Citation: Ahmed Ali, Ahmad Salah, Mahmoud Bekhit, Ahmed Fathalla. Divide-and-train: A new approach to improve the predictive tasks of bike-sharing systems[J]. Mathematical Biosciences and Engineering, 2024, 21(7): 6471-6492. doi: 10.3934/mbe.2024282
[1] | X. Y. Ni, D. J. Sun, Q. C. Lu, Q. Chen, A proportional allocation model for parking reservation systems considering entrance capacity constraints, IEEE Intell. Transp. Syst. Mag., 16 (2024), 162–173. https://doi.org/10.1109/MITS.2023.3316276 doi: 10.1109/MITS.2023.3316276 |
[2] | G. Xiao, L. Chen, X. Chen, C. Jiang, A. Ni, C. Zhang, et al., A hybrid visualization model for knowledge mapping: Scientometrics, SAOM, and SAO, IEEE Trans. Intell. Transp. Syst., 25 (2024), 2208–2221. https://doi.org/10.1109/TITS.2023.3327266 doi: 10.1109/TITS.2023.3327266 |
[3] | X. Yao, J. Feng, An end to end two-stream framework for station-level bike-sharing flow prediction, Expert Syst. Appl., 247 (2024), 123273. https://doi.org/10.1016/j.eswa.2024.123273 doi: 10.1016/j.eswa.2024.123273 |
[4] | Y. Zhou, Q. Li, X. Yue, J. Nie, Q. Guo, A novel predict-then-optimize method for sustainable bike-sharing management: a data-driven study in china, Ann. Oper. Res., 2022 (2022), 1–33. http://doi.org/10.1007/s10479-022-04965-0 doi: 10.1007/s10479-022-04965-0 |
[5] | I. Otero, M. Nieuwenhuijsen, D. Rojas-Rueda, Health impacts of bike sharing systems in europe, Environ. Int., 115 (2018), 387–394. http://doi.org/10.1016/j.envint.2018.04.014 doi: 10.1016/j.envint.2018.04.014 |
[6] | V. Albuquerque, M. S. Dias, F. Bacao, Machine learning approaches to bike-sharing systems: A systematic literature review, ISPRS Int. J. Geo-Inf., 10 (2021), 62. http://doi.org/10.3390/ijgi10020062 doi: 10.3390/ijgi10020062 |
[7] | L. Caggiani, R. Camporeale, Z. Hamidi, C. Zhao, Evaluating the efficiency of bike-sharing stations with data envelopment analysis, Sustainability, 13 (2021), 881. http://doi.org/10.3390/su13020881 doi: 10.3390/su13020881 |
[8] | M. A. Butt, S. Danjuma, M. S. B. Ilyas, U. M. Butt, M. Shahid, I. Tariq, Demand prediction on bike sharing data using regression analysis approach, J. Innovative Comput. Emerging Technol., 3 (2023). https://doi.org/10.56536/jicet.v3i1.52 |
[9] | L. Cheng, J. Yang, X. Chen, M. Cao, H. Zhou, Y. Sun, How could the station-based bike sharing system and the free-floating bike sharing system be coordinated?, J. Transp. Geogr., 89 (2020), 102896. http://doi.org/10.1016/j.jtrangeo.2020.102896 doi: 10.1016/j.jtrangeo.2020.102896 |
[10] | New York City Bike Share Dataset. Available from: https://www.kaggle.com/akkithetechie/new-york-city-bike-share-dataset. |
[11] | C. Rudloff, B. Lackner, Modeling demand for bikesharing systems: neighboring stations as source for demand and reason for structural breaks, Transp. Res. Rec., 2430 (2014), 1–11. http://doi.org/10.3141/2430-01 doi: 10.3141/2430-01 |
[12] | H. Yang, K. Xie, K. Ozbay, Y. Ma, Z. Wang, Use of deep learning to predict daily usage of bike sharing systems, Transp. Res. Rec., 2672 (2018), 92–102. http://doi.org/10.1177/0361198118801354 doi: 10.1177/0361198118801354 |
[13] | W. Wang, Forecasting Bike Rental Demand Using New York Citi Bike Data, Master's thesis, Technological University Dublin, 2016. |
[14] | B. Wang, I. Kim, Short-term prediction for bike-sharing service using machine learning, Transp. Res. Procedia, 34 (2018), 171–178. http://doi.org/10.1016/j.trpro.2018.11.029 doi: 10.1016/j.trpro.2018.11.029 |
[15] | Y. Li, Y. Zheng, Citywide bike usage prediction in a bike-sharing system, IEEE Trans. Knowl. Data Eng., 32 (2019), 1079–1091. http://doi.org/10.1109/TKDE.2019.2898831 doi: 10.1109/TKDE.2019.2898831 |
[16] | C. Wirtgen, M. Kowald, J. Luderschmidt, H. Hünemohr, Multivariate demand forecasting for rental bike systems based on an unobserved component model, Electronics, 11 (2022), 4146. http://doi.org/10.3390/electronics11244146 doi: 10.3390/electronics11244146 |
[17] | H. Lin, Y. He, S. Li, Y. Liu, Insights into travel pattern analysis and demand prediction: A data-driven approach in bike-sharing systems, J. Transp. Eng. Part A. Syst., 150 (2024), 04023132. https://doi.org/10.1061/JTEPBS.TEENG-8137 doi: 10.1061/JTEPBS.TEENG-8137 |
[18] | C. M. Vallez, M. Castro, D. Contreras, Challenges and opportunities in dock-based bike-sharing rebalancing: a systematic review, Sustainability, 13 (2021), 1829. https://doi.org/10.3390/su13041829 doi: 10.3390/su13041829 |
[19] | X. Ma, S. Zhang, T. Wu, Y. Yang, J. Yu, Can dockless and docked bike-sharing substitute each other? Evidence from Nanjing, China, Renewable Sustainable Energy Rev., 188 (2023), 113780. https://doi.org/10.1016/j.rser.2023.113780 doi: 10.1016/j.rser.2023.113780 |
[20] | Z. Chen, D. van Lierop, D. Ettema, Dockless bike-sharing systems: What are the implications?, Transport Rev., 40 (2020), 333–353. https://doi.org/10.1080/01441647.2019.1710306 doi: 10.1080/01441647.2019.1710306 |
[21] | Y. Wang, Z. Zhan, Y. Mi, A. Sobhani, H. Zhou, Nonlinear effects of factors on dockless bike-sharing usage considering grid-based spatiotemporal heterogeneity, Transp. Res. Part D Transp. Environ., 104 (2022), 103194. https://doi.org/10.1016/j.trd.2022.103194 doi: 10.1016/j.trd.2022.103194 |
[22] | W. Jiang, Bike sharing usage prediction with deep learning: a survey, Neural Comput. Appl., 34 (2022), 15369–15385. https://doi.org/10.1007/s00521-022-07380-5 doi: 10.1007/s00521-022-07380-5 |
[23] | X. Li, Y. Xu, X. Zhang, W. Shi, Y. Yue, Q. Li, Improving short-term bike sharing demand forecast through an irregular convolutional neural network, Transp. Res. Part C Emerging Technol., 147 (2023), 103984. https://doi.org/10.1016/j.trc.2022.103984 doi: 10.1016/j.trc.2022.103984 |
[24] | C. Song, S. Zhou, W. Chang, Y. Xiao, Y. Fu, L. Yang, A short-term demand of bike-sharing forecasting model based on spatio-temporal graph data, in 2023 28th International Conference on Automation and Computing (ICAC), IEEE, (2023), 1–5. https://doi.org/10.1109/ICAC57885.2023.10275167 |
[25] | S. Zhou, C. Song, T. Wang, X. Pan, W. Chang, L. Yang, A short-term hybrid TCN-GRU prediction model of bike-sharing demand based on travel characteristics mining, Entropy, 24 (2022), 1193. https://doi.org/10.3390/e24091193 doi: 10.3390/e24091193 |
[26] | J. Y. Xu, Y. Qian, S. Zhang, C. C. Wu, Demand prediction of shared bicycles based on graph convolutional network-gated recurrent unit-attention mechanism, Mathematics, 11 (2023), 4994. https://doi.org/10.3390/math11244994 doi: 10.3390/math11244994 |
[27] | B. Pan, L. Tian, Y. Pei, The novel application of deep reinforcement to solve the rebalancing problem of bicycle sharing systems with spatiotemporal features, Appl. Sci., 13 (2023), 9872. https://doi.org/10.3390/app13179872 doi: 10.3390/app13179872 |
[28] | X. Chang, J. Wu, H. Sun, X. Yan, A smart predict-then-optimize method for dynamic green bike relocation in the free-floating system, Transp. Res. Part C Emerging Technol., 153 (2023), 104220. https://doi.org/10.1016/j.trc.2023.104220 doi: 10.1016/j.trc.2023.104220 |
[29] | X. Li, Y. Xu, Q. Chen, L. Wang, X. Zhang, W. Shi, Short-term forecast of bicycle usage in bike sharing systems: a spatial-temporal memory network, IEEE Trans. Intell. Transp. Syst., 23 (2021), 10923–10934. http://doi.org/10.1109/TITS.2021.3097240 doi: 10.1109/TITS.2021.3097240 |
[30] | X. Ma, Y. Yin, Y. Jin, M. He, M. Zhu, Short-term prediction of bike-sharing demand using multi-source data: a spatial-temporal graph attentional LSTM approach, Appl. Sci., 12 (2022), 1161. http://doi.org/10.3390/app12031161 doi: 10.3390/app12031161 |
[31] | P. Xie, T. Li, J. Liu, S. Du, X. Yang, J. Zhang, Urban flow prediction from spatiotemporal data using machine learning: A survey, Inf. Fusion, 59 (2020), 1–12. http://doi.org/10.1016/j.inffus.2020.01.002 doi: 10.1016/j.inffus.2020.01.002 |
[32] | B. Wang, H. L. Vu, I. Kim, C. Cai, Short-term traffic flow prediction in bike-sharing networks, J. Intell. Transp. Syst., 26 (2022), 461–475. http://doi.org/10.1080/15472450.2021.1904921. doi: 10.1080/15472450.2021.1904921 |
[33] | W. Zi, W. Xiong, H. Chen, L. Chen, TAGCN: Station-level demand prediction for bike-sharing system via a temporal attention graph convolution network, Information Sciences, 561 (2021), 274–285. http://doi.org/10.1016/j.ins.2021.01.065 doi: 10.1016/j.ins.2021.01.065 |
[34] | E. Collini, P. Nesi, G. Pantaleo, Deep learning for short-term prediction of available bikes on bike-sharing stations, IEEE Access, 9 (2021), 124337–124347. http://doi.org/10.1109/ACCESS.2021.3110794 doi: 10.1109/ACCESS.2021.3110794 |
[35] | M. Cipriano, L. Colomba, P. Garza, A data-driven based dynamic rebalancing methodology for bike sharing systems, Appl. Sci., 11 (2021), 6967. http://doi.org/10.3390/app11156967 doi: 10.3390/app11156967 |
[36] | J. Schuijbroek, R. C. Hampshire, W. J. Van Hoeve, Inventory rebalancing and vehicle routing in bike sharing systems, Eur. J. Oper. Res., 257 (2017), 992–1004. http://doi.org/10.1016/j.ejor.2016.08.029 doi: 10.1016/j.ejor.2016.08.029 |
[37] | A. Maleki, E. Nejati, A. Aghsami, F. Jolai, Developing a data-driven learning-based simulation method as a decision support tool for rebalancing problem in the bike-sharing systems, Available at SSRN 4329723. http://doi.org/10.2139/ssrn.4329723 |
[38] | M. Du, L. Cheng, X. Li, F. Tang, Static rebalancing optimization with considering the collection of malfunctioning bikes in free-floating bike sharing system, Transp. Res. Part E Logist. Transp. Rev., 141 (2020), 102012. http://doi.org/10.1016/j.tre.2020.102012 doi: 10.1016/j.tre.2020.102012 |
[39] | S. Chang, R. Song, S. He, G. Qiu, Innovative bike-sharing in china: Solving faulty bike-sharing recycling problem, J. Adv. Transp., 2018 (2018). http://doi.org/10.1155/2018/4941029 |
[40] | Z. Sun, Y. Li, Y. Zuo, Optimizing the location of virtual stations in free-floating bike-sharing systems with the user demand during morning and evening rush hours, J. Adv. Transp., 2019 (2019). http://doi.org/10.1155/2019/4308509 |
[41] | A. Fathalla, A. Salah, M. A. Mohamed, N. I. Lestari, M. Bekhit, A novel dual prediction scheme for data communication reduction in IoT-based monitoring systems, in International Conference on Internet of Things as a Service, Springer, 421 (2021), 208–220. https://doi.org/10.1007/978-3-030-95987-6_15 |
[42] | A. Pajankar, A. Joshi, Introduction to machine learning with scikit-learn, in Hands-on Machine Learning with Python: Implement Neural Network Solutions with Scikit-Learn and PyTorch, Springer, (2022), 65–77. https://doi.org/10.1007/978-1-4842-7921-2_5 |
[43] | A. V. Dorogush, V. Ershov, A. Gulin, Catboost: gradient boosting with categorical features support, preprint, arXiv: 1810.11363. http://doi.org/10.48550/arXiv.1810.11363 |
[44] | N. Bantilan, pandera: Statistical data validation of pandas dataframes, in Proceedings of the Python in Science Conference (SciPy), (2020), 116–124. |
[45] | J. Unpingco, Numpy, in Python Programming for Data Analysis, Springer, (2021), 103–126. https://doi.org/10.1007/978-3-030-68952-0_4 |
[46] | S. Cao, Y. Zeng, S. Yang, S. Cao, Research on python data visualization technology, in J. Phys.: Conf. Ser., IOP Publishing, 1757 (2021), 012122. https://doi.org/10.1088/1742-6596/1757/1/012122 |
[47] | A. Sanmiguel-Rodríguez, Bike-sharing systems: Effects on physical activity in a spanish municipality, Phys. Act. Rev., 10 (2022), 66–76. http://doi.org/10.16926/par.2022.10.22 doi: 10.16926/par.2022.10.22 |
[48] | Y. Chen, Y. Zhang, D. Coffman, Z. Mi, An environmental benefit analysis of bike sharing in New York city, Cities, 121 (2022), 103475. http://doi.org/10.1016/j.cities.2021.103475 doi: 10.1016/j.cities.2021.103475 |