
Citation: Vito Crismale, Gianluca Orlando. A lower semicontinuity result for linearised elasto-plasticity coupled with damage in W1,γ, γ > 1[J]. Mathematics in Engineering, 2020, 2(1): 101-118. doi: 10.3934/mine.2020006
[1] | Xinyu Lu, Lifang Wang, Zejun Jiang, Shizhong Liu, Jiashi Lin . PEJL: A path-enhanced joint learning approach for knowledge graph completion. AIMS Mathematics, 2023, 8(9): 20966-20988. doi: 10.3934/math.20231067 |
[2] | Wenhui Feng, Xingfa Zhang, Yanshan Chen, Zefang Song . Linear regression estimation using intraday high frequency data. AIMS Mathematics, 2023, 8(6): 13123-13133. doi: 10.3934/math.2023662 |
[3] | Yan Wang, Ying Cao, Ziling Heng, Weiqiong Wang . Linear complexity and 2-adic complexity of binary interleaved sequences with optimal autocorrelation magnitude. AIMS Mathematics, 2022, 7(8): 13790-13802. doi: 10.3934/math.2022760 |
[4] | Rinko Miyazaki, Dohan Kim, Jong Son Shin . Uniform boundedness of solutions to linear difference equations with periodic forcing functions. AIMS Mathematics, 2023, 8(10): 24116-24131. doi: 10.3934/math.20231229 |
[5] | Gideon Simpson, Daniel Watkins . Relative entropy minimization over Hilbert spaces via Robbins-Monro. AIMS Mathematics, 2019, 4(3): 359-383. doi: 10.3934/math.2019.3.359 |
[6] | C. T. J. Dodson . Information distance estimation between mixtures of multivariate Gaussians. AIMS Mathematics, 2018, 3(4): 439-447. doi: 10.3934/Math.2018.4.439 |
[7] | Rashad M. Asharabi, Somaia M. Alhazmi . Accelerating the convergence of a two-dimensional periodic nonuniform sampling series through the incorporation of a bivariate Gaussian multiplier. AIMS Mathematics, 2024, 9(11): 30898-30921. doi: 10.3934/math.20241491 |
[8] | Zhengyan Luo, Lintao Ma, Yinghui Zhang . Optimal decay rates of higher–order derivatives of solutions for the compressible nematic liquid crystal flows in R3. AIMS Mathematics, 2022, 7(4): 6234-6258. doi: 10.3934/math.2022347 |
[9] | Xinyu Guan, Nan Kang . Stability for Cauchy problem of first order linear PDEs on Tm with forced frequency possessing finite uniform Diophantine exponent. AIMS Mathematics, 2024, 9(7): 17795-17826. doi: 10.3934/math.2024866 |
[10] | Myeongmin Kang, Miyoun Jung . Nonconvex fractional order total variation based image denoising model under mixed stripe and Gaussian noise. AIMS Mathematics, 2024, 9(8): 21094-21124. doi: 10.3934/math.20241025 |
Fractional differential equations (FDEs) have a profound physical background and rich theoretical connotations and have been particularly eye-catching in recent years. Fractional order differential equations refer to equations that contain fractional derivatives or integrals. Currently, fractional derivatives and integrals have a wide range of applications in many disciplines such as physics, biology, and chemistry, etc. For more information see [1,2,3,45].
Langevin equation is an important tool of many areas such as mathematical physics, protein dynamics [6], deuteron-cluster dynamics, and described anomalous diffusion [7]. In 1908, Langevin established first the Langevin equation with a view to describe the advancement of physical phenomena in fluctuating conditions [8]. Some evolution processes are characterized by the fact that they change of state abruptly at certain moments of time. These perturbations are short-term in comparison with the duration of the processes. So, the Langevin equations are a suitable tool to describe such problems. Besides the intensive improvement of fractional derivatives, the Langevin (FDEs) have been presented in 1990 by Mainardi and Pironi [9], which was trailed by numerous works interested in some properties of solutions like existence and uniqueness for Langevin FDEs [10,11,12,13,14,15,16,17,18,19]. We also refer here to some recent works that deal with a qualitative analysis of such problems, including the generalized Hilfer operator, see [20,21,22,23,24]. Recent works related to our work were done by [25,26,27,28,29,30]. The monotone iterative technique is one of the important techniques used to obtain explicit solutions for some differential equations. For more details about the monotone iterative technique, we refer the reader to the classical monographs [31,32].
Lakshmikantham and Vatsala [25] studied the general existence and uniqueness results for the following FDE
{Dμ0+(υ(ϰ)−υ(0))=f(ϰ,υ(ϰ)),ϰ∈[0,b],υ(0)=υ0, |
by the monotone iterative technique and comparison principle. Fazli et al. [26] investigated the existence of extremal solutions of a nonlinear Langevin FDE described as follows
{Dμ10+(Dμ20++λ)υ(ϰ)=f(ϰ,υ(ϰ)),ϰ∈[0,b],g(υ(0),υ(b))=0,Dμ20+υ(0)=υμ2, |
via a constructive technique that produces monotone sequences that converge to the extremal solutions. Wang et al. [27], used the monotone iterative method to prove the existence of extremal solutions for the following nonlinear Langevin FDE
{βDμ0+(γDμ0++λ)υ(ϰ)=f(ϰ,υ(ϰ),(γDμ0++λ)),ϰ∈(0,b],ϰμ(1−γ)υ(0)=τ1∫η0υ(s)ds+m∑i=1μiυ(σi),ϰμ(1−β)(γDμ0++λ)υ(0)=τ2∫η0 γDμ0+υ(s)ds+∑mi=1ργiDμ0+υ(σi), |
Motivated by the novel advancements of the Langevin equation and its applications, also by the above argumentations, in this work, we apply the monotone iterative method to investigate the lower and upper explicit monotone iterative sequences that converge to the extremal solution of a fractional Langevin equation (FLE) with multi-point sub-strip boundary conditions described by
{(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)υ(ϰ)=f(ϰ,υ(ϰ)),ϰ∈(0,b],HDμ2,β2;ϕ0+υ(ϰ)|ϰ=0=0,υ(0)=0,υ(b)=∑mi=1δiIσi,ϕ0+υ(ζi), | (1.1) |
where HDμ1,β1;ϕ0+ and HDμ2,β2;ϕ0+ are the ϕ-Hilfer fractional derivatives of order μ1∈(0,1] and μ2∈(1,2] respectively, and type β1,β2∈[0,1],σi>0,λ1,λ2∈R+, δi>0, m≥1, 0<ζ1<ζ2<......<1, f:(0,b]×R→R is a given continuous function and ϕ is an increasing function, having a continuous derivative ϕ′ on (0,b) such that ϕ′(ϰ)≠0, for all ϰ∈(0,b]. Our main contributions to this work are as follows:
∙ By adopting the same techniques used in [26,27], we derive the formula of explicit solutions for ϕ-Hilfer-FLEs (1.1) involving two parameters Mittag-Leffler functions.
∙ We use the monotone iterative method to study the extremal of solutions of ϕ-Hilfer-FLE (1.1).
∙ We investigate the lower and upper explicit monotone iterative sequences that converge to the extremal solution.
∙ The proposed problem (1.1) covers some problems involving many classical fractional derivative operators, for different values of function ϕ and parameter μi,i=1,2. For instance:
∙ If ϕ(ϰ)=ϰ and μi=1, then the FLE (1.1) reduces to Caputo-type FLE.
∙ If ϕ(ϰ)=ϰ and μi=0, then the FLE (1.1) reduces to Riemann-Liouville-type FLE.
∙ If μi=0, then the FLE (1.1) reduces to FLE with the ϕ-Riemann-Liouville fractional derivative.
∙ If ϕ(ϰ)=ϰ, then the FLE (1.1) reduces to classical Hilfer-type FLE.
∙ If ϕ(ϰ)=logϰ, then the FLE (1.1) reduces to Hilfer-Hadamard-type FLE.
∙ If ϕ(ϰ)=ϰρ, then the FLE (1.1) reduces to Katugampola-type FLE.
∙ The results obtained in this work includes the results of Fazli et al. [26], Wang et al. [27] and cover many problems which do not study yet.
The structure of our paper is as follows: In the second section, we present some notations, auxiliary lemmas and some basic definitions which are used throughout the paper. Moreover, we derive the formula of the explicit solution for FLE (1.1) in the term of Mittag-Leffler with two parameters. In the third section, we discuss the existence of extremal solutions to our FLE (1.1) and prove lower and upper explicit monotone iterative sequences which converge to the extremal solution. In the fourth section, we provide a numerical example to illustrate the validity of our results. The concluding remarks will be given in the last section.
To achieve our main purpose, we present here some definitions and basic auxiliary results that are required throughout our paper. Let J:=[0,b], and C(J) be the Banach space of continuous functions υ:J→R equipped with the norm ‖υ‖=sup{|υ(ϰ)|:ϰ∈J}.
Definition 2.1. [2] Let f be an integrable function and μ>0. Also, let ϕ be an increasing and positive monotone function on (0,b), having a continuous derivative ϕ′ on (0,b) such that ϕ′(ϰ)≠0, for all ϰ∈J. Then the ϕ-Riemann-Liouville fractional integral of f of order μ is defined by
Iμ,ϕ0+f(ϰ)=∫ϰ0ϕ′(s)(ϕ(ϰ)−ϕ(s))μ−1Γ(μ)f(s)ds, 0<ϰ≤b. |
Definition 2.2. [33] Let n−1<μ<n, (n∈N), and f,ϕ∈Cn(J) such that ϕ′(ϰ) is continuous and satisfying ϕ′(ϰ)≠0 for all ϰ∈J. Then the left-sided ϕ-Hilfer fractional derivative of a function f of order μ and type β∈[0,1] is defined by
HDμ,β,ϕ0+f(ϰ)=Iβ(n−μ);ϕ0+Dγ;ϕa+f(ϰ),γ=μ+nβ−μβ, |
where
Dγ;ϕ0+f(ϰ)=f[n]ϕI(1−β)(n−μ);ϕ0+f(ϰ),andf[n]ϕ=[1ϕ′(ϰ)ddϰ]n. |
Lemma 2.3. [2,33] Let n−1<μ<n, 0≤β≤1, and n<δ∈R. For a given function f:J→R, we have
Iμ,ϕ0+Iβ,ϕ0+f(ϰ)=Iμ+β,ϕ0+f(ϰ), |
Iμ,ϕ0+(ϕ(ϰ)−ϕ(0))δ−1=Γ(δ)Γ(μ+δ)(ϕ(ϰ)−ϕ(0))μ+δ−1, |
and
HDμ,β,ϕ0+(ϕ(ϰ)−ϕ(0))δ−1=0,δ<n. |
Lemma 2.4. [33] Let f:J→R, n−1<μ<n, and 0≤β≤1. Then
(1) If f∈Cn−1(J), then
Iμ;ϕ0+HDμ,β,ϕ0+f(ϰ)=f(ϰ)−n−1∑k=1(ϕ(ϰ)−ϕ(0))γ−kΓ(γ−k+1)f[n−k]ϕI(1−β)(n−μ);ϕ0+f(0), |
(2) If f∈C(J), then
HDμ,β,ϕ0+Iμ;ϕ0+f(ϰ)=f(ϰ). |
Lemma 2.5. For μ,β,γ>0 and λ∈R, we have
Iμ,ϕ0+[ϕ(ϰ)−ϕ(0)]β−1Eγ,β[λ(ϕ(ϰ)−ϕ(0))γ]=[ϕ(ϰ)−ϕ(0)]β+μ−1Eγ,β+μ[λ(ϕ(ϰ)−ϕ(0))γ], |
where Eγ,β is Mittag-Leffler function with two-parameterdefined by
Eγ,β(υ)=∞∑i=1υiΓ(γi+β),υ∈C. |
Proof. See [34].
Lemma 2.6. [27] Let μ∈(1,2] and β>0 be arbitrary. Then the functions Eμ(⋅), Eμ,μ(⋅) and Eμ,β(⋅) are nonnegative. Furthermore,
Eμ(χ):=Eμ,1(χ)≤1,Eμ,μ(χ)≤1Γ(μ),Eμ,β(χ)≤1Γ(β), |
for χ<0.
Lemma 2.7. Let μ,k,β>0, λ∈R and f∈C(J). Then
Ik,ϕ0+[Iμ,ϕ0+Eμ,μ(λ(ϕ(ϰ)−ϕ(0))μ)]=Iμ+k,ϕ0+Eμ,μ+k(λ(ϕ(ϰ)−ϕ(0))μ). |
Proof. See [34].
For some analysis techniques, we will suffice with indication to the classical Banach contraction principle (see [35]).
To transform the ϕ-Hilfer type FLE (1.1) into a fixed point problem, we will present the following Lemma.
Lemma 2.8. Let γj=μj+jβj−μjβj, (j=1,2) such that μ1∈(0,1],μ2∈(1,2], βj∈[0,1],λ1,λ2≥0 and ℏ is a functionin the space C(J). Then, υ is a solutionof the ϕ-Hilfer linear FLE of the form
{(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)v(ϰ)=ℏ(ϰ),ϰ∈(0,b],HDμ2,β2;ϕ0+v(ϰ)|ϰ=0=0,v(0)=0,v(b)=∑mi=1δiIσi,ϕ0+v(ζi), | (2.1) |
if and only if υ satisfies the following equation
υ(ϰ)=[ϕ(ϰ)−ϕ(0)]γ2−1Eμ2,γ2(−λ2[ϕ(ϰ)−ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(−λ2[ϕ(b)−ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(−λ1[ϕ(b)−ϕ(0)]μ1)ℏ(b))−m∑i=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(−λ2[ϕ(ζi)−ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(−λ1[ϕ(ζi)−ϕ(0)]μ1)ℏ(ζi))]+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(−λ2[ϕ(ϰ)−ϕ(0)]μ2)Γ(μ1)Iμ1,ϕ0+[Eμ1,μ1(−λ1[ϕ(ϰ)−ϕ(0)]μ1)ℏ(ϰ)]. | (2.2) |
where
Θ:=(∑mi=1δi[ϕ(ζi)−ϕ(0)]γ2+σi−1Eμ2,γ2+σi(−λ2[ϕ(ζi)−ϕ(0)]μ2)−[ϕ(b)−ϕ(0)]γ2−1Eμ2,γ2(−λ2[ϕ(b)−ϕ(0)]μ2))≠0. | (2.3) |
Proof. Let (HDμ2,β2;ϕ0++λ2)υ(ϰ)=P(ϰ). Then, the problem (2.1) is equivalent to the following problem
{(HDμ1,β1;ϕ0++λ1)P(ϰ)=ℏ(ϰ),ϰ∈(0,b],P(0)=0. | (2.4) |
Applying the operator Iμ1,ϕ0+ to both sides of the first equation of (2.4) and using Lemma 2.4, we obtain
P(ϰ)=c0Γ(γ1)[ϕ(ϰ)−ϕ(0)]γ1−1−λ1Iμ1,ϕ0+P(ϰ)+Iμ1,ϕ0+ℏ(ϰ), | (2.5) |
where c0 is an arbitrary constant. For explicit solutions of Eq (2.4), we use the method of successive approximations, that is
P0(ϰ)=c0Γ(γ1)[ϕ(ϰ)−ϕ(0)]γ1−1, | (2.6) |
and
Pk(ϰ)=P0(ϰ)−λ1Iμ1,ϕ0+Pk−1(ϰ)+Iμ1,ϕ0+ℏ(ϰ). | (2.7) |
By Definition 2.1 and Lemma 2.3 along with Eq (2.6), we obtain
P1(ϰ)=P0(ϰ)−λ1Iμ1,ϕ0+P0(ϰ)+Iμ1,ϕ0+ℏ(ϰ)=c0Γ(γ1)[ϕ(ϰ)−ϕ(0)]γ1−1−λ1Iμ1,ϕ0+(c0Γ(γ1)[ϕ(ϰ)−ϕ(0)]γ1−1)+Iμ1,ϕ0+ℏ(ϰ)=c0Γ(γ1)[ϕ(ϰ)−ϕ(0)]γ1−1−λ1c0Γ(γ1+μ1)[ϕ(ϰ)−ϕ(0)]γ1+μ1−1+Iμ1,ϕ0+ℏ(ϰ)=c02∑i=1(−λ1)i−1[ϕ(ϰ)−ϕ(0)]iμ1+β1(1−μ1)−1Γ(iμ1+β1(1−μ1))+Iμ1,ϕ0+ℏ(ϰ). | (2.8) |
Similarly, by using Eqs (2.6)–(2.8), we get
P2(ϰ)=P0(ϰ)−λ1Iμ1,ϕ0+P1(ϰ)+Iμ1,ϕ0+ℏ(ϰ)=c0Γ(γ1)[ϕ(ϰ)−ϕ(0)]γ1−1−λ1Iμ1,ϕ0+(c02∑i=1(−λ1)i−1[ϕ(ϰ)−ϕ(0)]iμ1+β1(1−μ1)−1Γ(iμ1+β1(1−μ1))+Iμ1,ϕ0+ℏ(ϰ))+Iμ1,ϕ0+ℏ(ϰ)=c03∑i=1(−λ1)i−1[ϕ(ϰ)−ϕ(0)]iμ1+β1(1−μ1)−1Γ(iμ1+β1(1−μ1))+2∑i=1(−λ1)i−1Iiμ1,ϕ0+ℏ(ϰ). |
Repeating this process, we get Pk(ϰ) as
Pk(ϰ)=c0k+1∑i=1(−λ1)i−1[ϕ(ϰ)−ϕ(0)]iμ1+β1(1−μ1)−1Γ(iμ1+β1(1−μ1))+k∑i=1(−λ1)i−1Iiμ1,ϕ0+ℏ(ϰ). |
Taking the limit k→∞, we obtain the expression for Pk(ϰ), that is
P(ϰ)=c0∞∑i=1(−λ1)i−1[ϕ(ϰ)−ϕ(0)]iμ1+β1(1−μ1)−1Γ(iμ1+β1(1−μ1))+∞∑i=1(−λ1)i−1Iiμ1,ϕ0+ℏ(ϰ). |
Changing the summation index in the last expression, i→i+1, we have
P(ϰ)=c0∞∑i=0(−λ1)i[ϕ(ϰ)−ϕ(0)]iμ1+γ1−1Γ(iμ1+γ1)+∞∑i=0(−λ1)iIiμ1+μ1,ϕ0+ℏ(ϰ). |
From the definition of Mittag-Leffler function, we get
P(ϰ)=c0[ϕ(ϰ)−ϕ(0)]γ1−1Eμ1,γ1(−λ1[ϕ(ϰ)−ϕ(0)]μ1)+Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(−λ1[ϕ(ϰ)−ϕ(0)]μ1)ℏ(ϰ). | (2.9) |
By the condition P(0)=0, we get c0=0 and hence
Equation (2.9) reduces to
P(ϰ)=Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(−λ1[ϕ(ϰ)−ϕ(0)]μ1)ℏ(ϰ). | (2.10a) |
Similarly, the following equation
{(HDμ2,β2;ϕ0++λ2)υ(ϰ)=P(ϰ),ϰ∈(0,b],υ(0)=0,υ(b)=∑mi=1δiIσi,ϕ0+υ(ζi) |
is equivalent to
υ(ϰ)=c1[ϕ(ϰ)−ϕ(0)]γ2−1Eμ2,γ2(−λ2[ϕ(ϰ)−ϕ(0)]μ2)+c2[ϕ(ϰ)−ϕ(0)]γ2−2Eμ2,γ2−1(−λ2[ϕ(ϰ)−ϕ(0)]μ2)+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(−λ2[ϕ(ϰ)−ϕ(0)]μ2)P(ϰ). | (2.11) |
By the condition υ(0)=0, we obtain c2=0 and hence Eq (2.11) reduces to
υ(ϰ)=c1[ϕ(ϰ)−ϕ(0)]γ2−1Eμ2,γ2(−λ2[ϕ(ϰ)−ϕ(0)]μ2)+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(−λ2[ϕ(ϰ)−ϕ(0)]μ2)P(ϰ). | (2.12) |
By the condition υ(b)=∑mi=1δi Iσi,ϕ0+υ(ζi), we get
c1=1Θ(Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(−λ2[ϕ(b)−ϕ(0)]μ2)P(b)−∑mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(−λ2[ϕ(ζi)−ϕ(0)]μ2)P(ζi)). | (2.13) |
Put c0 in Eq (2.12), we obtain
υ(ϰ)=[ϕ(ϰ)−ϕ(0)]γ2−1Eμ2,γ2(−λ2[ϕ(ϰ)−ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(−λ2[ϕ(b)−ϕ(0)]μ2)P(b)−m∑i=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(−λ2[ϕ(ζi)−ϕ(0)]μ2)P(ζi)]+Γ(μ2)Iμ2,ϕ0+[Eμ2,μ2(−λ2[ϕ(ϰ)−ϕ(0)]μ2)P(ϰ)]. | (2.14) |
Substituting Eq (2.10a) into Eq (2.14), we can get Eq (2.2).
On the other hand, we assume that the solution υ satisfies Eq (2.2). Then, one can get υ(0)=0. Applying HDμ2,β2;ϕ0+ on both sides of Eq (2.2), we get
HDμ2,β2;ϕ0+υ(ϰ)=HDμ2,β2;ϕ0+[ϕ(ϰ)−ϕ(0)]γ2−1Eμ2,γ2(−λ2[ϕ(ϰ)−ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(−λ2[ϕ(b)−ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(−λ1[ϕ(b)−ϕ(0)]μ1)ℏ(b))−m∑i=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(−λ2[ϕ(ζi)−ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(−λ1[ϕ(ζi)−ϕ(0)]μ1)ℏ(ζi))]+HDμ2,β2;ϕ0+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(−λ2[ϕ(ϰ)−ϕ(0)]μ2)Γ(μ1)Iμ1,ϕ0+[Eμ1,μ1(−λ1[ϕ(ϰ)−ϕ(0)]μ1)ℏ(ϰ)]. | (2.15) |
Since γ2=μ2+β2−μ2β2, then, by Lemma 2.3, we have HDμ2,β2;ϕ0+[ϕ(ϰ)−ϕ(0)]γ2−1=0 and hence Eq (2.15) reduces to the following equation
HDμ2,β2;ϕ0+υ(ϰ)=HDμ2,β2;ϕ0+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(−λ2[ϕ(ϰ)−ϕ(0)]μ2)Γ(μ1)Iμ1,ϕ0+[Eμ1,μ1(−λ1[ϕ(ϰ)−ϕ(0)]μ1)ℏ(ϰ)]. |
By using some properties of Mittag-Leffler function and taking ϰ=0, we obtain
HDμ2,β2;ϕ0+υ(0)=0. |
Thus, the derivative condition is satisfied. The proof of Lemma 2.8 is completed.
Lemma 2.9. (Comparison Theorem). For j=1,2, let γj=μj+jβj−μjβj, μ1∈(0,1],μ2∈(1,2], βj∈[0,1],λ1≥0 and υ∈C(J) be acontinuous function satisfies
{(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)v(ϰ)≥0,HDμ2,β2;ϕ0+v(ϰ)|ϰ=0≥0,v(0)≥0,v(b)≥0, |
then υ(ϰ)≥0, ϰ∈(0,b].
Proof. If z≥0, then from Lemma 2.6, we have Eμ,β(z)≥0. If z<0, then Eμ,β(z) is completely monotonic function [35], that means Eμ,β(z) possesses derivatives for all arbitrary integer order and (−1)ndndznEμ,β(z)≥0. Hence, Eμ,β(z)≥0 for all z∈R. In view of Eq (2.2), Eq (2.9), and from fact that Eμ1,γ1(⋅)≥0 and Eμ,μ(⋅)≥0 with help the definition of ϕ, we obtain υ(ϰ)≥0, for ϰ∈(0,b]. (Alternative proof). Let (HDμ2,β2;ϕ0++λ2)υ(ϰ)=P(ϰ). Then, we have
{(HDμ1,β1;ϕ0++λ1)P(ϰ)≥0,P(0)≥0. |
Assume that P(ϰ)≥0 (for all ϰ∈(0,b]) is not true. Then, there exist ϰ1,ϰ2, (0<ϰ1<ϰ2≤b) such that P(ϰ2)<0,P(ϰ1)=0 and
{P(ϰ)≥0,ϰ∈(0,ϰ1),P(ϰ)<0,ϰ∈(ϰ1,ϰ2). |
Since λ1≥0, we have (HDμ1,β1;ϕ0++λ1)P(ϰ)≥0 for all ϰ∈(ϰ1,ϰ2). In view of
HDμ1,β1,ϕ0+P(ϰ)=Iβ1(1−μ1);ϕ0+(1ϕ′(ϰ)ddϰ)I1−γ1;ϕ0+P(ϰ), |
the operator I1−γ1;ϕ0+P(ϰ) is nondecreasing on (ϰ1,ϰ2). Hence
I1−γ1;ϕ0+P(ϰ)−I1−γ1;ϕ0+P(ϰ1)≥0,ϰ∈(ϰ1,ϰ2). |
On the other hand, for all ϰ∈(ϰ1,ϰ2), we have
I1−γ1;ϕ0+P(ϰ)−I1−γ1;ϕ0+P(ϰ1)=1Γ(1−γ1)∫ϰ0ϕ′(s)(ϕ(ϰ)−ϕ(s))1−γ1−1P(s)ds−1Γ(1−γ1)∫ϰ10ϕ′(s)(ϕ(ϰ1)−ϕ(s))1−γ1−1P(s)ds=1Γ(1−γ1)∫ϰ10ϕ′(s)[(ϕ(ϰ)−ϕ(s))−γ1−(ϕ(ϰ1)−ϕ(s))−γ1]P(s)ds+1Γ(1−γ1)∫ϰϰ1ϕ′(s)(ϕ(ϰ)−ϕ(s))−γ1P(s)ds<0, for all ϰ∈(ϰ1,ϰ2), |
which is a contradiction. Therefore, P(ϰ)≥0 (ϰ∈(0,b]). By the same technique, one can prove that υ(ϰ)≥0, for all ϰ∈(0,b].
As a result of Lemma 2.8, we have the following Lemma.
Lemma 2.10. For j=1,2, let γj=μj+jβj−μjβj, μ1∈(0,1],μ2∈(1,2], βj∈[0,1] and f:J×R→R is continuous function . If υ∈C(J) satisfies the problem (1.1), then, υ satisfies thefollowing integral equation
υ(ϰ)=[ϕ(ϰ)−ϕ(0)]γ2−1Eμ2,γ2(−λ2[ϕ(ϰ)−ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(−λ2[ϕ(b)−ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(−λ1[ϕ(b)−ϕ(0)]μ1)f(b,υ(b)))−m∑i=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(−λ2[ϕ(ζi)−ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(−λ1[ϕ(ζi)−ϕ(0)]μ1)f(ζi,υ(ζi)))]+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(−λ2[ϕ(ϰ)−ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(−λ1[ϕ(ϰ)−ϕ(0)]μ1)f(ϰ,υ(ϰ))). |
In this part, we focus on the existence of lower and upper explicit monotone iterative sequences that converge to the extremal solution for the nonlinear ϕ-Hilfer FLE (1.1). The existence of unique solution for the problem (1.1) is based on Banach fixed point theorem. Now, let us give the following definitions:
Definition 3.1. For J= [0,b]⊂R+. Let υ∈C(J). Then, the upper and lower-control functions are defined by
¯f(ϰ,υ(ϰ))=sup0≤Y≤υ{f(ϰ,Y(ϰ))}, |
and
f_(ϰ,υ(ϰ))=infυ≤Y≤b{f(ϰ,Y(ϰ))}, |
respectively. Clearly, ¯f(ϰ,υ(ϰ)) and f_(ϰ,υ(ϰ)) are monotonous non-decreasing on [a,b] and
f_(ϰ,υ(ϰ))≤f(ϰ,υ(ϰ))≤¯f(ϰ,υ(ϰ)) |
Definition 3.2. Let ¯υ, υ_ ∈C(J) be upper and lower solutions of the problem (1.1) respectively. Then
{(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)¯υ(ϰ)≥¯f(ϰ,¯υ(ϰ)),ϰ∈(0,b],HDμ2,β2;ϕ0+¯υ(ϰ)|ϰ=0≥0,¯υ(0)≥0,¯υ(b)≥∑mi=1δiIσi,ϕ0+¯υ(ζi), |
and
{(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)υ_(ϰ)≤f_(ϰ,υ_(ϰ)),ϰ∈(0,b],HDμ2,β2;ϕ0+υ_(ϰ)|ϰ=0≤0,υ_(0)≤0,υ_(b)≤∑mi=1δiIσi,ϕ0+υ_(ζi). |
According to Lemma 2.8, we have
\begin{eqnarray*} \overline{\upsilon }(\varkappa ) &\geq &\frac{\left[ \phi (\varkappa )-\phi (0)\right] ^{\gamma _{2}-1}E_{\mu _{2}, \gamma _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) }{\Theta } \\ &&\left[ \Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}}\right) \right. \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (b)-\phi (0)\right] ^{\mu _{1}}\right) f(b, \overline{\upsilon }(b)\right) \\ &&-\sum\limits_{i = 1}^{m}\delta _{i}\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}+\sigma _{i}, \phi }E_{\mu _{2}, \mu _{2}+\sigma _{i}}\left( \lambda _{2} \left[ \phi (\zeta _{i})-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left. \left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\zeta _{i})-\phi (0) \right] ^{\mu _{1}}\right) f(\zeta _{i}, \overline{\upsilon }(\zeta _{i}))\right) \right] \\ &&+\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{1}}\right) f(\varkappa, \overline{\upsilon }(\varkappa ))\right) \end{eqnarray*} |
and
\begin{eqnarray*} \underline{\upsilon }(\varkappa ) &\leq &\frac{\left[ \phi (\varkappa )-\phi (0)\right] ^{\gamma _{2}-1}E_{\mu _{2}, \gamma _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) }{\Theta } \\ &&\left[ \Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}}\right) \right. \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (b)-\phi (0)\right] ^{\mu _{1}}\right) f(b, \underline{\upsilon }(b)\right) \\ &&-\sum\limits_{i = 1}^{m}\delta _{i}\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}+\sigma _{i}, \phi }E_{\mu _{2}, \mu _{2}+\sigma _{i}}\left( -\lambda _{2} \left[ \phi (\zeta _{i})-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left. \left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\zeta _{i})-\phi (0) \right] ^{\mu _{1}}\right) f(\zeta _{i}, \underline{\upsilon }(\zeta _{i}))\right) \right] \\ &&+\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{1}}\right) f(\varkappa, \underline{\upsilon }(\varkappa ))\right). \end{eqnarray*} |
Theorem 3.3. Let \overline{\upsilon }(\varkappa) and \underline{\upsilon }(\varkappa) be upper and lower solutions of the problem (1.1), respectively such that \underline{ \upsilon } \left(\varkappa \right)\leq \overline{\upsilon }\left(\varkappa \right) on \mathcal{J}. Moreover, the function f\left(\varkappa, \upsilon \right) is continuouson \mathcal{J} and there exists a constant number \kappa > 0 such that \left\vert f\left(\varkappa, \upsilon \right) -f\left(\varkappa, v\right)\right\vert \leq \kappa \left\vert \upsilon -v\right\vert, for \upsilon, v\in \mathbb{R} ^{+}, \varkappa \in \mathcal{J} . If
\begin{eqnarray*} Q_{1} & = &\kappa \frac{\left[ \phi (b)-\phi (0)\right] ^{\gamma _{2}-1}}{ \Gamma \left( \gamma _{2}\right) \Theta }\left[ \frac{\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}+\mu _{1}}}{\Gamma \left( \mu _{2}+1\right) \Gamma \left( \mu _{1}+1\right) }\right. \\ &&\left. +\sum\limits_{i = 1}^{m}\delta _{i}\Gamma \left( \mu _{2}\right) \frac{\left[ \phi (\zeta _{i})-\phi (0)\right] ^{\mu _{2}+\mu _{1}+\sigma _{i}}}{\Gamma \left( \mu _{2}+\sigma _{i}+1\right) \Gamma \left( \mu _{2}+\sigma _{i}\right) \Gamma \left( \mu _{1}+1\right) }\right] \\ &&+\kappa \frac{\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}+\mu _{1}}}{\Gamma \left( \mu _{2}+1\right) \Gamma \left( \mu _{1}+1\right) } < 1, \end{eqnarray*} |
then the problem (1.1) has a unique solution \upsilon \in C\left(\mathcal{J}\right).
Proof. Let \Xi = P- \underline{ P }, where P(\varkappa) = \left(^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \upsilon (\varkappa)\ and \underline{P}(\varkappa) = \left(^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \underline{\upsilon }(\varkappa). Then, we get
\begin{equation*} \left\{ \begin{array}{c} \left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \Xi \geq 0, \;\varkappa \in (0, b], \\ \Xi (0) = 0. \ \ \end{array} \right. \end{equation*} |
In view of Lemma 2.9, we have \Xi \left(\varkappa \right) \geq 0 on \mathcal{J}\ and hence \underline{ P } \left(\varkappa \right) \leq P\left(\varkappa \right) . Since P(\varkappa) = \left(^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \upsilon (\varkappa)\ and \underline{P}(\varkappa) = \left(^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \underline{\upsilon }(\varkappa), by the same technique, we get \underline{ \upsilon } \left(\varkappa \right) \leq \upsilon \left(\varkappa \right) . Similarly, we can show that \upsilon \left(\varkappa \right) \leq \overline{\upsilon }\left(\varkappa \right). Consider the continuous operator \mathcal{G}:\mathcal{C}\left(\mathcal{J} \right) \rightarrow \mathcal{C}\left(\mathcal{J}\right) defined by
\begin{eqnarray*} \mathcal{G}\upsilon (\varkappa ) & = &\frac{\left[ \phi (\varkappa )-\phi (0) \right] ^{\gamma _{2}-1}E_{\mu _{2}, \gamma _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) }{\Theta } \\ &&\left[ \Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}}\right) \right. \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (b)-\phi (0)\right] ^{\mu _{1}}\right) f\left( b, \upsilon (b)\right) \right) \\ &&-\sum\limits_{i = 1}^{m}\delta _{i}\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}+\sigma _{i}, \phi }E_{\mu _{2}, \mu _{2}+\sigma _{i}}\left( -\lambda _{2} \left[ \phi (\zeta _{i})-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left. \left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\zeta _{i})-\phi (0) \right] ^{\mu _{1}}\right) f\left( \zeta _{i}, \upsilon (\zeta _{i})\right) \right) \right] \\ &&+\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{1}}\right) f\left( \varkappa, \upsilon (\varkappa )\right) \right). \end{eqnarray*} |
Clearly, the fixed point of \mathcal{G} is a solution to problem (1.1). Define a closed ball \mathbb{B}_{R} as
\begin{equation*} \mathbb{B}_{R} = \left\{ \upsilon \in \mathcal{C}\left( \mathcal{J}\right) :\left\Vert \upsilon \right\Vert _{\mathcal{C}\left( \mathcal{J}\right) }\leq R, \right\} \end{equation*} |
with
\begin{equation*} R\geq \frac{Q_{2}}{1-Q_{1}}, \end{equation*} |
where
\begin{eqnarray*} &&Q_{2} = \mathcal{P}\frac{\left[ \phi (b)-\phi (0)\right] ^{\gamma _{2}-1}}{ \Gamma \left( \gamma _{2}\right) \Theta }\left[ \frac{\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}+\mu _{1}}}{\Gamma \left( \mu _{2}+1\right) \Gamma \left( \mu _{1}+1\right) }\right. \\ &&\left. +\sum\limits_{i = 1}^{m}\delta _{i}\Gamma \left( \mu _{2}\right) \frac{\left[ \phi (\zeta _{i})-\phi (0)\right] ^{\mu _{2}+\mu _{1}+\sigma _{i}}}{\Gamma \left( \mu _{2}+\sigma _{i}+1\right) \Gamma \left( \mu _{2}+\sigma _{i}\right) \Gamma \left( \mu _{1}+1\right) }\right] \\ &&+\mathcal{P}\frac{\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}+\mu _{1}}}{ \Gamma \left( \mu _{2}+1\right) \Gamma \left( \mu _{1}+1\right) } \end{eqnarray*} |
and \mathcal{P} = \sup_{s\in \mathcal{J}}\left\vert f(s, 0)\right\vert. Let \upsilon \in \mathbb{B}_{R} and \varkappa \in \mathcal{J} . Then by Lemma 2.6, we have
\begin{eqnarray*} \left\vert f\left( \varkappa, \upsilon (\varkappa )\right) \right\vert & = &\left\vert f\left( \varkappa, \upsilon (\varkappa )\right) -f\left( \varkappa, 0\right) +f\left( \varkappa, 0\right) \right\vert \\ &\leq &\left\vert f\left( \varkappa, \upsilon (\varkappa )\right) -f\left( \varkappa, 0\right) \right\vert +\left\vert f\left( \varkappa, 0\right) \right\vert \\ &\leq &\kappa \left\vert \upsilon (\varkappa )\right\vert +\mathcal{P} \\ &\leq &\left( \kappa \left\Vert \upsilon \right\Vert +\mathcal{P}\right). \end{eqnarray*} |
Now, we will present the proof in two steps:
\textsf{First step:} We will show that \mathcal{G}(\mathbb{B}_{R})\subset \mathbb{B}_{R}. First, by Lemma 2.6 and Definition 2.1, we have
\begin{equation*} I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( \lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) \leq \frac{\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}}{\Gamma \left( \mu _{2}+1\right) \Gamma \left( \mu _{2}\right) }. \end{equation*} |
Next, for \upsilon \in \mathbb{B}_{R} , we obtain
\begin{eqnarray*} &&\left\vert \mathcal{G}\upsilon \left( \varkappa \right) \right\vert \\ &&\left. \leq \right. \frac{\left[ \phi (b)-\phi (0)\right] ^{\gamma _{2}-1} }{\Gamma \left( \gamma _{2}\right) \Theta }\left[ \left( \kappa \left\Vert \upsilon \right\Vert +\mathcal{P}\right) \frac{\left[ \phi (b)-\phi (0) \right] ^{\mu _{2}+\mu _{1}}}{\Gamma \left( \mu _{2}+1\right) \Gamma \left( \mu _{1}+1\right) }\right. \\ &&\left. \left. +\right. \sum\limits_{i = 1}^{m}\delta _{i}\Gamma \left( \mu _{2}\right) \frac{\left[ \phi (\zeta _{i})-\phi (0)\right] ^{\mu _{2}+\mu _{1}+\sigma _{i}}}{\Gamma \left( \mu _{2}+\sigma _{i}+1\right) \Gamma \left( \mu _{2}+\sigma _{i}\right) \Gamma \left( \mu _{1}+1\right) }\left( \kappa \left\Vert \upsilon \right\Vert +\mathcal{P}\right) \right] \\ &&\left. +\right. \left( \kappa \left\Vert \upsilon \right\Vert +\mathcal{P} \right) \frac{\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}+\mu _{1}}}{\Gamma \left( \mu _{2}+1\right) \Gamma \left( \mu _{1}+1\right) } \\ &&\left. \leq \right. Q_{1}R+Q_{2} \\ &&\left. \leq \right. R. \end{eqnarray*} |
Thus \mathcal{G}(\mathbb{B}_{R})\subset \mathbb{B}_{R}.
\textsf{Second step:} We shall prove that \mathcal{G} is contraction. Let \upsilon, \widehat{\upsilon }\in \mathbb{B}_{R} and \varkappa \in \mathcal{ J} . Then by Lemma 2.6 and Definition 2.1, we obtain
\begin{eqnarray*} \left\Vert \mathcal{G}\upsilon -\mathcal{G}\widehat{\upsilon }\right\Vert &\leq &\kappa \left\Vert \upsilon -\widehat{\upsilon }\right\Vert \frac{ \left( \phi (b\varkappa )-\phi (0)\right) ^{\gamma _{2}-1}}{\Gamma \left( \gamma _{2}\right) \Theta }\left[ \frac{\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}+\mu _{1}}}{\Gamma \left( \mu _{2}+1\right) \Gamma \left( \mu _{1}+1\right) }\right. \\ &&\left. +\sum\limits_{i = 1}^{m}\delta _{i}\Gamma \left( \mu _{2}\right) \frac{\left[ \phi (\zeta _{i})-\phi (0)\right] ^{\mu _{2}+\mu _{1}+\sigma _{i}}}{\Gamma \left( \mu _{2}+\sigma _{i}+1\right) \Gamma \left( \mu _{2}+\sigma _{i}\right) \Gamma \left( \mu _{1}+1\right) }\right] \\ &&+\kappa \left\Vert \upsilon -\widehat{\upsilon }\right\Vert \frac{\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}+\mu _{1}}}{\Gamma \left( \mu _{2}+1\right) \Gamma \left( \mu _{1}+1\right) } \\ &\leq &Q_{1}\left\Vert \upsilon -\widehat{\upsilon }\right\Vert. \end{eqnarray*} |
Thus, \mathcal{G} is a contraction. Hence, the Banach contraction principle theorem [35] shows that the problem (1.1) has a unique solution.
Theorem 3.4. Assume that \overline{\upsilon }, \underline{\upsilon }\in C\left(\mathcal{J}\right) be upper and lower solutions of the problem (1.1), respectively, and \underline{ \upsilon } \left(\varkappa \right)\leq \overline{\upsilon }\left(\varkappa \right) on \mathcal{\ J} . Inaddition, If the continuous function f:\mathcal{\ J}\times \mathbb{R} \rightarrow \mathbb{R} satisfies f\left(\varkappa, \upsilon \left(\varkappa \right) \right)\leq f\left(\varkappa, y\left(\varkappa \right) \right) for all \underline{ \upsilon } \left(\varkappa \right) \leq \upsilon \left(\varkappa \right) \leq y(\varkappa)\leq \overline{\upsilon }\left(\varkappa \right), \varkappa \in \mathcal{\ J} then there exist monotoneiterative sequences \left\{ \underline{\upsilon }_{j}\right\}_{j = 0}^{\infty } and \left\{ \overline{\upsilon }_{j}\right\}_{j = 0}^{\infty } which uniformly converges on \mathcal{J} to the extremal solutions of problem (1.1) in \Phi = \left\{ \upsilon \in \mathcal{C}\left(\mathcal{J}\right) :\underline{\upsilon }\left(\varkappa \right)\leq \upsilon \left(\varkappa \right) \leq \overline{\upsilon }\left(\varkappa \right), \varkappa \in \mathcal{J}\right\}.
Proof. \textsf{Step (1):} Setting \underline{\upsilon }_{0} = \underline{\upsilon } and \overline{\upsilon }_{0} = \overline{\upsilon } , then given \left\{ \underline{\upsilon }_{j}\right\} _{j = 0}^{\infty } and \left\{ \overline{ \upsilon }_{j}\right\} _{j = 0}^{\infty } inductively define \underline{ \upsilon }_{j+1} and \overline{\upsilon }_{j+1} to be the unique solutions of the following problem
\begin{equation} \left\{ \begin{array}{c} \left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \left( ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \underline{ \upsilon }_{j+1}(\varkappa ) = f\left( \varkappa, \underline{\upsilon } _{j}(\varkappa )\right) , \;\varkappa \in \mathcal{J}, \ \ \ \ \ \ \ \\ \left. ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }\underline{\upsilon } _{j+1}(\varkappa )\right\vert _{\varkappa = 0} = 0, \underline{\upsilon } _{j+1}(0) = 0, \underline{\upsilon }_{j+1}(b) = \sum_{i = 1}^{m}\delta _{i}I_{0^{+}}^{\sigma _{i}, \phi }\underline{\upsilon }_{j+1}(\zeta _{i}). \end{array} \right. \end{equation} | (3.1) |
and
\begin{equation} \left\{ \begin{array}{c} \left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \left( ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \overline{ \upsilon }_{j+1}(\varkappa ) = f\left( \varkappa, \overline{\upsilon } _{j}(\varkappa )\right) , \;\varkappa \in \mathcal{J}, \ \ \ \ \ \ \ \\ \left. ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }\overline{\upsilon } _{j+1}(\varkappa )\right\vert _{\varkappa = 0} = 0, \overline{\upsilon } _{j+1}(0) = 0, \overline{\upsilon }_{j+1}(b) = \sum_{i = 1}^{m}\delta _{i}I_{0^{+}}^{\sigma _{i}, \phi }\overline{\upsilon }_{j+1}(\zeta _{i}). \end{array} \right. \end{equation} | (3.2) |
By Theorem 3.3, we know that the above problems have a unique solutions in \mathcal{C}\left(\mathcal{J}\right) .
\textsf{Step (2):} Now, for \varkappa \in \mathcal{J}, we claim that
\begin{eqnarray} \underline{\upsilon }(\varkappa ) & = &\underline{\upsilon }_{0}(\varkappa )\leq \underline{\upsilon }_{1}(\varkappa )\leq........\leq \underline{ \upsilon }_{j}(\varkappa )\leq \underline{\upsilon }_{j+1}(\varkappa ) \\ &\leq &......\leq \overline{\upsilon }_{j+1}(\varkappa )\leq \overline{ \upsilon }_{j}(\varkappa )\leq......\leq \overline{\upsilon }_{1}(\varkappa )\leq \overline{\upsilon }_{0}(\varkappa ) = \overline{\upsilon }(\varkappa ). \end{eqnarray} | (3.3) |
To confirm this claim, from (3.1) for j = 0, we have
\begin{equation} \left\{ \begin{array}{c} \left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \left( ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \underline{ \upsilon }_{1}(\varkappa ) = f\left( \varkappa, \underline{\upsilon } _{0}(\varkappa )\right) , \;j\geq 0, \\ \left. ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }\underline{\upsilon } _{1}(\varkappa )\right\vert _{\varkappa = 0} = 0, \underline{\upsilon }_{1}(0) = 0, \underline{\upsilon }_{1}(b) = \sum_{i = 1}^{m}\delta _{i}I_{0^{+}}^{\sigma _{i}, \phi }\underline{\upsilon }_{1}(\zeta _{i}). \end{array} \right. \end{equation} | (3.4) |
With reference to the definitions of the lower solution \underline{\upsilon }(\varkappa) = \underline{\upsilon }_{0}(\varkappa) and putting \Xi (\varkappa) = P_{1}(\varkappa)- \underline{ P } _{0}(\varkappa) , where P_{1}(\varkappa) = \left(^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \upsilon _{1}(\varkappa)\ and \underline{P}_{0}(\varkappa) = \left(^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \underline{\upsilon }_{0}(\varkappa). Then, we get
\begin{equation*} \left\{ \begin{array}{c} \left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \Xi \geq 0, \;\varkappa \in (0, b], \\ \Xi (0)\geq 0. \ \ \end{array} \right. \end{equation*} |
Consequently, Lemma 2.9 implies \Xi (\varkappa)\geq 0, that means \underline{ P } _{0}(\varkappa)\leq P_{1}(\varkappa), \varkappa \in \mathcal{J} and by the same technique, where P(\varkappa) = \left(^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \upsilon (\varkappa) we get \upsilon (\varkappa)\geq 0. Hence, \underline{ \upsilon }_{0}(\varkappa)\leq \underline{\upsilon }_{1}(\varkappa), \varkappa \in \mathcal{J}. Now, from Eq (3.4) and our assumptions, we infer that
\begin{equation*} \left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \left( ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \underline{ \upsilon }_{1}(\varkappa ) = f\left( \varkappa, \underline{\upsilon } _{0}(\varkappa )\right) \leq f\left( \varkappa, \underline{\upsilon } _{1}(\varkappa )\right). \end{equation*} |
Therefore, \underline{\upsilon }_{1} is a lower solution of problem (1.1). In the same way of the above argument, we conclude that \underline{ \upsilon }_{1}(\varkappa)\leq \underline{\upsilon }_{2}(\varkappa), \varkappa \in \mathcal{J}. By mathematical induction, we get \underline{ \upsilon }_{j}(\varkappa)\leq \underline{\upsilon }_{j+1}(\varkappa), \varkappa \in \mathcal{J}, j\geq 2.
Similarly, we put \Xi (\varkappa) = \overline{P}_{1}(\varkappa)-\underline{P }_{1}(\varkappa) , where \overline{P}_{1}(\varkappa) = \left(^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \overline{ \upsilon }_{1}(\varkappa)\ and \underline{P}_{1}(\varkappa) = \left(^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \underline{ \upsilon }_{1}(\varkappa). Then, we get
\begin{equation*} \left\{ \begin{array}{c} \left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \Xi (\varkappa )\geq 0, \;\varkappa \in (0, b], \\ \Xi (0)\geq 0. \ \ \end{array} \right. \end{equation*} |
Consequently, Lemma 2.9 implies \Xi (\varkappa)\geq 0, that means \overline{P}_{1}(\varkappa)\leq \underline{P}_{1}(\varkappa), \varkappa \in \mathcal{J} and by the same technique, we get \overline{\upsilon } _{1}(\varkappa)\geq \underline{\upsilon }_{1}(\varkappa), \varkappa \in \mathcal{J}. By mathematical induction, we get \overline{\upsilon } _{j}(\varkappa)\geq \underline{\upsilon }_{j}(\varkappa), \varkappa \in \mathcal{J}, j\geq 0.
\textsf{Step (3):} In view of Eq (3.3), one can show that the sequences \left\{ \underline{\upsilon }_{j}\right\} _{j = 0}^{\infty } and \left\{ \overline{\upsilon }_{j}\right\} _{j = 0}^{\infty } are equicontinuous and uniformly bounded. In view of Arzela-Ascoli Theorem, we have \lim_{j\rightarrow \infty }\underline{\upsilon }_{j} = \upsilon _{\ast } and \lim_{j\rightarrow \infty }\overline{\upsilon }_{j} = \upsilon ^{\ast } uniformly on J and the limit of the solutions \upsilon _{\ast } and \upsilon ^{\ast } satisfy the problem (1.1). Moreover, \upsilon _{\ast } , \upsilon ^{\ast }\in \Phi .
\textsf{Step (4):} We will prove that \upsilon _{\ast } and \upsilon ^{\ast } are the extremal solutions of the problem (1.1) in \Phi . For this end, let \upsilon \in \Phi be a solution of the problem (1.1) such that \overline{\upsilon }_{j}(\varkappa)\geq \upsilon (\varkappa)\geq \underline{\upsilon }_{j}(\varkappa), \varkappa \in \mathcal{J}, for some j\in \mathbb{N}. Therefore, by our assumption, we find that
\begin{equation*} f\left( \varkappa, \overline{\upsilon }_{j}\left( \varkappa \right) \right) \geq f\left( \varkappa, \upsilon \left( \varkappa \right) \right) \geq f\left( \varkappa, \underline{\upsilon }_{j}\left( \varkappa \right) \right). \end{equation*} |
Hence
\begin{eqnarray*} &&\left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \left( ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \overline{\upsilon }_{j+1}(\varkappa ) \\ &&\left. \geq \right. \left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \left( ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \upsilon (\varkappa ) \\ &&\left. \geq \right. \left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \left( ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \underline{\upsilon }_{j+1}(\varkappa ), \end{eqnarray*} |
and
\begin{equation*} \left. ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }\overline{\upsilon } _{j+1}(\varkappa )\right\vert _{\varkappa = 0} = \left. ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }\upsilon (\varkappa )\right\vert _{\varkappa = 0} = \left. ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }\underline{\upsilon } _{j+1}(\varkappa )\right\vert _{\varkappa = 0} = 0. \end{equation*} |
Consequently, \overline{\upsilon }_{j+1}(\varkappa)\geq \upsilon (\varkappa)\geq \underline{\upsilon }_{j+1}(\varkappa), \varkappa \in \mathcal{J} . It follows that
\begin{equation} \overline{\upsilon }_{j}(\varkappa )\geq \upsilon (\varkappa )\geq \underline{\upsilon }_{j}(\varkappa ), \varkappa \in \mathcal{J}, \ j\in \mathbb{N}. \end{equation} | (3.5) |
Taking the limit of Eq (3.5) as j\rightarrow \infty , we get \upsilon ^{\ast }(\varkappa)\geq \upsilon (\varkappa)\geq \upsilon _{\ast }(\varkappa) , \varkappa \in \mathcal{J} . That is, \upsilon ^{\ast } and \upsilon _{\ast } are the extremal solutions of the problem (1.1) in \Phi .
Corollary 3.5. Assume that f:\mathcal{J}\times \mathbb{R} ^{+}\rightarrow \mathbb{R} ^{+} is continuous, and there exist {\bm{\aleph}} _{1}, {\bm{\aleph}} _{2} > 0 such that
\begin{equation} {\bm{\aleph}} _{1}\leq f\left( \varkappa, \upsilon \right) \leq {\bm{\aleph}} _{2}, \mathit{\mbox{}} \forall (\varkappa, \upsilon )\in \mathcal{J}\times \mathbb{R} ^{+}. \end{equation} | (3.6) |
Then the problem (1.1) has at least one solution \upsilon (\varkappa)\in \mathcal{C}\left(\mathcal{J}\right). Moreover
\begin{eqnarray} \upsilon (\varkappa ) &\leq &\frac{\left[ \phi (\varkappa )-\phi (0)\right] ^{\gamma _{2}-1}E_{\mu _{2}, \gamma _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) }{\Theta } \\ &&\left[ \Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}}\right) \right. \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (b)-\phi (0)\right] ^{\mu _{1}}\right) {\bm{\aleph}}_{2}\right) \\ &&-\sum\limits_{i = 1}^{m}\delta _{i}\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}+\sigma _{i}, \phi }E_{\mu _{2}, \mu _{2}+\sigma _{i}}\left( \lambda _{2} \left[ \phi (\zeta _{i})-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left. \left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\zeta _{i})-\phi (0) \right] ^{\mu _{1}}\right) {\bm{\aleph}}_{2}\right) \right] \\ &&+\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{1}}\right) {\bm{\aleph}}_{2}\right) \end{eqnarray} | (3.7) |
and
\begin{eqnarray} \upsilon (\varkappa ) &\geq &\frac{\left[ \phi (\varkappa )-\phi (0)\right] ^{\gamma _{2}-1}E_{\mu _{2}, \gamma _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) }{\Theta } \\ &&\left[ \Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}}\right) \right. \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (b)-\phi (0)\right] ^{\mu _{1}}\right) {\bm{\aleph}}_{1}\right) \\ &&-\sum\limits_{i = 1}^{m}\delta _{i}\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}+\sigma _{i}, \phi }E_{\mu _{2}, \mu _{2}+\sigma _{i}}\left( \lambda _{2} \left[ \phi (\zeta _{i})-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left. \left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\zeta _{i})-\phi (0) \right] ^{\mu _{1}}\right) {\bm{\aleph}}_{1}\right) \right] \\ &&+\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{1}}\right) {\bm{\aleph}}_{1}\right). \end{eqnarray} | (3.8) |
Proof. From Eq (3.6) and definition of control functions, we get
\begin{equation} {\bm{\aleph}}_{1}\leq \underline{f}\left( \varkappa, \upsilon (\varkappa )\right) \leq \overline{f}\left( \varkappa, \upsilon (\varkappa )\right) \leq {\bm{\aleph}}_{2}, \mbox{ }\forall (\varkappa, \upsilon )\in \mathcal{J}\times \mathbb{R} ^{+}. \end{equation} | (3.9) |
Now, we consider the following problem
\begin{equation} \left\{ \begin{array}{c} \left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \left( ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \overline{ \upsilon }(\varkappa ) = {\bm{\aleph}}_{2}, \;\varkappa \in (0, b], \\ \left. ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }\overline{\upsilon } (\varkappa )\right\vert _{\varkappa = 0} = 0, \mbox{ }\overline{\upsilon }(0) = 0, \mbox{ }\overline{\upsilon }(b) = \sum_{i = 1}^{m}\delta _{i}I_{0^{+}}^{\sigma _{i}, \phi }\overline{\upsilon }(\zeta _{i}). \end{array} \right. \end{equation} | (3.10) |
In view of Lemma 2.8, the problem (3.10) has a solution
\begin{eqnarray*} \overline{\upsilon }(\varkappa ) & = &\frac{\left[ \phi (\varkappa )-\phi (0) \right] ^{\gamma _{2}-1}E_{\mu _{2}, \gamma _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) }{\Theta } \\ &&\left[ \Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}}\right) \right. \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (b)-\phi (0)\right] ^{\mu _{1}}\right) {\bm{\aleph}}_{2}\right) \\ &&-\sum\limits_{i = 1}^{m}\delta _{i}\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}+\sigma _{i}, \phi }E_{\mu _{2}, \mu _{2}+\sigma _{i}}\left( \lambda _{2} \left[ \phi (\zeta _{i})-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left. \left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\zeta _{i})-\phi (0) \right] ^{\mu _{1}}\right) {\bm{\aleph}}_{2}\right) \right] \\ &&+\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{1}}\right) {\bm{\aleph}}_{2}\right). \end{eqnarray*} |
Taking into account Eq (3.9), we obtain
\begin{eqnarray*} \overline{\upsilon }(\varkappa ) &\geq &\frac{\left[ \phi (\varkappa )-\phi (0)\right] ^{\gamma _{2}-1}E_{\mu _{2}, \gamma _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) }{\Theta } \\ &&\left[ \Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}}\right) \right. \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (b)-\phi (0)\right] ^{\mu _{1}}\right) \overline{f}\left( b, \overline{\upsilon }(b)\right) \right) \\ &&-\sum\limits_{i = 1}^{m}\delta _{i}\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}+\sigma _{i}, \phi }E_{\mu _{2}, \mu _{2}+\sigma _{i}}\left( \lambda _{2} \left[ \phi (\zeta _{i})-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left. \left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\zeta _{i})-\phi (0) \right] ^{\mu _{1}}\right) \overline{f}\left( \zeta _{i}, \overline{\upsilon } (\zeta _{i})\right) \right) \right] \\ &&+\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{1}}\right) \overline{f}\left( \varkappa, \overline{\upsilon } (\varkappa )\right) \right). \end{eqnarray*} |
It is obvious that \overline{\upsilon }(\varkappa) is the upper solution of problem (1.1). Also, we consider the following problem
\begin{equation} \left\{ \begin{array}{c} \left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \left( ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \underline{ \upsilon }(\varkappa ) = {\bm{\aleph}}_{1}, \;\varkappa \in (0, b], \\ \left. ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }\underline{\upsilon } (\varkappa )\right\vert _{\varkappa = 0} = 0, \mbox{ }\underline{\upsilon }(0) = 0, \mbox{ }\underline{\upsilon }(b) = \sum_{i = 1}^{m}\delta _{i}I_{0^{+}}^{\sigma _{i}, \phi }\underline{\upsilon }(\zeta _{i}). \end{array} \right. \end{equation} | (3.11) |
In view of Lemma 2.8, the problem (3.11) has a solution
\begin{eqnarray*} \underline{\upsilon }(\varkappa ) & = &\frac{\left[ \phi (\varkappa )-\phi (0) \right] ^{\gamma _{2}-1}E_{\mu _{2}, \gamma _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) }{\Theta } \\ &&\left[ \Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}}\right) \right. \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (b)-\phi (0)\right] ^{\mu _{1}}\right) {\bm{\aleph}}_{1}\right) \\ &&-\sum\limits_{i = 1}^{m}\delta _{i}\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}+\sigma _{i}, \phi }E_{\mu _{2}, \mu _{2}+\sigma _{i}}\left( \lambda _{2} \left[ \phi (\zeta _{i})-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left. \left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\zeta _{i})-\phi (0) \right] ^{\mu _{1}}\right) {\bm{\aleph}}_{1}\right) \right] \\ &&+\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{1}}\right) {\bm{\aleph}}_{1}\right). \end{eqnarray*} |
Taking into account Eq (3.9), we obtain
\begin{eqnarray*} \underline{\upsilon }(\varkappa ) &\leq &\frac{\left[ \phi (\varkappa )-\phi (0)\right] ^{\gamma _{2}-1}E_{\mu _{2}, \gamma _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) }{\Theta } \\ &&\left[ \Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}}\right) \right. \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (b)-\phi (0)\right] ^{\mu _{1}}\right) \underline{f}\left( b, \underline{\upsilon }(b)\right) \right) \\ &&-\sum\limits_{i = 1}^{m}\delta _{i}\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}+\sigma _{i}, \phi }E_{\mu _{2}, \mu _{2}+\sigma _{i}}\left( \lambda _{2} \left[ \phi (\zeta _{i})-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left. \left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\zeta _{i})-\phi (0) \right] ^{\mu _{1}}\right) \underline{f}\left( \zeta _{i}, \underline{ \upsilon }(\zeta _{i})\right) \right) \right] \\ &&+\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{1}}\right) \underline{f}\left( \varkappa, \underline{\upsilon } (\varkappa )\right) \right). \end{eqnarray*} |
Thus, \underline{\upsilon }(\varkappa) is the lower solution of problem (1.1).
The application of Theorem 3.4 results that problem (1.1) has at least one solution \upsilon (\varkappa)\in \mathcal{C}\left(\mathcal{J} \right) that satisfies the inequalities (3.7) and (3.8).
Example 4.1. Let us consider the following problem
\begin{equation} \left\{ \begin{array}{c} \left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \left( ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \upsilon (\varkappa ) = f\left( \varkappa, \upsilon (\varkappa )\right) , \; \varkappa \in \lbrack 0, 1], \\ \left. ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }\upsilon (\varkappa )\right\vert _{\varkappa = 0} = 0, \upsilon (0) = 0, \upsilon (b) = \sum_{i = 1}^{m}\delta _{i}I_{0^{+}}^{\sigma _{i}, \phi }\upsilon (\zeta _{i}), \ \end{array} \right. \end{equation} | (4.1) |
Here \mu _{1} = \frac{1}{2}, \mu _{2} = \frac{3}{2}, \beta _{1} = \beta _{2} = \frac{1 }{3}, \gamma _{1} = \frac{2}{3}, \gamma _{2} = \frac{4}{3}, \lambda _{1}\mathcal{ = } \lambda _{2} = 10, m = 1, \delta _{1} = \frac{1}{4}, \sigma _{1} = \frac{2}{3}, \zeta _{1} = \frac{3}{4}, b = 1 , \phi = e^{\varkappa }, \lambda _{1}\mathcal{ = }\lambda _{2} = 10 and we set f\left(\varkappa, \upsilon (\varkappa)\right) = 2+\varkappa ^{2}+\frac{\varkappa ^{3}}{5\left(1+\upsilon (\varkappa)\right) }\upsilon (\varkappa). For \upsilon, w\in\mathbb{R}^{+}, \varkappa \in \mathcal{J} , we have
\begin{eqnarray*} \left\vert f\left( \varkappa, \upsilon \right) -f\left( \varkappa, w\right) \right\vert & = &\left\vert \left( 2+\varkappa ^{2}+\frac{\varkappa ^{3}}{ 5\left( 1+\upsilon (\varkappa )\right) }\upsilon (\varkappa )\right) -\left( 2+\varkappa ^{2}+\frac{\varkappa ^{3}}{5\left( 1+w(\varkappa )\right) } w(\varkappa )\right) \right\vert \\ &\leq &\frac{1}{5}\left\vert \upsilon (\varkappa )-w(\varkappa )\right\vert. \end{eqnarray*} |
By the given data, we get Q_{1}\approx 0.9 < 1 and hence all conditions in Theorem 3.3 are satisfied with \kappa = \frac{1}{5} > 0. Thus, the problem (4.1) has a unique solution \upsilon \in C\left(\mathcal{J }\right). On the other hand, from Theorem 3.4 and Theorem 3.3, the sequences \left\{ \underline{ \upsilon }_{n}\right\} _{n = 0}^{\infty } and \left\{ \overline{\upsilon } _{n}\right\} _{n = 0}^{\infty } can be obtained as
\begin{eqnarray} \overline{\upsilon }_{n+1}(\varkappa ) & = &\Gamma \left( \frac{3}{2}\right) I_{0^{+}}^{\frac{3}{2}, e^{\varkappa }}E_{\frac{3}{2}, \frac{3}{2}}\left( 10 \left[ e^{\varkappa }-1\right] ^{\frac{3}{2}}\right) \\ &&\left( \Gamma \left( \frac{1}{2}\right) I_{0^{+}}^{\frac{1}{2}, e^{\varkappa }}E_{\frac{1}{2}, \frac{1}{2}}\left( 10\left[ e^{\varkappa }-1 \right] ^{\frac{1}{2}}\right) \left( 2+\varkappa ^{2}+\frac{1}{5\left( 1+ \overline{\upsilon }_{n}(\varkappa )\right) }\varkappa ^{3}\overline{ \upsilon }_{n}(\varkappa )\right) \right). \end{eqnarray} | (4.2) |
and
\begin{eqnarray} \underline{\upsilon }_{n+1}(\varkappa ) & = &\Gamma \left( \frac{3}{2}\right) I_{0^{+}}^{\frac{3}{2}, e^{\varkappa }}E_{\frac{3}{2}, \frac{3}{2}}\left( 10 \left[ e^{\varkappa }-1\right] ^{\frac{3}{2}}\right) \\ &&\left( \Gamma \left( \frac{1}{2}\right) I_{0^{+}}^{\frac{1}{2}, e^{\varkappa }}E_{\frac{1}{2}, \frac{1}{2}}\left( 10\left[ e^{\varkappa }-1 \right] ^{\frac{1}{2}}\right) \left( 2+\varkappa ^{2}+\frac{1}{5\left( 1+ \underline{\upsilon }_{n}(\varkappa )\right) }\varkappa ^{3}\underline{ \upsilon }_{n}(\varkappa )\right) \right). \end{eqnarray} | (4.3) |
Moreover, for any \upsilon \in\mathbb{R}^{+} and \varkappa \in \left[0, 1\right] , we have
\begin{eqnarray*} \lim\limits_{\upsilon \rightarrow +\infty }f\left( \varkappa, \upsilon (\varkappa )\right) & = &\lim\limits_{\upsilon \rightarrow +\infty }\left( 2+\varkappa ^{2}+ \frac{\varkappa ^{3}}{5\left( 1+\upsilon (\varkappa )\right) }\upsilon (\varkappa )\right) \\ & = &2+\varkappa ^{2}+\frac{\varkappa ^{3}}{5}. \end{eqnarray*} |
It follows that
\begin{equation*} 2 < f\left( \varkappa, \upsilon (\varkappa )\right) < \frac{16}{5}. \end{equation*} |
Thus, by Corollary 3.5, we get {\bm{\aleph}}_{1} = 2 and {\bm{\aleph}}_{2} = \frac{16}{5}. Then by Definitions 3.1 and 3.2, the problem (4.1) has a solution which verifies \underline{ \upsilon } \left(\varkappa \right) \leq \upsilon \left(\varkappa \right) \leq \overline{ \upsilon }\left(\varkappa \right) where
\begin{eqnarray} \overline{\upsilon }(\varkappa ) & = &\frac{\left( e^{\varkappa }-1\right) ^{ \frac{4}{3}-1}E_{\frac{3}{2}, \frac{4}{3}}\left( -10\left( e^{\varkappa }-1\right) ^{\frac{3}{2}}\right) }{\Theta } \\ &&2\left[ \Gamma \left( \frac{3}{2}\right) \Gamma \left( \frac{1}{2}\right) \left( e-1\right) ^{2}E_{\frac{3}{2}, 3}\left( -10\left( e-1\right) ^{\frac{3 }{2}}\right) E_{\frac{1}{2}, 1}\left( -10\left( e-1\right) ^{\frac{1}{2} }\right) \right. \\ &&\left. -\frac{4}{5}\Gamma \left( \frac{3}{2}\right) \Gamma \left( \frac{1}{ 2}\right) \left( e^{\frac{3}{4}}-1\right) ^{\frac{7}{3}}E_{\frac{3}{2}, \frac{ 21}{6}}\left( -10\left( e^{\frac{3}{4}}-1\right) ^{\frac{3}{2}}\right) E_{ \frac{1}{2}, 1}\left( -10\left( e^{\frac{3}{4}}-1\right) ^{\frac{1}{2} }\right) \right] \\ &&+\frac{16}{5}\Gamma \left( \frac{3}{2}\right) \Gamma \left( \frac{1}{2} \right) \left( e^{\varkappa }-1\right) ^{2}E_{\frac{3}{2}, 3}\left( -10\left( e-1\right) ^{\frac{3}{2}}\right) E_{\frac{1}{2}, 1}\left( -10\left( e^{\varkappa }-1\right) ^{\frac{1}{2}}\right), \end{eqnarray} | (4.4) |
and
\begin{eqnarray} \underline{\upsilon }(\varkappa ) & = &\frac{\left( e^{\varkappa }-1\right) ^{ \frac{4}{3}-1}E_{\frac{3}{2}, \frac{4}{3}}\left( -10\left( e^{\varkappa }-1\right) ^{\frac{3}{2}}\right) }{\Theta } \\ &&\frac{16}{5}\left[ \Gamma \left( \frac{3}{2}\right) \Gamma \left( \frac{1}{ 2}\right) \left( e-1\right) ^{2}E_{\frac{3}{2}, 3}\left( -10\left( e-1\right) ^{\frac{3}{2}}\right) E_{\frac{1}{2}, 1}\left( -10\left( e-1\right) ^{\frac{1 }{2}}\right) \right. \\ &&\left. -\frac{1}{2}\Gamma \left( \frac{3}{2}\right) \Gamma \left( \frac{1}{ 2}\right) \left( e^{\frac{3}{4}}-1\right) ^{\frac{7}{3}}E_{\frac{3}{2}, \frac{ 21}{6}}\left( -10\left( e^{\frac{3}{4}}-1\right) ^{\frac{3}{2}}\right) E_{ \frac{1}{2}, 1}\left( -10\left( e^{\frac{3}{4}}-1\right) ^{\frac{1}{2} }\right) \right] \\ &&+2\Gamma \left( \frac{3}{2}\right) \Gamma \left( \frac{1}{2}\right) \left( e^{\varkappa }-1\right) ^{2}E_{\frac{3}{2}, 3}\left( -10\left( e-1\right) ^{ \frac{3}{2}}\right) E_{\frac{1}{2}, 1}\left( -10\left( e^{\varkappa }-1\right) ^{\frac{1}{2}}\right), \end{eqnarray} | (4.5) |
are respectively the upper and lower solutions of the problem (4.1) and
\begin{equation*} \Theta : = \left( \frac{1}{4}\left[ e^{\frac{3}{4}}-1\right] ^{1}E_{\frac{3}{2}, 2}\left( -10\left( e^{\frac{3}{4}}-1\right) ^{\frac{3}{2}}\right) -\left[ e-1\right] ^{\frac{4}{3}-1}E_{\frac{3}{2}, \frac{4}{3}}\left( -10\left( e-1\right) ^{\frac{3}{2}}\right) \right) \neq 0. \end{equation*} |
Let us see graphically, we plot in Figure 1 the behavior of the upper solution \overline{\upsilon} and lower solution \underline{\upsilon} of the problem (4.1) with given data above.
In this work, we have proved successfully the monotone iterative method is an effective method to study FLEs in the frame of \phi -Hilfer fractional derivative with multi-point boundary conditions. Firstly, the formula of explicit solution of \phi -Hilfer type FLE (1.1) in the term of Mittag-Leffler function has been derived. Next, we have investigated the lower and upper explicit monotone iterative sequences and proved that converge to the extremal solution of boundary value problems with multi-point boundary conditions. Finally, a numerical example has been given in order to illustrate the validity of our results.
Furthermore, it will be very important to study the present problem in this article regarding the Mittag-Leffler power low [36], the generalized Mittag-Leffler power low with another function [37,38], and the fractal-fractional operators [39].
Researchers would like to thank the Deanship of Scientific Research, Qassim University for funding the publication of this project. The authors are also grateful to the anonymous referees for suggestions that have improved manuscript.
The authors declare that they have no competing interests.
[1] |
Abdelmoula R, Marigo JJ, Weller T (2009) Construction d'une loi de fatigue à partir d'un modèle de forces cohésives: Cas d'une fissure en mode III. C R Mecanique 337: 53-59. doi: 10.1016/j.crme.2008.12.001
![]() |
[2] | Alessi R, Ambati M, Gerasimov T, et al. (2018) Comparison of phase-field models of fracture coupled with plasticity, In: Advances in Computational Plasticity, Cham: Springer, 1-21. |
[3] |
Alessi R, Crismale V, Orlando G (2019) Fatigue effects in elastic materials with variational damage models: A vanishing viscosity approach. J Nonlinear Sci 29: 1041-1094. doi: 10.1007/s00332-018-9511-9
![]() |
[4] |
Alessi R, Marigo JJ, Vidoli S (2014) Gradient damage models coupled with plasticity and nucleation of cohesive cracks. Arch Ration Mech Anal 214: 575-615. doi: 10.1007/s00205-014-0763-8
![]() |
[5] |
Alessi R, Marigo JJ, Vidoli S (2015) Gradient damage models coupled with plasticity: Variational formulation and main properties. Mech Mater 80: 351-367. doi: 10.1016/j.mechmat.2013.12.005
![]() |
[6] | Alicandro R, Braides A, Shah J (1999) Free-discontinuity problems via functionals involving the L1-norm of the gradient and their approximations. Interface Free Bound 1: 17-37. |
[7] |
Ambati M, Kruse R, De Lorenzis L (2016) A phase-field model for ductile fracture at finite strains and its experimental verification. Comput Mech 57: 149-167. doi: 10.1007/s00466-015-1225-3
![]() |
[8] |
Ambrosio L, Coscia A, Dal Maso G (1997) Fine properties of functions with bounded deformation. Arch Ration Mech Anal 139: 201-238. doi: 10.1007/s002050050051
![]() |
[9] | Ambrosio L, Fusco N, Pallara D (2000) Functions of Bounded Variation and Free Discontinuity Problems, Oxford: Oxford University Press. |
[10] |
Ambrosio L, Tortorelli VM (1990) Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm Pure Appl Math 43: 999-1036. doi: 10.1002/cpa.3160430805
![]() |
[11] |
Artina M, Cagnetti F, Fornasier M, et al. (2017) Linearly constrained evolutions of critical points and an application to cohesive fractures. Math Mod Meth Appl Sci 27: 231-290. doi: 10.1142/S0218202517500014
![]() |
[12] | Bensoussan A, Frehse J (1996) Asymptotic behaviour of the time dependent Norton-Hoff law in plasticity theory and H1 regularity. Comment Math Univ Carolin 37: 285-304. |
[13] |
Bonetti E, Rocca E, Rossi R, et al. (2016) A rate-independent gradient system in damage coupled with plasticity via structured strains. ESAIM P Surv 54: 54-69. doi: 10.1051/proc/201654054
![]() |
[14] | Braides A (2002) Γ-Convergence for Beginners, Oxford: Oxford University Press. |
[15] |
Cagnetti F, Toader R (2011) Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: A young measures approach. ESAIM Contr Optim Calc Var 17: 1-27. doi: 10.1051/cocv/2009037
![]() |
[16] |
Chambolle A, Crismale V (2019) A density result in GSBDp with applications to the approximation of brittle fracture energies. Arch Ration Mech Anal 232: 1329-1378. doi: 10.1007/s00205-018-01344-7
![]() |
[17] | Conti S, Focardi M, Iurlano F (2016) Phase field approximation of cohesive fracture models. Ann Inst H Poincaré Anal Non Linéaire 33: 1033-1067. |
[18] |
Crismale V (2016) Globally stable quasistatic evolution for a coupled elastoplastic-damage model. ESAIM Contr Optim Calc Var 22: 883-912. doi: 10.1051/cocv/2015037
![]() |
[19] |
Crismale V (2017) Globally stable quasistatic evolution for strain gradient plasticity coupled with damage. Ann Mat Pura Appl 196: 641-685. doi: 10.1007/s10231-016-0590-7
![]() |
[20] |
Crismale V, Lazzaroni G (2016) Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model. Calc Var Partial Dif 55: 17. doi: 10.1007/s00526-015-0947-6
![]() |
[21] |
Crismale V, Lazzaroni G, Orlando G (2018) Cohesive fracture with irreversibility: Quasistatic evolution for a model subject to fatigue. Math Mod Meth Appl Sci 28: 1371-1412. doi: 10.1142/S0218202518500379
![]() |
[22] |
Crismale V, Orlando G (2018) A Reshetnyak-type lower semicontinuity result for linearised elasto-plasticity coupled with damage in W1,n. NoDEA Nonlinear Diff 25: 16. doi: 10.1007/s00030-018-0507-9
![]() |
[23] |
Dal Maso G, DeSimone A, Mora MG (2006) Quasistatic evolution problems for linearly elasticperfectly plastic materials. Arch Ration Mech Anal 180: 237-291. doi: 10.1007/s00205-005-0407-0
![]() |
[24] |
Dal Maso G, Orlando G, Toader R (2016) Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: The antiplane case. Calc Var Partial Dif 55: 45. doi: 10.1007/s00526-016-0981-z
![]() |
[25] | Dal Maso G, Orlando G, Toader R (2017) Lower semicontinuity of a class of integral functionals on the space of functions of bounded deformation. Adv Calc Var 10: 183-207. |
[26] |
Dal Maso G, Zanini C (2007) Quasi-static crack growth for a cohesive zone model with prescribed crack path. P Roy Soc Edinb A 137: 253-279. doi: 10.1017/S030821050500079X
![]() |
[27] | Davoli E, Roubíček T, Stefanelli U (2019) Dynamic perfect plasticity and damage in viscoelastic solids. ZAMM J Appl Math Mech 99: e201800161. |
[28] |
Demyanov A (2009) Regularity of stresses in Prandtl-Reuss perfect plasticity. Calc Var Partial Dif 34: 23-72. doi: 10.1007/s00526-008-0174-5
![]() |
[29] | Evans LC, Gariepy RF (1992) Measure Theory and Fine Properties of Functions, Boca Raton: CRC Press. |
[30] | Heinonen J, Kilpeläinen T, Martio O (2006) Nonlinear Potential Theory of Degenerate Elliptic Equations, Mineola: Dover Publications Inc. |
[31] | Horn RA, Johnson CR (2013) Matrix Analysis, 2 Eds., Cambridge: Cambridge University Press. |
[32] | Ibrahimbegovic A (2009) Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Dordrecht: Springer. |
[33] |
Iurlano F (2014) A density result for GSBD and its application to the approximation of brittle fracture energies. Calc Var Partial Dif 51: 315-342. doi: 10.1007/s00526-013-0676-7
![]() |
[34] |
Knees D, Rossi R, Zanini C (2013) A vanishing viscosity approach to a rate-independent damage model. Math Mod Meth Appl Sci 23: 565-616. doi: 10.1142/S021820251250056X
![]() |
[35] | Lemaitre J, Chabouche J (1990) Mechanics of Solid Materials, Avon: Cambridge University Press. |
[36] | Lions PL (1985) The concentration-compactness principle in the calculus of variations. The limit case, part I. Rev Mat Iberoam 1: 145-201. |
[37] | Melching D, Scala R, Zeman J (2019) Damage model for plastic materials at finite strains. ZAMM J Appl Math Mech 99: e201800032. |
[38] |
Miehe C, Aldakheel F, Raina A (2016) Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory. Int J Plasticity 84: 1-32. doi: 10.1016/j.ijplas.2016.04.011
![]() |
[39] | Miehe C, Hofacker M, Schänzel LM, et al. (2015) Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids. Comput Method Appl M 294: 486-522. |
[40] | Mielke A (2015) Evolution of rate-independent systems, In: Evolutionary Equations, Amsterdam: Elsevier/North-Holland, 461-559. |
[41] |
Negri M, Scala R (2017) A quasi-static evolution generated by local energy minimizers for an elastic material with a cohesive interface. Nonlinear Anal Real 38: 271-305. doi: 10.1016/j.nonrwa.2017.05.002
![]() |
[42] | Pham K, Marigo JJ (2010) Approche variationnelle de l'endommagement: I. Les concepts fondamentaux. CR Mécanique 338: 191-198. |
[43] | Pham K, Marigo JJ (2010) Approche variationnelle de l'endommagement: II. Les modèles à gradient, CR Mécanique 338: 199-206. |
[44] |
Reshetnyak YG (1968) Weak convergence of completely additive vector functions on a set. Siberian Math J 9: 1039-1045. doi: 10.1007/BF02196453
![]() |
[45] |
Rossi R (2018) From visco to perfect plasticity in thermoviscoelastic materials. ZAMM J Appl Math Mech 98: 1123-1189. doi: 10.1002/zamm.201700205
![]() |
[46] |
Rossi R, Thomas M (2017) Coupling rate-independent and rate-dependent processes: Existence results. SIAM J Math Anal 49: 1419-1494. doi: 10.1137/15M1051567
![]() |
[47] |
Roubíček T, Valdman J (2016) Perfect plasticity with damage and healing at small strains, its modeling, analysis, and computer implementation. SIAM J Appl Math 76: 314-340. doi: 10.1137/15M1019647
![]() |
[48] |
Roubíček T, Valdman J (2017) Stress-driven solution to rate-independent elasto-plasticity with damage at small strains and its computer implementation. Math Mech Solids 22: 1267-1287. doi: 10.1177/1081286515627674
![]() |
[49] | Temam R (1985) Mathematical Problems in Plasticity, Paris: Gauthier-Villars. |
1. | Muhammad Aslam, Florentin Smarandache, Chi-square test for imprecise data in consistency table, 2023, 9, 2297-4687, 10.3389/fams.2023.1279638 | |
2. | Adewale F. Lukman, Rasha A. Farghali, B. M. Golam Kibria, Okunlola A. Oluyemi, Robust-stein estimator for overcoming outliers and multicollinearity, 2023, 13, 2045-2322, 10.1038/s41598-023-36053-z | |
3. | Maciej Neugebauer, Cengiz Akdeniz, Vedat Demir, Hüseyin Yurdem, Fuzzy logic control for watering system, 2023, 13, 2045-2322, 10.1038/s41598-023-45203-2 | |
4. | Muhammad Aslam, Neutrosophic Chi-Square Test for Analyzing Population Variances with Uncertain Data, 2025, 19, 1559-8608, 10.1007/s42519-025-00436-4 |