Time-discrete numerical minimization schemes for simple visco-elastic materials in the Kelvin-Voigt rheology at high strains are not well posed because of the non-quasi-convexity of the dissipation functional. A possible solution is to resort to non-simple material models with higher-order gradients of deformations. However, this makes numerical computations much more involved. Here, we propose another approach that relies on local minimizers of the simple material model. Computational tests are provided that show a very good agreement between our model and the original.
Citation: Patrick Dondl, Martin Jesenko, Martin Kružík, Jan Valdman. Linearization and computation for large-strain visco-elasticity[J]. Mathematics in Engineering, 2023, 5(2): 1-15. doi: 10.3934/mine.2023030
Time-discrete numerical minimization schemes for simple visco-elastic materials in the Kelvin-Voigt rheology at high strains are not well posed because of the non-quasi-convexity of the dissipation functional. A possible solution is to resort to non-simple material models with higher-order gradients of deformations. However, this makes numerical computations much more involved. Here, we propose another approach that relies on local minimizers of the simple material model. Computational tests are provided that show a very good agreement between our model and the original.
[1] | S. S. Antman, Physically unacceptable viscous stresses, Z. Angew. Math. Phys., 49 (1998), 980–988. https://doi.org/10.1007/s000330050134 doi: 10.1007/s000330050134 |
[2] | S. S. Antman, Nonlinear problems of elasticity, 2 Eds., New York: Springer, 2005. https://doi.org/10.1007/0-387-27649-1 |
[3] | J. M. Ball, Y. Şengül, Quasistatic nonlinear viscoelasticity and gradient flows, J. Dyn. Diff. Equat., 27 (2015), 405–442. https://doi.org/10.1007/s10884-014-9410-1 doi: 10.1007/s10884-014-9410-1 |
[4] | F. K. Bogner, R. L. Fox, L. A. Schmit, The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulas, In: Proc. Conf. Matrix Methods in Struct. Mech, AirForce Inst. of Tech, Wright Patterson AF Base, Ohio, 1965,397–444. |
[5] | Y. Chen, T. A. Davis, W. W. Hager, S. Rajamanickam, Algorithm 887: CHOLMOD, Supernodal sparse Cholesky factorization and update/downdate, ACM Trans. Math. Software, 35 (2008), 22. https://doi.org/10.1145/1391989.1391995 doi: 10.1145/1391989.1391995 |
[6] | B. Dacorogna, Direct methods in the calculus of variations, 2 Eds., New York: Springer, 2008. https://doi.org/10.1007/978-0-387-55249-1 |
[7] | G. Dal Maso, M. Negri, D. Percivale, Linearized elasticity as $\Gamma$-limit of finite elasticity, Set-Valued Analysis, 10 (2002), 165–183. https://doi.org/10.1023/A:1016577431636 doi: 10.1023/A:1016577431636 |
[8] | M. Friedrich, M. Kružík, On the passage from nonlinear to linearized viscoelasticity, SIAM J. Math. Anal., 50 (2018), 4426–4456. https://doi.org/10.1137/17M1131428 doi: 10.1137/17M1131428 |
[9] | M. Friedrich, M. Kružík, J. Valdman, Numerical approximation of von Kármán viscoelastic plates, Discrete Cont. Dyn. Syst. S, 14 (2021), 299–319. https://doi.org/10.3934/dcdss.2020322 doi: 10.3934/dcdss.2020322 |
[10] | G. Friesecke, R. D. James, S. Müller, A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence, Arch. Rational Mech. Anal., 180 (2006), 183–236. https://doi.org/10.1007/s00205-005-0400-7 doi: 10.1007/s00205-005-0400-7 |
[11] | S. Krömer, T. Roubíček, Quasistatic viscoelasticity with self-contact at large strains, J. Elast., 142 (2020), 433–445. https://doi.org/10.1007/s10659-020-09801-9 doi: 10.1007/s10659-020-09801-9 |
[12] | A. Mielke, C. Ortner, Y. Şengül, An approach to nonlinear viscoelasticity via metric gradient flows, SIAM J. Math. Anal., 46 (2014), 1317–1347. https://doi.org/10.1137/130927632 doi: 10.1137/130927632 |
[13] | P. Neff, On Korn's first inequality with non-constant coefficients, Proc. Roy. Soc. Edinb. A, 132 (2002), 221–243. https://doi.org/10.1017/S0308210500001591 doi: 10.1017/S0308210500001591 |
[14] | J. Valdman, MATLAB implementation of {C1 finite elements: Bogner-Fox-Schmit rectangle, In: Parallel processing and applied mathematics. PPAM 2019, Cham: Springer, 2020,256–266. https://doi.org/10.1007/978-3-030-43222-5_22 |