equivalently u∗ ≥ 0 q.e. in E) if and only
if u ≥ 0 on E in the sense of H1(Ω): Indeed if (u−)∗ = 0 q.e. in E then Lemma A.5 provides a sequence
u j ∈ C1(Ω) such that u j → u in H1(Ω), u j ≥ 0 on E, while the converse follows easily by recalling that
if u j → u in H1(Ω) then, up to subsequences, u j(x)→ u∗(x) for q.e. x ∈ E.
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