We prove sharp reverse Hölder inequalities for minima of multi-phase variational integrals and apply them to Calderón-Zygmund estimates for nonhomogeneous problems.
Citation: Cristiana De Filippis. Optimal gradient estimates for multi-phase integrals[J]. Mathematics in Engineering, 2022, 4(5): 1-36. doi: 10.3934/mine.2022043
We prove sharp reverse Hölder inequalities for minima of multi-phase variational integrals and apply them to Calderón-Zygmund estimates for nonhomogeneous problems.
[1] | D. Apushkinskaya, M. Bildhauer, M. Fuchs, Interior gradient bounds for local minimizers of variational integrals under nonstandard growth conditions. J. Math. Sci., 164 (2010), 345–363. doi: 10.1007/s10958-009-9751-1 |
[2] | S. Baasandorj, S.-S. Byun, Regularity for Orlicz phase problems, 2021, arXiv: 2106.15131. |
[3] | S. Baasandorj, S.-S. Byun, J. Oh, Calderón-Zygmund estimates for generalized double phase problems, J. Funct. Anal., 279 (2020), 108670. doi: 10.1016/j.jfa.2020.108670 |
[4] | S. Baasandorj, S.-S. Byun, J. Oh, Gradient estimates for multi-phase problems, Calc. Var., 60 (2021), 104. doi: 10.1007/s00526-021-01940-8 |
[5] | A. Kh. Balci, L. Diening, M. Surnachev, New examples on Lavrentiev gap using fractals, Calc. Var., 59 (2020), 180. doi: 10.1007/s00526-020-01818-1 |
[6] | P. Baroni, Riesz potential estimates for a general class of quasilinear equations, Calc. Var., 53 (2015), 803–846. doi: 10.1007/s00526-014-0768-z |
[7] | P. Baroni, M. Colombo, G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal., 121 (2015), 206–222. doi: 10.1016/j.na.2014.11.001 |
[8] | P. Baroni, M. Colombo, G. Mingione, Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., 27 (2016), 347–379. doi: 10.1090/spmj/1392 |
[9] | P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var., 57 (2018), 62. doi: 10.1007/s00526-018-1332-z |
[10] | L. Beck, G. Mingione, Lipschitz bounds and nonuniform ellipticity, Commun. Pure Appl. Math., 73 (2020), 944–1034. doi: 10.1002/cpa.21880 |
[11] | P. Bella, M. Schäffner, On the regularity of minimizers for scalar integral functionals with $(p, q)$-growth, Anal. PDE, 13 (2020), 2241–2257. doi: 10.2140/apde.2020.13.2241 |
[12] | A. Benyaiche, P. Harjulehto, P. Hästö, A. Karppinen, The weak Harnack inequality for unbounded supersolutions of equations with generalized Orlicz growth, J. Differ. Equations, 275 (2021), 790–814. doi: 10.1016/j.jde.2020.11.007 |
[13] | M. Bildhauer, Convex variational problems: linear, nearly linear and anisotropic growth conditions, Berlin: Springer, 2003. |
[14] | G. Bonfanti, A. Cellina, On the non-occurrence of the Lavrentiev phenomenon, Adv. Calc. Var., 6 (2013), 93–121. |
[15] | P. Bousquet, L. Brasco, $C^{1}$-regularity of orthotropic $p$-harmonic functions in the plane, Anal. PDE, 11 (2018), 813–854. doi: 10.2140/apde.2018.11.813 |
[16] | P. Bousquet, L. Brasco, Lipschitz regularity for orthotropic functionals with nonstandard growth conditions, Rev. Mat. Iberoam., 36 (2020), 1989–2032. doi: 10.4171/rmi/1189 |
[17] | H. Brezis, P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., 1 (2001), 387–404. doi: 10.1007/PL00001378 |
[18] | S.-S. Byun, J. Oh, Global gradient estimates for non-uniformly elliptic equations, Calc. Var., 56 (2017), 46. doi: 10.1007/s00526-017-1148-2 |
[19] | S.-S. Byun, J. Oh, Regularity results for generalized double phase functionals, Anal. PDE, 13 (2020), 1269–1300. doi: 10.2140/apde.2020.13.1269 |
[20] | S.-S. Byun, Y. Youn, Riesz potential estimates for a class of double phase problems, J. Differ. Equations, 264 (2018), 1263–1316. doi: 10.1016/j.jde.2017.09.038 |
[21] | A. Canale, A. D'Ottavio, F. Leonetti, M. Longobardi, Differentiability of bounded minimizers of some anisotropic integrals, J. Math. Anal. Appl., 253 (2001), 640–650. doi: 10.1006/jmaa.2000.7186 |
[22] | M. Carozza, J. Kristensen, A. Passarelli Di Napoli, Higher differentiability of minimizers of convex variational integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 395–411. doi: 10.1016/j.anihpc.2011.02.005 |
[23] | M. Carozza, J. Kristensen, A. Passarelli Di Napoli, Regularity of minimizers of autonomous convex variational integrals, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), XIII (2014), 1065–1089. |
[24] | I. Chlebicka, C. De Filippis, Removable sets in non-uniformly elliptic problems, Ann. Mat. Pura Appl., 199 (2020), 619–649. doi: 10.1007/s10231-019-00894-1 |
[25] | I. Chlebicka, A. Karppinen, Removable sets in elliptic equations with Musielak–Orlicz growth, J. Math. Anal. Appl., 501 (2021), 124073. doi: 10.1016/j.jmaa.2020.124073 |
[26] | I. Chlebicka, Y. Youn, A. Zatorska-Goldstein, Wolff potentials and measure data vectorial problems with Orlicz growth, 2021, arXiv: 2102.09313. |
[27] | H. J. Choe, Interior behaviour of minimizers for certain functionals with nonstandard growth, Nonlinear Anal., 19 (1992), 933–945. doi: 10.1016/0362-546X(92)90105-N |
[28] | M. Colombo, G. Mingione, Bounded minimisers of double phase variationals integrals, Arch. Rational Mech. Anal., 218 (2015), 219–273. doi: 10.1007/s00205-015-0859-9 |
[29] | M. Colombo, G. Mingione, Calderón-Zygmund estimates and non-uniformly elliptic operators, J. Funct. Anal., 270 (2016), 1416–1478. doi: 10.1016/j.jfa.2015.06.022 |
[30] | M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Rational Mech. Anal., 215 (2015), 443–496. doi: 10.1007/s00205-014-0785-2 |
[31] | C. De Filippis, G. Mingione, A borderline case of Calderón-Zygmund estimates for non-uniformly elliptic problems, St. Petersburg Math. J., 31 (2020), 455–477. doi: 10.1090/spmj/1608 |
[32] | C. De Filippis, G. Mingione, Interpolative gap bounds for nonautonomous integrals, Anal. Math. Phys., 11 (2021), 117. doi: 10.1007/s13324-021-00534-z |
[33] | C. De Filippis, G. Mingione, Lipschitz bounds and nonautonomous integrals, Arch. Rational Mech. Anal., 2021, in press. |
[34] | C. De Filippis, G. Mingione, Manifold constrained non-uniformly elliptic problems, J. Geom. Anal., 30 (2020), 1661–1723. doi: 10.1007/s12220-019-00275-3 |
[35] | C. De Filippis, G. Mingione, On the regularity of minima of non-autonomous functionals, J. Geom. Anal., 30 (2020), 1584–1626. doi: 10.1007/s12220-019-00225-z |
[36] | C. De Filippis, J. Oh, Regularity for multi-phase variational problems, J. Differ. Equations, 267 (2019), 1631–1670. doi: 10.1016/j.jde.2019.02.015 |
[37] | E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. doi: 10.1016/j.bulsci.2011.12.004 |
[38] | L. Esposito, F. Leonetti, G. Mingione, Sharp regularity for functionals with $(p, q)$ growth, J. Differ. Equations, 204 (2004), 5–55. doi: 10.1016/j.jde.2003.11.007 |
[39] | Y. Fang, V. Radulescu, C. Zhang, X. Zhang, Gradient estimates for multi-phase problems in Campanato spaces, Indiana U. Math. J., in press. |
[40] | I. Fonseca, J. Malý, G. Mingione, Scalar minimizers with fractal singular sets, Arch. Rational Mech. Anal., 172 (2004), 295–307. doi: 10.1007/s00205-003-0301-6 |
[41] | M. Giaquinta, E. Giusti, On the regularity of the minima of variational integrals, Acta Math., 148 (1982), 31–46. doi: 10.1007/BF02392725 |
[42] | M. Giaquinta, G. Modica, J. Souček, Cartesian currents in the calculus of variations II, Berlin: Springer-Verlag, 1998. |
[43] | E. Giusti, Direct methods in the calculus of variations, River Edge: World Scientific Publishing Co., 2003. |
[44] | P. Harjulehto, P. Hästö, Double phase image restoration. J. Math. Anal. Appl., 501 (2021), 123832. doi: 10.1016/j.jmaa.2019.123832 |
[45] | P. Harjulehto, P. Hästö, Orlicz spaces and generalized Orlicz spaces, Springer, 2019. |
[46] | P. Harjulehto, P. Hästö, M. Lee, Hölder continuity of $\omega$-minimizers of functionals with generalized Orlicz growth, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5), XXII (2021), 549–582. |
[47] | P. Hästö, J. Ok, Maximal regularity for local minimizers of nonautonomous functionals, J. Eur. Math. Soc., in press. |
[48] | P. Harjulehto, P. Hästö, O. Toivanen, Hölder regularity of quasiminimizers under generalized growth conditions, Calc. Var., 56 (2017), 22. doi: 10.1007/s00526-017-1114-z |
[49] | J. Hirsch, M. Schäffner, Growth conditions and regularity, an optimal local boundedness result, Commun. Contemp. Math., 23 (2021), 2050029. doi: 10.1142/S0219199720500297 |
[50] | A. Karppinen, M. Lee, Hölder continuity of the minimizer of an obstacle problem with generalized Orlicz growth, International Mathematics Research Notices, 2021, rnab150. |
[51] | G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203–1219. doi: 10.1016/0362-546X(88)90053-3 |
[52] | G. M. Lieberman, The natural generalization of the natural condition of Ladyzhenskaya and Ural'tseva for elliptic equations, Commun. Part. Diff. Eq., 16 (1991), 311–361. doi: 10.1080/03605309108820761 |
[53] | P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 391–409. doi: 10.1016/S0294-1449(16)30379-1 |
[54] | P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Rational Mech. Anal., 105 (1989), 267–284. doi: 10.1007/BF00251503 |
[55] | P. Marcellini, Regularity and existence of solutions of elliptic equations with $p, q$-growth conditions, J. Differ. Equations, 90 (1991), 1–30. doi: 10.1016/0022-0396(91)90158-6 |
[56] | P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23 (1996), 1–25. |
[57] | P. Marcellini, Growth conditions and regularity for weak solutions to nonlinear elliptic pdes, J. Math. Anal. Appl., 501 (2021), 124408. doi: 10.1016/j.jmaa.2020.124408 |
[58] | P. Marcellini, Un example de solution discontinue d'un probléme variationel dans le cas scalaire, Ist. U. Dini, Firenze, 1987–88, preprint. |
[59] | G. Mingione, V. Radulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 501 (2021), 125197. doi: 10.1016/j.jmaa.2021.125197 |
[60] | J. Ok, Regularity for double phase problems under additional integrability assumptions, Nonlinear Anal., 194 (2020), 111408. doi: 10.1016/j.na.2018.12.019 |
[61] | M. A. Ragusa, A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal., 9 (2020), 710–728. |
[62] | M. Schäffner, Higher integrability for variational integrals with non-standard growth, Calc. Var., 60 (2021), 77. doi: 10.1007/s00526-020-01907-1 |
[63] | V. V. Zhikov, On Lavrentiev's phenomenon, Russian J. Math. Phys., 3 (1995), 249–269. |
[64] | V. V. Zhikov, On some variational problems, Russian J. Math. Phys., 5 (1997), 105–116. |