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Abstract: We prove the well-posedness of a Cauchy problem of the kind:{
Lu = f , in D′(RN × (0,+∞)),
u(x, 0) = g(x), ∀x ∈ RN ,

where f is Dini continuous in space and measurable in time and g satisfies suitable regularity
properties. The operator L is the degenerate Kolmogorov-Fokker-Planck operator

L =

q∑
i, j=1

ai j(t)∂2
xi x j

+

N∑
k, j=1

bk jxk∂x j − ∂t

where {ai j}
q
i j=1 is measurable in time, uniformly positive definite and bounded while {bi j}

N
i j=1 have the

block structure:

{bi j}
N
i j=1 =


O . . . O O

B1 . . . O O
...

. . .
...

...

O . . . Bκ O


which makes the operator with constant coefficients hypoelliptic, 2-homogeneous with respect to a
family of dilations and traslation invariant with respect to a Lie group.

Keywords: Kolmogorov-Fokker-Planck operators; nonhomogeneous Cauchy problem; Duhamel
method; Dini continuity; measurable time dependent coefficients
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1. Introduction and main results

Starting from the theory present in [2–4], we shall prove the well-posedness of a global Cauchy
problem for a class of Kolmogorov-Fokker-Planck operators (briefly KFP) with time dependent
measurable coefficients and linear drift (Theorem 1.1). The main point is to prove the existence of
a solution because uniqueness and the stability estimates follow from [2, 3]. Moreover, since we have
at our disposal an explicit fundamental solution (see [4]) we shall look for a solution in the form
prescribed by the Duhamel method. To this aim, we first employ some techniques from [2] to obtain
existence for smooth datum and then thanks to the estimates from [3], we can achieve existence under
the minimal regularity assumptions on the datum.

The KFP operator we consider is defined as follows:

L =

q∑
i, j=1

ai j(t)∂2
xi x j

+

N∑
k, j=1

bk jxk∂x j − ∂t, x ∈ RN , t ∈ R, (1.1)

for some q ≤ N. Moreover we assume the two following hypotheses:
h1) The coefficients ai j are measurable functions and there exists ν > 0 such that the matrix A(t) =

{ai j(t)}
q
i, j=1 satisfies the following condition:

ν|ξ|2 ≤

q∑
i, j=1

ai j(t)ξiξ j ≤
1
ν
|ξ|2, a.e. t ∈ R ∀ξ ∈ Rq; (1.2)

h2) There exist positive integers {m j}
κ
j=1 satisfying q = m0 ≥ m1 ≥ · · · ≥ mκ and

∑κ
j=1 m j = N such

that the matrix B = {bik}
N
i,k=1 assumes the following block structure:

B =



O O . . . O O

B1 O . . . O O

O B2 . . . O O
...

...
. . .

...
...

O O . . . Bκ O


, (1.3)

where for every j ∈ {1, . . . , κ} the block B j has dimension m j × m j−1 and rank equal to m j.

Remark 1.1. It is convenient to introduce the first order operator

Y :=
N∑

j,k=1

b jkxk∂x j − ∂t,

so that (1.1) becomes: L =
∑q

i, j=1 ai j(t)∂2
xi x j

+ Y.

As pointed out by Bramanti and Polidoro in [4] this class of operators is naturally linked to
stochastic systems of the kind: {

dX = −BXdt + σ(t)dW,

X(0) = x0, a.s.
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Indeed, taking ai j(t) = 1
2

∑q
k=1 σik(t)σ jk(t), the forward Kolmogorov operator of this system corresponds

to L while the backward Kolmogorov operator corresponds to the adjoint of L. In accordance to this
possible application we remark that the simple case

L =

N∑
i=1

∂2
xi xi

+

N∑
k=1

xi∂xi+k − ∂t (1.4)

has been studied, already in 1934, by Kolmogorov in relation to a system with 2N degrees of
freedom [6] (see [5, Section 2]). It is interesting to notice that this operator is hypoelliptic and admits
an explicit fundamental solution found, by Kolmogorov himself, which is smooth outside the pole.
The operator (1.4) is a particular case of the one studied by Lanconelli and Polidoro in the fundamental
paper [8] which contains a characterization of the hypoellipticity for the more general operator

L =

N∑
i, j=1

ãi j∂
2
xi x j

+

N∑
i, j=1

b̃ jixi∂x j − ∂t (1.5)

where {ãi j}
N
i, j=1 and {b̃i j}

N
i, j=1 are constant matrices. Actually (see [8]), the operator (1.5) is hypoelliptic

if and only if there exists a change of variables which leads to an operator of the kind (1.1) whose
matrix A is constant and positive definite while B has a structure similar to (1.3) but with blocks above
the B j ones arbitrarily chosen:

B =



∗ ∗ . . . ∗ ∗

B1 ∗ . . . ∗ ∗

O B2 . . . ∗ ∗
...

...
. . .

...
...

O O . . . Bκ ∗


. (1.6)

Moreover, the mentioned paper points out the following homogeneous group structure which is
fundamental for the study of this kind of operators.

Definition 1.1. Let E(s) := e−sB and let

(q1, . . . , qN) := (1, . . . , 1︸  ︷︷  ︸
m0

, . . . , 2i + 1, . . . , 2i + 1︸               ︷︷               ︸
mi

, . . . , 2κ + 1, . . . , 2κ + 1︸                ︷︷                ︸
mκ

).

The homogeneous group structure we consider is given by the group law ◦

(x, t) ◦ (y, s) := (y + E(s)x, t + s), (x, t), (y, s) ∈ RN+1

and the family of automorphisms {D(λ)}λ>0

D(λ) = diag(D0(λ), λ2) := diag(λq1 , . . . , λqN , λ2).

From this definition it easily follows that (RN+1, ◦) is a Lie group:

(y, s)−1 = (−E(−s)y,−s) and (y, s)−1 ◦ (x, t) = (x − E(t − s)y, t − s),

and under the assumption (h2) (see [8, Remark 2.1]) for any (x, t) ∈ RN+1 and (y, s) ∈ RN+1 we have

D(λ)((x, t) ◦ (y, s)) = (D(λ)(x, t)) ◦ (D(λ)(y, s)).

Moreover, the homogeneous group defined above admits a metric structure.
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Definition 1.2. We define the homogeneous norm ρ : RN+1 → [0,+∞) as

ρ(x, t) = ‖x‖ +
√
|t| =

N∑
i=1

|xi|
1
qi +

√
|t|.

Thanks to ρ we can define a quasi distance d on RN+1 as follows:

d((x, t), (y, s)) = ρ((y, s)−1 ◦ (x, t)), (x, t), (y, s) ∈ RN+1.

From this definition it immediately follows that for any (x, t) ∈ RN+1 and λ ∈ (0,+∞) we have:

ρ(D(λ)(x, t)) = λρ(x, t)

while for ξ, ζ and η in RN+1 we have:

d(ξ, ζ) = d(η−1 ◦ ξ, η−1 ◦ ζ).

Now we recall some definitions that can be found in [3].

Definition 1.3. Let I be an interval and let Ω = RN × I.
For any measurable f : Ω→ R we define:

ω f ,Ω(r) = ess sup
t∈I

sup
‖x−y‖≤r

| f (x, t) − f (y, t)|, r ∈ (0,+∞).

Then the function f is said partially Dini continuous if

[ω f ,Ω] :=
∫ 1

0

ω f ,Ω(s)
s

ds < +∞.

Finally, the space of functions f ∈ L∞(Ω) which are partially Dini continuous is denoted withD(Ω).

Definition 1.4. Let I and Ω be as in the previous definition and let µ > 0. For f ∈ D(Ω) letM f ,Ω and
U

µ

f ,Ω be defined as follows:

M f ,Ω(r) = ω f ,Ω(r) +

∫ r

0

ω f ,Ω(s)
s

ds + r
∫ ∞

r

ω f ,Ω(s)
s2 ds,

U
µ

f ,Ω(r) =

∫
RN

e−µ|z|
2( ∫ r‖z‖

0

ω f ,Ω(s)
s

ds
)
dz.

Remark 1.2. ConcerningM f ,Ω(r) andUµ

f ,Ω(r) we remark only that for f ∈ D(Ω) they are two modului
of continuity (i.e., monotone nondecreasing functions vanishing as r → 0+). Moreover whenever f is
log-Dini continuous, meaning that its modulus of continuity satisfies:∫ 1

0

ω f ,Ω(s)
s
| log(s)|ds < +∞,

the function M f ,Ω is a Dini continuity modulus. See [3, Section 2] for details concerning these
definitions and in particular for the assertions above, see Proposition 2.8 and Lemma 2.12.
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Let us introduce the following definitions concerning the spaces in which we look for a solution.

Definition 1.5. Let I be an open interval, then we define the spaces

S 0(RN × I) := {u ∈ C(RN × I) ∩ L∞(RN × I) : ∂xiu, ∂
2
xi x j

u ∈ L∞(RN × I)

for i, j ≤ q, Yu ∈ L∞(RN × I)}

and

S(I) := {u ∈ C(RN × I) ∩ L∞(RN × I) : u ∈ S 0(RN × J), ∀J ⊂⊂ I open interval }.

The partial derivatives in the definition of S 0(RN × I) are distributional derivatives.

For simplicity we adopt the notation

S +∞ := RN × (−∞,+∞), S T := RN × (−∞,T )

and
S τ,T := RN × (τ,T )

for τ < T real numbers. Now we can state the main result of this paper.

Theorem 1.1 (Well-posedness of the Cauchy problem). Let f ∈ D(S +∞) with supp( f ) ⊂ RN × [0,+∞)
and let g ∈ D(RN) satisfy ∂xi x jg ∈ D(RN) for i, j ∈ {1, . . . , q} and Yg ∈ D(RN) (the derivatives are
taken in the distributional sense). Then, there exists a unique u ∈ S(0,+∞) solution of the Cauchy
problem: {

Lu = f , in D′(RN × (0,+∞)),
u(x, 0) = g(x), ∀x ∈ RN .

(1.7)

Moreover, the solution u is in the form:

u(x, t) = −

∫ t

0

∫
RN

Γ(x, t; y, s) f (y, s)dyds +

∫
RN

Γ(x, t; y, 0)g(y)dy (1.8)

and in addition there exist two constants c and µ depending only on ν and B such that for any T > 0
the following estimates hold:

q∑
i, j=1

‖∂2
xi x j

u‖L∞(S 0,T ) + ‖Yu‖L∞(S 0,T )

≤c
(
‖ f ‖L∞(S 0,T ) +U

µ
f ,S 0,T

(
√

T ) + ‖g‖L∞(RN ) +

q∑
i, j=1

‖∂2
xi x j

g‖L∞(RN ) + ‖Yg‖L∞(RN )

+U
µ

g,RN (
√

T + 1) +

q∑
i, j=1

U
µ

∂2
xi x j g,R

N (
√

T + 1) +U
µ

Yg,RN (
√

T + 1)
)
,

(1.9)

ω∂2
xi x j u,S 0,T

(r) + ωYu,S 0,T (r)

≤ c
(
M f ,S 0,T (cr) + +Mg,RN (cr) +

q∑
i, j=1

M∂2
xi x j g,R

N (cr) +MYg,RN (cr)
)
. (1.10)

Remark 1.3. Concerning the existence of a solution the assumptions on the datum g could be
significantly weakened. Indeed, the existence for the homogeneous problem has been studied under
very weak assumptions by Bramanti and Polidoro in [4].
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2. Preliminaries and known results

This section recalls some known results about the operator (1.1) first assuming the matrix A =

{ai j}
q
i, j=1 constant and then for the more general case. The main references are the papers [2–4, 7, 8].

If A is constant, the operator (1.1) enjoys nice properties related to the homogeneous group, which
remind the ones of the heat operator (see [7, 8]). We shall list some of them in the next theorem. We
also define the homogeneous dimension:

Q :=
κ∑

i=0

mi(2i + 1)

where the coefficients {m j}
κ
j=1 are defined in (1.3).

Theorem 2.1 ( [8]). Assumes (h1) and (h2). If the matrix A = {ai j}
q
i, j=1 is constant the operator (1.1)

satisfies the following properties:
i) L is hypoelliptic;
ii) L is invariant with respect to left translations in (Rn+1, ◦): Let (y, s) ∈ RN+1 and u ∈ C∞0 (RN+1),

then, for any (x, t) ∈ RN+1

L(x,t)u((y, s) ◦ (x, t)) = (Lu)((y, s) ◦ (x, t));

iii) L is D(λ)-homogeneous of degree 2: for every λ > 0 and u ∈ C∞0 (RN+1)

L(u(D(λ)(x, t)) = λ2(Lu)(D(λ)(x, t));

iv) Let C(1) and c(1) be defined as:

C(1) :=
∫ 1

0
E(σ)

(
A O

O O

)
E(σ)T dσ, c(1) = det(C(1))

and let
Γ : {(x, t; y, s) ∈ R2N+2 : (x, t) , (y, s)} → R

be defined by

Γ(x, t; y, s) =
(t − s)−

Q
2

√
c(1)(4π)

N
2

χ(0,+∞)(t − s)

× exp
(
−

1
4

(x − E(t − s)y)T D0
( 1
√

t − s

)
C(1)−1D0

( 1
√

t − s

)
(x − E(t − s)y)

)
.

Then, for any fixed (y, s) ∈ RN+1 the function Γ(·; y, s) belongs to C∞(RN+1 \ {(y, s)}) and is the
fundamental solution with pole (y, s):

L[Γ(·; y, s)](x, t) = 0, for any (x, t) ∈ R, such that t > s

and for any g ∈ C0(RN): ∫
RN

Γ(·, t; y, s)g(y)dy −−−→
t→s+

g(·) uniformly on RN;
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v) For any (y, s), (x, t) ∈ RN+1 if t > s we have:∫
RN

Γ(z, t; y, s)dz =

∫
RN

Γ(x, t; z, s)dz = 1;

vi) For any (x, t), (y, s) ∈ RN+1 such that (x, t) , (y, s)

Γ(x, t; y, s) = Γ((y, s)−1 ◦ (x, t); 0, 0);

vii) For any λ > 0 and (x, t) ∈ RN+1 \ {(0, 0)}

Γ(D(λ)(x, t); 0, 0) = λ−QΓ(x, t; 0, 0).

When A is a multiple of the identity the fundamental solution just introduced enters many
computations, hence, we introduce the following notation.

Notation 2.1. Let a > 0, Γa shall denote the fundamental solution of

a
q∑

i=1

∂2
xi xi

+

N∑
j,k=1

b jkxk∂x j − ∂t.

Moreover, we define

C0 :=
∫ 1

0
E(σ)

(
Iq O

O O

)
E(σ)T dσ, c0 = det(C0)

and
|x|0 :=

√
xTC−1

0 x for any x ∈ RN .

With this notation, for (x, t), (y, s) ∈ RN+1 with t > s, we have:

Γa(x, t; y, s) =
(t − s)−

Q
2

√
c0(4πa)

N
2

exp
(
−

1
4a
|D0(

1
√

t − s
)(x − E(t − s)y)|20

)
.

Now we turn our attention to the case of varying coefficients. The problem of finding a fundamental
solution for operators with nonconstant matrixA = {ai j}

q
i, j=1 has been studied by various authors, see [4,

5, 7, 9–11]. However among the mentioned papers only the last two assume coefficients depending on
time in a nonsmooth way, here we recall some results from [4].

Theorem 2.2. [4, Theorem 1.4] Let C(t, s) and c(t, s) be defined for t > s as follows

C(t, s) :=
∫ t

s
E(t − σ)

(
A(σ) O
O O

)
E(t − σ)T dσ, c(t, s) = det(C(t, s))

and let Γ : {(x, t; y, s) ∈ R2N+2 : (x, t) , (y, s)} → R be defined by:

Γ(x, t; y, s) =
1

√
c(t, s)(4π)

N
2

χ(0,+∞)(t − s)

× exp
(
−

1
4

(x − E(t − s)y)TC(t, s)−1(x − E(t − s)y)
)
.
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Then, the following properties hold:
i) Γ is continuous and it is of class C∞ with respect to the x and y variables, moreover ∂αx∂

β
yΓ is

continuous for any multiindices α and β;
ii) Γ and ∂αx∂

β
yΓ are Lipschitz continuous with respect to t and with respect to s in {(x, t; y, s) ∈

R2N+2 : a ≤ s, t ≤ b and t − s > δ} for any fixed a, b ∈ R and δ > 0;
iii) For any (y, s) ∈ RN+1 we have:

LΓ[(·; y, s)](x, t) = 0 for a.e. t > s and any x ∈ RN

and for any g ∈ C0(RN) we also have:∫
RN

Γ(·, t; y, s)g(y)dy −−−→
t→s+

g(·) uniformly on RN;

iv) For any (y, s), (x, t) ∈ RN+1 if t > s we have:∫
RN

Γ(z, t; y, s)dz =

∫
RN

Γ(x, t; z, s)dz = 1;

v) For every (x, t; y, s) ∈ R2N+2 if t > s then:

νNΓν(x, t; y, s) ≤ Γ(x, t; y, s) ≤
1
νN Γ 1

ν
(x, t; y, s)

where ν is defined in (1.2).

Remark 2.1. It is interesting to notice that this fundamental solution reduces to the previous one when
the matrix is constant, indeed in that case we have (see [7, 8]):

C(t, s) = C(t − s, 0) = D0(
√

t − s)C(1, 0)D0(
√

t − s) for any t > s. (2.1)

Actually, the assumptions of [4] are more general than those we are considering, in particular, with
few changes in the statement of Theorem 2.2, we could assume that the structure of the matrix B is (1.6)
instead of (1.3), however, in the more general case (2.1) is not valid. We remark also that [4] contains
existence and uniqueness for the following Cauchy problem:{

Lu(x, t) = 0, a.e. t > 0, ∀x ∈ RN ,

u(x, 0) = g(x), ∀x ∈ RN .

As previously mentioned, the theory of [2, 3] is fundamental in order to prove the main result of this
article. Hence we end this section with some known results from the mentioned articles. Coherently
with [2, 3] for any multi-index α ∈ NN we define:

ω(α) =

N∑
i=1

αiqi.

where the coefficients {qi}
N
i=1 are the exponents in the dilations D0(λ) (see Definition 1.1).
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Theorem 2.3. [3, Theorem 1.4] Under the assumptions stated above the following properties hold:
i) Estimates on Γ: Let α ∈ NN be a multi-index. Then, there exist c = c(ν,α) > 0 and a constant

c1 > 0, independent of ν and α, such that:∣∣∣Dαx Γ(x, t; y, s)
∣∣∣ ≤ c

(t − s)ω(α)/2 Γc1ν−1(x, t; y, s)

for every (x, t), (y, s) ∈ RN+1 with t , s.
ii) Given α ∈ NN a nonzero multi-index, if t > s we have:∫

RN
Dα

xΓ(x, t; y, s)dy = 0.

iii) There exist absolute constants c, µ > 0 such that, for every fixed T ∈ R and every f ∈ D(S T ),
x ∈ RN and τ < t < T, we have:∫ t

τ

∫
RN
|∂2

xi x j
Γ(x, t; y, s)| · ω f ,S T (‖E(s − t)x − y‖) dy ds ≤ cUµ

f ,S T
(
√

t − τ).

iv) Representation formulas for solutions: Let T > 0 be fixed and let u ∈ S 0(S T ). If u ≡ 0 in
{(x, t) : t < 0}, then the following representation formula holds:

u(x, t) = −

∫ t

0

∫
RN

Γ(x, t; y, s)Lu(y, s)dyds ∀(x, t) ∈ S T .

Moreover, for i ∈ {1, . . . , q}, we have the estimate ‖∂xiu‖L∞(RN ) ≤ c‖Lu‖L∞(S T ) and

∂xiu(x, t) = −

∫ t

0

∫
RN
∂xiΓ(x, t; y, s)Lu(y, s)dyds, ∀(x, t) ∈ S T .

v) Estimates: Let T > τ > −∞. Then, there exist c, µ > 0, only depending on ν and B, such that, for
every u ∈ S0(S T ) satisfying u ≡ 0 in {(x, t) : t < τ} and Lu ∈ D(S T ) we have:

q∑
i, j=1

‖∂2
xi x j

u‖L∞(S T )+‖Yu‖L∞(S T ) ≤ c
(
‖Lu‖L∞(S T ) +U

µ

Lu,S T
(
√

T − τ)
)
, (2.2)

and for any r > 0 the following inequality holds:

ω∂2
xi x j u,S T

(r) + ωYu,S T (r) ≤ cMLu,S T (cr). (2.3)

Remark 2.2. We must notice that we are exploiting only a part of the results contained in [3]. For
instance, similar estimates hold also for a more general class of operators with coefficients ai j which
are partially log-Dini continuous and moreover local estimates involving time and space are available
for the second order derivatives with respect to the first q space variables (hence they are actually
continuous).

From the representation formula above (point iv)) we can easily obtain the following representation
formula which entails uniqueness of the solution to the Cauchy problem.

Mathematics in Engineering Volume 6, Issue 2, 238–260.



247

Corollary 2.1. Let T > 0 and let u ∈ S(0,T ) (see Definition 1.5) be such that Lu ∈ L∞(RN × (0,T )).
Then, for any (x, t) ∈ RN × (0,T ] we have:

u(x, t) = −

∫ T

0

∫
RN

Γ(x, t; y, s)Lu(y, s)dyds +

∫
RN

Γ(x, t; y, 0)u(y, 0)dy.

Proof. For ε > 0 let ψε : R→ R be a mollifier with support contained in (0, ε) and let ψτε(t) := ψε(t−τ),
φτε(t) :=

∫ t

−∞
ψτε(s)ds where τ > 0. The function φτεu belongs to S 0(S T ) hence:

φτε(t)u(x, t) = −

∫ t

0

∫
RN

Γ(x, t; y, s)L(φτεu)(y, s)dyds ∀(x, t) ∈ S T .

Therefore, from L(φτεu) = −(∂tφ
τ
ε)u + φτεLu = −ψτεu + φτεLu, we obtain:

φτε(t)u(x, t) = −

∫ t

0

∫
RN

Γ(x, t; y, s)Lu(y, s)φτε(s)dyds

+

∫ t

0

∫
RN

Γ(x, t; y, s)u(y, s)dyψτε(s)ds = Aτ
ε + Bτ

ε.

We claim that for t > τ,

lim
ε→0

Aτ
ε = −

∫ t

τ

∫
RN

Γ(x, t; y, s)Lu(y, s)dyds, (2.4)

lim
ε→0

Bτ
ε =

∫
RN

Γ(x, t; y, τ)u(y, τ)dy. (2.5)

Indeed (2.4) follows by dominated convergence while (2.5) is immediate if we observe that s 7→∫
RN Γ(x, t; y, s)u(y, s)dy is continuous in (0, t) for any fixed (x, t). We have proved that for any

(x, t) ∈ RN × (τ,T )

u(x, t) = −

∫ t

τ

∫
RN

Γ(x, t; y, s)Lu(y, s)dyds +

∫
RN

Γ(x, t; y, τ)u(y, τ)dy.

The last step is to take the limit for τ → 0. It is apparent that the first term in the right-hand side
converges to

∫ t

0

∫
RN Γ(x, t; y, s)Lu(y, s)dyds while we claim that:

lim
τ→0

∫
RN

Γ(x, t; y, τ)u(y, τ)dy =

∫
RN

Γ(x, t; y, 0)u(y, 0)dy. (2.6)

To prove our claim we first notice that for any fixed (x, t; y) ∈ RN × (0,+∞) × RN the function

w : [0, t)→ R : τ 7→ Γ(x, t; y, τ)u(y, τ)

is continuous. Moreover, for any fixed (x, t) ∈ RN × (0,+∞) also the function

c : RN × [0, t/2]→ R : (y, t) 7→ Γ(x, t; y, τ)(1 + |y|)N+1

is continuous and since it tends to zero as |y| → +∞ (uniformly in τ) it is also bounded. Therefore for
any fixed (x, t) ∈ RN × (0,+∞) we have:

Γ(x, t; y, τ)u(y, τ) −−−−→
τ→0+

Γ(x, t; y, 0)u(y, 0), ∀y ∈ RN ,

Γ(x, t; y, τ) ≤ ‖c‖L∞(RN×[0,t/2])(1 + |y|)−N−1, ∀y ∈ RN ∀τ ∈ [0, t/2].

Applying the dominated convergence theorem we obtain (2.6). �
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3. Existence for C∞0 datum

In this section we shall prove the following theorem:

Theorem 3.1. If f ∈ C∞0 (S T ) then, u : S T → R defined by:

u(x, t) = −

∫ t

−∞

∫
RN

Γ(x, t; y, s) f (y, s)dyds

is such that u ∈ S 0(S T ) and satisfies Lu = f .

To prove the above result we need some preliminary lemmas.

Lemma 3.1. Let Ω be an open set of RN and let w ∈ C(Ω). If w satisfies the following conditions for
some i ∈ {1, . . . ,N}:

i) For any K ⊂⊂ Ω

lim sup
h→0

∥∥∥∥w(· + hei) − w(·)
h

∥∥∥∥
L∞(K)

< +∞;

ii) For almost every x ∈ Ω
w(x + hei) − w(x)

h
→ ∂xiw(x).

Then, for every K ⊂⊂ Ω
u(· + hei) − w(·)

h
∗
−⇀
h
∂xiw(·) in L∞(K)

and therefore
∂xiw = Dxiw in D′(Ω),

where the symbols Dxiw and ∂xiw denote the weak and the classical derivative of w with respect to xi.

Proof. Let K be an open subset of Ω with compact closure and let h0 > 0 be such that:

sup
|h|∈(0,h0)

∥∥∥∥w(· + hei) − w(·)
h

∥∥∥∥
L∞(K)

< +∞.

Thanks to the dominated convergence theorem, we obtain:

u(· + hei) − w(·)
h

∗
−⇀
h
∂xiw(·) in L∞(K)

and since
w(· + hei) − w(·)

h
−→
h

Dxiw(·) in D′(Ω),

we have ∂xiw = Dxiw. �

Lemma 3.2. Let f ∈ C∞0 (S T ) and let ε > 0. Moreover, let uε : S T → R be defined by:

uε(x, t) = −

∫ t−ε

−∞

∫
RN

Γ(x, t; y, s) f (y, s)dyds.

Then, we have

uε ∈ S 0(S T ), Luε(x, t) =

∫
RN

Γ(x, t; y, t − ε) f (y, t − ε)dy.
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Proof. First we observe that Γ, ∂xiΓ and ∂2
xi x j

Γ are uniformly bounded on

{(x, t, y, s) ∈ S T × S T : t − s > ε/2}.

Indeed, from point i) of Theorem 2.3 for any (x, t; y, s) ∈ S T × S T if t − s > ε we have:

Γ(x, t; y, s) ≤
c(4πνc1)−

N
2

√
c0(t − s)

Q
2

e−
νc1
4 |D( 1√

t−s
)(x−E(t−s)y)|20 ≤

c
εQ/2 ,

|∂xiΓ(x, t; y, s)| ≤
c(4πνc1)−

N
2

√
c0(t − s)

ω(ei)+Q
2

e−
νc1
4 |D( 1√

t−s
)(x−E(t−s)y)|20 ≤

c
εa ,

|∂xi x jΓ(x, t; y, s)| ≤
c(4πνc1)−

N
2

√
c0(t − s)

ω(ei+e j)+Q
2

e−
νc1
4 |D( 1√

t−s
)(x−E(t−s)y)|20 ≤

c
εa′ ,

for some fixed constants a, a′ > 0. Now we claim that a similar bound on ∂tΓ(x, t; y, s) holds in every
set of the kind:

{(x, t; y, s) ∈ K × (−∞,T ) × RN × (−∞,T ) : t − s > ε}

with K ⊂⊂ RN . Actually, form point iii) of Theorem 2.2, for almost any

(x, t; y, s) ∈ K × (−∞,T ) × RN × (−∞,T )

such that t − s > ε we have LΓ(x, t; y, s) = 0, taking a and a′ as before:

|∂tΓ(x, t; y, s)| =
∣∣∣∣ q∑

i, j=1

ai j(t)∂2
xi x j

Γ(x, t; y, s) +

N∑
i, j=1

xibi j∂x jΓ(x, t; y, s)
∣∣∣∣

≤c(ν)
q∑

i, j=1

|∂2
xi x j

Γ(x, t; y, s)| +
N∑

i, j=1

|xibi j∂x jΓ(x, t; y, s)|

≤N2 c
εa′ + sup

x∈K

( N∑
i, j=1

|xibi j|
) c
εa .

With these preliminary observations, we can proceed with the computation of the classical derivative
of Γ with respect the variable t. For |h| ∈ (0, ε/2) we compute the incremental ratio:

−
1
h

[uε(x, t + h) − uε(x, t)] = +

∫ t−ε

−∞

∫
RN

[
1
h

∫ h

0
∂tΓ(x, t + θ; y, s)dθ

]
f (y, s)dyds

+

∫ t+h−ε

t−ε

∫
RN

[
1
h

∫ h

0
∂tΓ(x, t + θ; y, s)dθ

]
f (y, s)dyds

+
1
h

∫ t+h−ε

t−ε

∫
RN

Γ(x, t; y, s) f (y, s)dyds ≡ Ah + Bh + Ch.
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We want to prove that for a.e. (x, t) ∈ S T

Ah −−−→
h→0

∫ t−ε

−∞

∫
RN
∂tΓ(x, t; y, s) f (y, s)dyds,

Bh −−−→
h→0

0,

Ch −−−→
h→0

∫
RN

Γ(x, t; y, t − ε) f (y, t − ε)dy.

First we consider Bh. Thanks to the estimates on ∂tΓ, we have

|Bh| ≤

∣∣∣∣ ∫ t+h−ε

t−ε

∫
RN

[
1
h

∫ h

0
|∂tΓ(x, t + θ; y, s)|dθ

]
| f (y, s)|dyds

∣∣∣∣
≤

(
N2 c
εa′ + sup

x∈K

( N∑
i, j=1

|xibi j|
) c
εa

)∣∣∣∣ ∫ t+h−ε

t−ε

∫
RN
| f (y, s)|dyds

∣∣∣∣,
which tends to zero as h → 0. The convergence of Ch is easily obtained. Indeed, owing to the mean
value theorem, it follows that for any h there exists δ = δ(h) ∈ (0, 1) such that

Ch =

∫
RN

Γ(x, t + h, y, t − ε + δh) f (y, t − ε + δh)dy.

Hence, taking the limit as h→ 0, by dominated convergence, we obtain

Ch →

∫
RN

Γ(x, t; y, t − ε) f (y, t − ε)dy, for any (x, t) ∈ S T .

It is left to prove

Ah →

∫ t−ε

−∞

∫
RN
∂tΓ(x, t; y, s) f (y, s)dyds, a.e. (x, t) ∈ S T .

Since the derivative ∂tΓ exists a.e. then, for a.e. (x, t) ∈ S T and a.e. (y, s) ∈ S T , we have

χ(ε,+∞)(t − s)
1
h

∫ h

0
∂tΓ(x, t + θ; y, s)dθ −→

h
χ(ε,+∞)(t − s)∂tΓ(x, t; y, s)

and moreover, thanks to the estimate on ∂tΓ, for a.e. (x, t) ∈ S T , we also have

|χ(ε,+∞)(t − s) f (y, s)
1
h

∫ h

0
∂tΓ(x, t + θ; y, s)dθ| ≤

(
N2 c
εa′ +

N∑
i, j=1

|xibi j|
c
εa

)
| f (y, s)| ∈ L1(S T ).

Therefore, applying the dominated convergence, we finally obtain that for a.e. (x, t) ∈ S T :

Ah →

∫ t−ε

−∞

∫
RN
∂tΓ(x, t; y, s) f (y, s)dyds.
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This proves that for a.e. (x, t) ∈ S T

lim
h→0

uε(x, t + h) − uε(x, t)
h

= −

∫ t−ε

−∞

∫
RN
∂tΓ(x, t; y, s) f (y, s)dyds −

∫
RN

Γ(x, t; y, t − ε) f (y, t − ε)dy.

Now we shall obtain that the classical derivative (which is defined almost everywhere) is also a weak
derivative by observing that the incremental ratio is uniformly locally bounded. Actually, let K be a
fixed compact subset of RN , then from the estimates obtained at the beginning of the proof, for any
(x, t) ∈ K × (−∞,T ) we derive the following estimates:

|Ah| ≤

∫ t−ε

−∞

∫
RN

[
1
h

∫ h

0
|∂tΓ(x, t + θ; y, s)|dθ

]
| f (y, s)|dyds

≤
(
N2 c
εa′ + sup

x∈K

( N∑
i, j=1

|xibi j|
) c
εa

) ∫
S T

| f |,

|Bh| ≤
(
N2 c
εa′ + sup

x∈K

( N∑
i, j=1

|xibi j|
) c
εa

) ∫
S T

| f |

and

|Ch| ≤
1
h

∫ t+h−ε

t−ε

∫
RN

Γ(x, t; y, s)| f (y, s)|dyds ≤ ‖ f ‖L∞(S T ).

The last inequality follows from point iv) of Theorem 2.2. By Lemma 3.1 we can conclude that for
almost any (x, t) the partial derivative with respect to t exists:

∂tuε(x, t) = −

∫ t−ε

−∞

∫
RN
∂tΓ(x, t; y, s) f (y, s)dyds

−

∫
RN

Γ(x, t; y, t − ε) f (y, t − ε)dy
(3.1)

and moreover it is also a weak derivative.
For the derivatives with respect to the variables xi for i ∈ {1, . . . ,N} we can apply the standard

theorem of differentiation under the integral. Indeed for any fixed t ∈ (−∞,T ) the function

ht : RN × RN × (−∞, t − ε)→ R : (x, y, s) 7→ Γ(x, t; y, s) f (y, s)

is of class C2 with respect to x and moreover it and its x-derivatives are uniformly bounded by an L1

function since for any (x, y, s) ∈ RN × RN × (−∞, t − ε), we have

|ht(x, y, s)| ≤
c
εQ/2 | f (y, s)| ∈ L1(RN × (−∞, t − ε)),

|∂xiht(x, y, s)| ≤
c
εa | f (y, s)| ∈ L1(RN × (−∞, t − ε)),

|∂2
xi x j

ht(x, y, s)| ≤
c
εa′ | f (y, s)| ∈ L1(RN × (−∞, t − ε)).
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Therefore, applying the standard theorem of differentiation under the integral sign we get that the
classical derivatives of uε exist for all (x, t) ∈ S T and moreover

∂xiuε(x, t) = −

∫ t−ε

−∞

∫
RN
∂xiΓ(x, t; y, s) f (y, s)dyds, (3.2)

∂2
xi x j

uε(x, t) = −

∫ t−ε

−∞

∫
RN
∂2

xi x j
Γ(x, t; y, s) f (y, s)dyds. (3.3)

Since the integrands are continuous and uniformly bounded by an L1 function by the dominated
convergence theorem it follows that ∂xiuε and ∂2

xi x j
uε are continuous, hence these derivatives are also

weak derivatives. Finally, exploiting (3.1)–(3.3), we get that for almost every (x, t) ∈ S T

Luε(x, t) = −

∫ t−ε

−∞

∫
RN
LΓ(x, t; y, s) f (y, s)dyds +

∫
RN

Γ(x, t; y, t − ε) f (y, t − ε)dy.

Hence, applying point ii) of Theorem 2.2, it follows:

Luε(x, t) =

∫
RN

Γ(x, t; y, t − ε) f (y, t − ε)dy, a.e. (x, t) ∈ S T .

�

Lemma 3.3. If f ∈ C∞0 (S T ) then, for every K ⊂⊂ RN∫
RN

Γ(·; y, t − ε) f (y, t − ε)dy −−−→
ε→0

f (·) uniformly on K × (−∞,T ).

Proof. We proceed as in the first part of the proof of Proposition 3.10 in [2]. Owing to points iii) and
iv) of Theorem 2.2: ∣∣∣∣ ∫

RN
Γ(x, t; y, t − ε) f (y, t − ε)dy − f (x, t)

∣∣∣∣
≤

∫
RN

Γ(x, t; y, t − ε)| f (y, t − ε) − f (x, t)|dy

≤
1
νN

∫
RN

Γ 1
ν
(x, t; y, t − ε)| f (y, t − ε) − f (x, t)|dy

=

∫
RN

exp (− ν4 |D0( 1
√
ε
)(x − E(ε)y)|20)√

(ν 4π)NεQc0(1)
| f (y, t − ε) − f (x, t)|dy

= . . . .

Now we make the change of variable {z = D0( 1
√
ε
)(x − E(ε)y), dz = 1

ε
Q
2

dy}

· · · =

∫
RN

exp (− ν4 |z|
2
0)√

(ν 4π)Nc0(1)
| f (E(ε)(x − D0(

√
ε)z), t − ε) − f (x, t)|dz

≤

∫
RN

exp (− ν4 |z|
2
0)√

(ν 4π)Nc0(1)
‖∇ f ‖L∞(S T )|(E(ε)x − x − E(ε)D0(

√
ε)z,−ε)|dz
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≤

∫
RN

exp (− ν4 |z|
2
0)√

(ν 4π)Nc0(1)
‖∇ f ‖L∞(S T ){|E(ε)x − x| + |E(ε)D0(

√
ε)z| + ε}dz

≤

∫
RN

exp (− ν4 |z|
2
0)√

(ν 4π)Nc0(1)
‖∇ f ‖L∞(S T ){|E(ε)x − x| + ‖E(ε)D0(

√
ε)‖|z| + ε}dz

≤C‖∇ f ‖∞{‖E(ε) − I‖|x| + ‖E(ε)D0(
√
ε)‖ + ε},

which, for x varying in a compact set, vanishes uniformly as ε→ 0. �

We can finally prove Theorem 3.1.

Proof of Theorem 3.1. In order to prove the existence theorem we exploit the uniform convergence of
uε and its derivatives. We begin with the convergence of uε.

By point iv) of Theorem 2.2 we easily get:

∣∣∣∣ − ∫ t

−∞

∫
RN

Γ(x, t; y, s) f (y, s)dyds − uε(x, t)
∣∣∣∣

≤

∫ t

t−ε

∫
RN

Γ(x, t; y, s)| f (y, s)|dyds

≤ ε‖ f ‖L∞(S T ).

Then for the first derivatives we proceed in the same way as in Corollary 3.12 in [2]. For any i ∈
{1, . . . , q} we have: ∣∣∣∣ − ∫ t

−∞

∫
RN
∂xiΓ(x, t; y, s) f (y, s)dyds − ∂xiuε(x, t)

∣∣∣∣
=
∣∣∣∣ ∫ t

t−ε

∫
RN
∂xiΓ(x, t; y, s) f (y, s)dyds

∣∣∣∣
≤

∫ t

t−ε

∫
RN
|∂xiΓ(x, t; y, s)|dyds‖ f ‖∞

≤c
∫ t

t−ε

1
√

t − s

(∫
RN

Γc1ν−1(x, t, y, s)dy
)

ds‖ f ‖L∞(S T )

=c
∫ t

t−ε

1
√

t − s
ds‖ f ‖L∞(S T )

=2c
√
ε‖ f ‖L∞(S T ).

Now we claim that the integral

−

∫ t

−∞

∫
RN
∂2

x j xi
Γ(x, t; y, s)[ f (E(s − t)x, s) − f (y, s)]dyds

is absolutely convergent and that ∂xi x juε converges uniformly to it. Indeed, since f is C∞0 (RN+1)
(therefore also D(RN+1)), for any(x, t) ∈ S T there exists τ < t such that supp( f ) ⊂ (τ,+∞) × RN ,
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hence, owing to point iii) of Theorem 2.3, we have:∫ t

−∞

∫
RN
|∂2

x j xi
Γ(x, t; y, s)[ f (E(s − t)x, s) − f (y, s)]|dyds

≤c
∫ t

τ

∫
RN
|∂2

xi x j
Γ(x, t; y, s)| · ω f ,S T (‖E(s − t)x − y‖) dy ds

≤cUµ
f ,S T

(
√

t − τ)

< +∞.

Moreover, thanks to Theorem 2.3 point ii) we have:

∂2
xi x j

uε(x, t) = −

∫ t−ε

−∞

∫
RN
∂2

x j xi
Γ(x, t; y, s)[ f (E(s − t)x, s) − f (y, s)]dyds.

Therefore, from point iii) of Theorem 2.3, we obtain:∣∣∣∣ − ∫ t

−∞

∫
RN
∂2

x j xi
Γ(x, t; y, s)[ f (E(s − t)x, s) − f (y, s)]dyds − ∂2

xi x j
uε(x, t)

∣∣∣∣
≤c

∫
RN×(t−ε,t)

|∂2
xi x j

Γ(x, t; y, s)| · ω f ,S T (‖E(s − t)x − y‖) dy ds

≤cUµ
f ,S T

(
√
ε).

We have proved that u has continuous derivatives up to the second order with respect to the variables
xi for i ∈ {1, . . . , q}. Applying Lemma 3.3 we obtain that Luε → f in L∞loc hence thanks to the formerly
proved limits we get:

Yuε
L∞loc
−−→
ε

f −
q∑

i, j=1

ai j∂
2
xi x j

u.

The convergence is also in D′(S T ), so

Yu = f −
q∑

i, j=1

ai j∂
2
xi x j

u

in D′(S T ). Therefore Yu ∈ L∞(S T ) and Lu = f . Thus u ∈ S 0(S T ). �

4. Existence of a solution under minimal assumptions on the datum

This section is devoted to the proof of Theorem 1.1. As remarked in Section 1 the main point in the
proof of this theorem is the existence of a solution, since uniqueness and the stability estimates follow
from the results of [2, 3].

Theorem 4.1. If f ∈ D(S T ) and is compactly supported, then, the function u : S T → R defined by:

u(x, t) = −

∫ t

−∞

∫
RN

Γ(x, t; y, s) f (y, s)dyds

is such that u ∈ S 0(S T ), Lu = f and moreover we have the stability estimates (2.2) and (2.3).
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Proof. In this proof the symbol ∗ denotes the standard convolution.
Let fε = f ∗ ϕε be the convolution of f with a compactly supported mollifier ϕε : RN+1 → R and let

uε ∈ S 0(S T ) be the solution given by the existence Theorem 3.1 with datum fε, namely:

uε(x, t) = −

∫ t

−∞

∫
RN

Γ(x, t; y, s) fε(y, s)dyds.

We want to prove that uε
∗
−⇀
ε

u in L∞(S T ). First we prove that

fε
∗
−−−−⇀
ε→0+

f in L∞. (4.1)

Indeed, since for any φ ∈ L1(RN+1), φ ∗ ϕ̄ε
L1(S T )
−−−−→

ε
φ where ϕ̄ε(x, t) := ϕε(−x,−t), then we easily have

L∞〈 fε, φ〉L1 =L∞ 〈 f , φ ∗ ϕ̄ε〉L1 → L∞〈 f , φ〉L1 , ∀φ ∈ L1(S T ).

Now, since f has compact support, there exist T1 < T such that supp( f ), supp( fε) ⊂ RN × (T1,T ) for
any ε sufficiently small. Then, observing that Γ(x, t; ·) ∈ L1(RN × (T1,T )) for any (x, t), we obtain∫

S T

Γ(x, t; y, s) fε(y, s)dyds→
∫

S T

Γ(x, t; y, s) f (y, s)dyds, ∀(x, t) ∈ S T ,

which means that uε(x, t)→ u(x, t) for any (x, t) ∈ S T .
Now, let φ ∈ L1(S T ), since uε → u pointwise and

|φ(uε − u)| ≤ 2T |φ|‖ f ‖L∞(S T ),

applying again the dominated convergence theorem we get:∫
S T

φ(x, t)uε(x, t)dxdt →
∫

S T

φ(x, t)u(x, t)dxdt,

hence
L∞〈uε, φ〉L1 →L∞ 〈u, φ〉L1 , ∀φ ∈ L1(S T ). (4.2)

Then, notice that ω fε,S T ≤ ω f ,S T and ‖uε‖L∞(S T ) ≤ ‖ f ‖L∞(S T ), hence, by points iv), v) of [Theorem 2.3], it
follows that, for some fixed constant c > 0 for any i, j ∈ {1, . . . , q} and any ε > 0 sufficiently small we
have

q∑
i, j=1

‖∂2
xi x j

u‖L∞(S T ) + ‖Yu‖L∞(S T ) ≤ c
(
‖ f ‖L∞(S T ) +U

µ
f ,S T

(
√

T − T1)
)

and
‖∂xiuε‖L∞(S T ) ≤ c‖ f ‖L∞(S T ).

Therefore the L∞(S T ) norms of uε, ∂xiuε (i ∈ {1, . . . , q}), ∂2
xi x j

uε (i, j ∈ {1, . . . q}) and Yuε are uniformly
bounded (w.r.t. ε). Hence we apply the Banach-Alaoglu theorem (in L∞(S T )) to uε, ∂xiuε, ∂

2
xi x j

uε and
Yuε. In this way we obtain a sequence of real numbers εk ↓ 0 such that uεk and ∂xiuεk , ∂

2
xi x j

uεk and Yuεk

converge in the weak topology σ(L∞(S T ), L1(S T )) to functions in L∞(S T ). Notice that uεk , ∂xiuεk , Yuεk
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and ∂2
xi x j

uεk converge also in the sense of distributions hence, thanks to the uniqueness of the limit in
the sense of distributions, we obtain that u ∈ S 0(S T ) and for i, j ∈ {1, . . . , q}

uεk

∗
−⇀
k

u, ∂xiuεk

∗
−⇀
k
∂xiu,

∂2
xi x j

uεk

∗
−⇀
k
∂2

xi x j
u, Yuεk

∗
−⇀
k

Yu,

in L∞(S T ). Notice that actually it is not necessary to take a subsequence since the limit is unique.
It is left to show that Lu = f but thanks to (4.1) we only need to prove that Luε

∗
−⇀
ε
Lu. Let

φ ∈ L1(S T ) and i, j ∈ {1, . . . , q} then:

L∞〈ai, j∂xi x juε, φ〉L1 = L∞〈∂xi x juε, ai, jφ〉L1 → L∞〈∂xi x ju, ai, jφ〉L1 = L∞〈ai, j∂xi x ju, φ〉L1 .

Notice that the estimates are valid since point v) of Theorem 2.3 only require u ∈ S 0(S T ) therefore the
proof is completed. �

Theorem 4.2. Let f ∈ D(S T ) such that supp( f ) ⊂ RN×(τ,T ) for some τ ∈ (−∞,T ) and let u : S T → R

be defined by:

u(x, t) = −

∫ t

−∞

∫
RN

Γ(x, t; y, s) f (y, s)dyds.

Then, u ∈ S 0(S T ), Lu = f and we have the estimates (2.2) and (2.3).

Proof. The proof of this theorem is similar to the previous one but this time f is approximated in a
different way. Let {φi}i ⊂ C∞0 (RN) be such that 0 ≤ φi ↑ 1 (as i→ +∞), define fi = fφi and ui to be the
solution of Lui = fi given in Theorem 4.1. Notice that ui admits the representation formula:

ui(x, t) = −

∫ t

−∞

∫
RN

Γ(x, t; y, s) fi(y, s)dyds.

Since Γ(x, t; ·) is integrable for any fixed (x, t), thanks to dominated convergence, ui → u pointwise.
Moreover ‖ui − u‖L∞(S T ) ≤ T‖ f − f j‖L∞(S T ) ≤ T‖ f ‖L∞(S T ) hence, taking any ψ ∈ L1(S T ), by dominated
convergence we obtain:

L∞〈u − ui, ψ〉L1 =

∫
S T

(u − ui)ψdxdt −−−−→
i→+∞

0

thus ui
∗
−⇀ u in L∞(S T ).

Now we observe that fi
∗
−⇀
i

f in L∞(S T ). Indeed ‖ fi− f ‖L∞(S T ) ≤ ‖ f ‖L∞(S T ) hence, for fixed ψ ∈ L1(S T ),
we can apply again the dominated convergence obtaining:

L∞〈 f − fi, ψ〉L1 =

∫
S T

f (1 − φi)ψdxdt −−−−→
i→+∞

0.

Finally, thanks to the estimates Theorem 2.3 v) employing the same argument of the proof of
Theorem 4.1 we find that u ∈ S 0(S T ) satisfies the estimates (2.2), (2.3) and for k, j ∈ {1, . . . , q}

uεk

∗
−⇀
k

u, ∂xiuεk

∗
−⇀
k
∂xiu,

∂2
xi x j

uεk

∗
−⇀
k
∂2

xi x j
u, Yuεk

∗
−⇀
k

Yu,

in L∞(S T ). This entails also Lu = f . �
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In order to complete the proof of Theorem 1.1 we would like to sum the solution of the
homogeneous problem from [4] and the solution of the nonhomogeneous problem given Theorem 4.2,
hence some remarks on the solution of the homogeneous problem are in order.

Remark 4.1. As already mentioned, the paper [4] contains the solution to the problem:{
Lu(x, t) = 0, a.e. t > 0, ∀x ∈ RN ,

u(x, 0) = g(x), ∀x ∈ RN .

Moreover, the explicit form of the solution is the following:

u(x, t) =

∫
RN

Γ(x, t; y, 0)g(y)dy. (4.3)

It is easily seen that u has continuous derivatives of any order with respect to x while it is locally
Lipschitz with respect to t in (0,+∞) × RN . Moreover u satisfies Lu(x, t) = 0 for all x ∈ RN and a.e.
t ∈ (0,+∞) therefore u ∈ S(0,+∞) and Lu = 0 in the sense of distributions.

Now we can conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. Let u f be the solution of the problem (1.7) with datum g ≡ 0 while let ug be the
solution to (1.7) with f ≡ 0. From what we have seen until now the function u := u f + ug satisfies
u ∈ S(0,+∞), Lu = f and u(·, 0) = g(·) and moreover it is the unique solution of (1.7) and is given by

u(x, t) = −

∫ t

0

∫
RN

Γ(x, t; y, s) f (y, s)dyds +

∫
RN

Γ(x, t; y, 0)g(y)dy.

We are left to prove the estimates (1.9) and (1.10), to this aim we proceed on u f and ug separately
Concerning u f applyig (2.2) and (2.3) we easily obtain:

q∑
i, j=1

‖∂2
xi x j

u f ‖L∞(S T ) + ‖Yu f ‖L∞(S T ) ≤ c
(
‖ f ‖L∞(S T ) +U

µ
f ,S T

(
√

T )
)
, (4.4)

ω∂2
xi x j u,S T

(r) + ωYu,S T (r) ≤ cM f ,S T (cr). (4.5)

While to prove the estimates for ug we shall represent ug as a solution of a nonhomogeneous problem
(with null initial datum at t = −1) so that we can exploit again the estimates (2.2) and (2.3). Let
ϕ ∈ C∞(R) be a cut-off function satisfying ϕ(t) = 0 for t ≤ −1 and ϕ(t) = 1 for t ≥ 0. From the
regularity properties of g it is easily verified that g⊗ϕ(·, ·+1) belongs to S(0,+∞) and therefore thanks
to Corollary 2.1 we can represent g ⊗ ϕ as:

g ⊗ ϕ(x, t) = −

∫ t

−1

∫
RN

Γ(x, t; y, s)L(g ⊗ ϕ)(y, s)dyds.

In particular for t = 0 we have:

g(x) = −

∫ 0

−1

∫
RN

Γ(x, 0; y, s)L(g ⊗ ϕ)(y, s)dyds. (4.6)

Mathematics in Engineering Volume 6, Issue 2, 238–260.



258

Moreover, it is easily seen that the function v defined by:

v(x, t) = −

∫ 0

−1

∫
RN

Γ(x, t; y, s)L(g ⊗ ϕ)(y, s)dyds

is a solution of:
Lv(x, t) = L(g ⊗ ϕ)(x, t) χ(−∞,0)(t). (4.7)

Thanks to the uniqueness of the solution, from (4.7) and (4.6) we obtain

ug(x, t) = v(x, t), ∀x ∈ RN , ∀t > 0.

Hence we can apply the estimates (2.2) and (2.3) to v (with τ = −1) in order to obtain some estimates
for ug. In particular we have:

q∑
i, j=1

‖∂2
xi x j

ug‖L∞(S 0,T ) + ‖Yug‖L∞(S 0,T ) ≤ c
(
‖L(g ⊗ ϕ)‖L∞(RN ) +U

µ

L(g⊗ϕ),RN (
√

T + 1)
)
, (4.8)

ω∂2
xi x j ug,S 0,T

(r) + ωYug,S 0,T (r) ≤ cML(g⊗ϕ),S T (cr). (4.9)

In order to conclude the proof we only need to bound the quatities on the right hand side of (4.8)
and (4.9) in terms of g. Computing explicitly L(g ⊗ ϕ) we obtain:

L(g ⊗ ϕ)(x, t) =

q∑
i, j=1

ai j(t)∂2
xi x j

g(x)ϕ(t) + (Yg)(x)ϕ(t) − g(x)ϕ′(t).

From these computations we easily infer the following estimates:

‖L(g ⊗ ϕ)‖L∞(RN+1) ≤ k
(
‖g‖L∞(RN ) +

q∑
i, j=1

‖∂2
xi x j

g‖L∞(RN ) + ‖Yg‖L∞(RN )

)
, (4.10)

ωL(g⊗ϕ),RN+1(r) ≤ k
(
ωg,RN (r) +

q∑
i, j=1

ω∂2
xi x j g,R

N (r) + ωYg,RN (r)
)
. (4.11)

where the constant k depend only on ‖ai j‖L∞(RN+1), ‖ϕ‖L∞(R) and ‖ϕ′‖L∞(R). Thanks to (4.8)–(4.11) we
obtain:

q∑
i, j=1

‖∂2
xi x j

ug‖L∞(S 0,T ) + ‖Yug‖L∞(S 0,T )

≤ c
(
‖g‖L∞(RN ) +

q∑
i, j=1

‖∂2
xi x j

g‖L∞(RN ) + ‖Yg‖L∞(RN )

+U
µ

g,RN (
√

T + 1) +

q∑
i, j=1

U
µ

∂2
xi x j g,R

N (
√

T + 1) +U
µ

Yg,RN (
√

T + 1)
)
,

(4.12)

ω∂2
xi x j ug,S 0,T

(r) + ωYug,S 0,T (r) ≤ c
(
Mg,RN (cr) +

q∑
i, j=1

M∂2
xi x j g,R

N (cr) +MYg,RN (cr)
)
. (4.13)

Finally, combining (4.4), (4.5), (4.12) and (4.13) we deduce (1.9) and (1.10). �
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5. Conclusions

Starting from the theory of [2–4] we were able to prove the well-posedness of a Cauchy problem
for a degenerate Kolmogorov-Fokker-Planck operator under weak regularity assumptions on the
coefficients and an the data. The main point was to prove the existence of a solution for the problem
with null initial data since the existence of a solution to the homogeneous problem with nonnull initial
data, the stability estimates and the uniqueness of the solution follows from known results. Since an
explicit fundamental solution is known, in order to find a solution to the Cauchy problem we employed
the Duhamel method. However, due to the low regularity of the coefficients, we first considered the
case of smooth and compactly supported datum, then, by approximation, we have shown the existence
of a solution for a compactly supported datum satisfying the minimal regularity assumptions and finally
we weakened the assumptions on the support of the datum.
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