Research article Special Issues

Bifurcation analysis in a modified Leslie-Gower predator-prey model with fear effect and multiple delays

  • Received: 21 January 2024 Revised: 03 March 2024 Accepted: 22 March 2024 Published: 19 April 2024
  • In this paper, we explored a modified Leslie-Gower predator-prey model incorporating a fear effect and multiple delays. We analyzed the existence and local stability of each potential equilibrium. Furthermore, we investigated the presence of periodic solutions via Hopf bifurcation bifurcated from the positive equilibrium with respect to both delays. By utilizing the normal form theory and the center manifold theorem, we investigated the direction and stability of these periodic solutions. Our theoretical findings were validated through numerical simulations, which demonstrated that the fear delay could trigger a stability shift at the positive equilibrium. Additionally, we observed that an increase in fear intensity or the presence of substitute prey reinforces the stability of the positive equilibrium.

    Citation: Shuo Yao, Jingen Yang, Sanling Yuan. Bifurcation analysis in a modified Leslie-Gower predator-prey model with fear effect and multiple delays[J]. Mathematical Biosciences and Engineering, 2024, 21(4): 5658-5685. doi: 10.3934/mbe.2024249

    Related Papers:

  • In this paper, we explored a modified Leslie-Gower predator-prey model incorporating a fear effect and multiple delays. We analyzed the existence and local stability of each potential equilibrium. Furthermore, we investigated the presence of periodic solutions via Hopf bifurcation bifurcated from the positive equilibrium with respect to both delays. By utilizing the normal form theory and the center manifold theorem, we investigated the direction and stability of these periodic solutions. Our theoretical findings were validated through numerical simulations, which demonstrated that the fear delay could trigger a stability shift at the positive equilibrium. Additionally, we observed that an increase in fear intensity or the presence of substitute prey reinforces the stability of the positive equilibrium.



    加载中


    [1] A. A. Berryman, The orgins and evolution of predator-prey theory, Ecology, 73 (1992), 1530–1535. https://doi.org/10.2307/1940005 doi: 10.2307/1940005
    [2] M. Haque, A detailed study of the Beddington-DeAngelis predator-prey model, Math. Biosci., 234 (2011), 1–16. https://doi.org/10.1016/j.mbs.2011.07.003 doi: 10.1016/j.mbs.2011.07.003
    [3] Y. Cai, Z. Gui, X. Zhang, H. Shi, W. Wang, Bifurcations and pattern formation in a predator-prey model, Int. J. Bifurcation Chaos, 28 (2018), 1850140. https://doi.org/10.1142/S0218127418501407 doi: 10.1142/S0218127418501407
    [4] X. Zhang, The global dynamics of stochastic Holling type II predator-prey models with non constant mortality rate, Filomat, 31 (2017), 5811–5825. https://doi.org/10.2298/FIL1718811Z doi: 10.2298/FIL1718811Z
    [5] U. Daugaard, O. L. Petchey, F. Pennekamp, Warming can destabilize predator-prey interactions by shifting the functional response from Type III to Type II, J. Anim. Ecol., 88 (2019), 1575–1586. https://doi.org/10.1111/1365-2656.13053 doi: 10.1111/1365-2656.13053
    [6] S. Creel, D. Christianson, Relationships between direct predation and risk effects, Trends Ecol. Evol., 23 (2008), 194–201. https://doi.org/10.1016/j.tree.2007.12.004 doi: 10.1016/j.tree.2007.12.004
    [7] W. Cresswell, Predation in bird populations, J. Ornith., 152 (2011), 251–263. https://doi.org/10.1007/s10336-010-0638-1 doi: 10.1007/s10336-010-0638-1
    [8] S. L. Lima, Nonlethal effects in the ecology of predator-prey interactions, Bioscience, 48 (1998), 25–34. https://doi.org/10.2307/1313225 doi: 10.2307/1313225
    [9] L. Y. Zanette, A. F. White, M. C. Allen, M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year, Science, 334 (2011), 1398–1401. https://doi.org/10.1126/science.1210908 doi: 10.1126/science.1210908
    [10] K. H. Elliott, G. S. Betini, D. R. Norris, Fear creates an Allee effect: Experimental evidence from seasonal populations, Proc. R. Soc. Ser. B Biol. Sci., 284 (2017), 20170878. https://doi.org/10.1098/rspb.2017.0878 doi: 10.1098/rspb.2017.0878
    [11] E. L. Preisser, D. I. Bolnick, The many faces of fear: Comparing the pathways and impacts of nonconsumptive predator effects on prey populations, PLoS one, 3 (2008), e2465. https://doi.org/10.1371/journal.pone.0002465 doi: 10.1371/journal.pone.0002465
    [12] M. Clinchy, M. J. Sheriff, L. Y. Zanette, Predator-induced stress and the ecology of fear, Funct. Ecol., 27 (2013), 56–65. https://doi.org/10.1111/1365-2435.12007 doi: 10.1111/1365-2435.12007
    [13] K. Sarkar, S. Khajanchi, Impact of fear effect on the growth of prey in a predator-prey interaction model, Ecol. Complexity, 42 (2020), 100826. https://doi.org/10.1016/j.ecocom.2020.100826 doi: 10.1016/j.ecocom.2020.100826
    [14] X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73 (2016), 1179–1204. https://doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1
    [15] X. Wang, X. Zou, Modeling the fear effect in predator-prey interactions with adaptive avoidance of predators, Bull. Math. Biol., 79 (2017), 1325–1359. https://doi.org/10.1007/s11538-017-0287-0 doi: 10.1007/s11538-017-0287-0
    [16] X. Wang, X. Zou, Pattern formation of a predator-prey model with the cost of anti-predator behaviors, Math. Biosci. Eng., 15 (2017), 775–805. https://doi.org/10.3934/mbe.2018035 doi: 10.3934/mbe.2018035
    [17] Y. Wang, X. Zou, On a predator-prey system with digestion delay and anti-predation strategy, J. Nonlinear Sci., 30 (2020), 1579–1605. https://doi.org/10.1007/s00332-020-09618-9 doi: 10.1007/s00332-020-09618-9
    [18] P. H. Leslie, J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219–234. https://doi.org/10.2307/2333294 doi: 10.2307/2333294
    [19] R. P. Gupta, P. Chandra, Bifurcation analysis of modified Leslie-Gower predator-prey model with Michaelis-Menten type prey harvesting, J. Math. Anal. Appl., 398 (2013), 278–295. https://doi.org/10.1016/j.jmaa.2012.08.057 doi: 10.1016/j.jmaa.2012.08.057
    [20] P. K. Ghaziani, J. Alidousti, A. B. Eshkaftaki, Stability and dynamics of a fractional order Leslie-Gower prey-predator model, Appl. Math. Modell., 40 (2016), 2075–2086. https://doi.org/10.1016/j.apm.2015.09.014 doi: 10.1016/j.apm.2015.09.014
    [21] M. A. Aziz-Alaoui, Study of a Leslie-Gower-type tritrophic population model, Chaos, Solitons Fractals, 14 (2002), 1275–1293. https://doi.org/10.1016/S0960-0779(02)00079-6 doi: 10.1016/S0960-0779(02)00079-6
    [22] M. A. Aziz-Alaoui, M. D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Appl. Math. Lett., 16 (2003), 1069–1075. https://doi.org/10.1016/S0893-9659(03)90096-6 doi: 10.1016/S0893-9659(03)90096-6
    [23] X. Liu, Q. Huang, The dynamics of a harvested predator-prey system with Holling type IV functional response, Biosystems, 169 (2018), 26–39. https://doi.org/10.1016/j.biosystems.2018.05.005 doi: 10.1016/j.biosystems.2018.05.005
    [24] R. Yang, M. Liu, C. Zhang, A delayed-diffusive predator-prey model with a ratio-dependent functional response, Commun. Nonlinear Sci. Numer. Simul., 53 (2017), 94–110. https://doi.org/10.1016/j.cnsns.2017.04.034 doi: 10.1016/j.cnsns.2017.04.034
    [25] L. Li, Y. Mei, J. Cao, Hopf bifurcation analysis and stability for a ratio-dependent predator-prey diffusive system with time delay, Int. J. Bifurcat. Chaos, 30 (2020), 2050037. https://doi.org/10.1142/S0218127420500376 doi: 10.1142/S0218127420500376
    [26] Z. Ma, S. Wang, A delay-induced predator-prey model with Holling type functional response and habitat complexity, Nonlinear Dyn., 93 (2018), 1519–1544. https://doi.org/10.1007/s11071-018-4274-2 doi: 10.1007/s11071-018-4274-2
    [27] Z. Xiao, X. Xie, Y. Xue, Stability and bifurcation in a Holling type II predator-prey model with Allee effect and time delay, Adv. Differ. Equations, 2018 (2018), 1–21. https://doi.org/10.1186/s13662-018-1742-4 doi: 10.1186/s13662-018-1742-4
    [28] T. Zheng, L. Zhang, Y. Luo, X. Zhou, H. L. Li, Z. Teng, Stability and Hopf bifurcation of a stage-structured cannibalism model with two delays, Int. J. Bifurcation Chaos, 31 (2021), 2150242. https://doi.org/10.1142/S0218127421502424 doi: 10.1142/S0218127421502424
    [29] X. Wang, M. Peng, X. Liu, Stability and Hopf bifurcation analysis of a ratio-dependent predator-prey model with two time delays and Holling type III functional response, Appl. Math. Comput., 268 (2015), 496–508. https://doi.org/10.1016/j.amc.2015.06.108 doi: 10.1016/j.amc.2015.06.108
    [30] Y. Du, B. Niu, J. Wei, Two delays induce Hopf bifurcation and double Hopf bifurcation in a diffusive Leslie-Gower predator-prey system, Chaos, 29 (2019), 013101. https://doi.org/10.1063/1.5078814 doi: 10.1063/1.5078814
    [31] P. Panday, S. Samanta, N. Pal, J. Chattopadhyay, Delay induced multiple stability switch and chaos in a predator-prey model with fear effect, Math. Comput. Simul., 172 (2020), 134–158. https://doi.org/10.1016/j.matcom.2019.12.015 doi: 10.1016/j.matcom.2019.12.015
    [32] B. Dubey, A. Kumar, Stability switching and chaos in a multiple delayed prey-predator model with fear effect and anti-predator behavior, Math. Comput. Simul., 188 (2021), 164–192. https://doi.org/10.1016/j.matcom.2021.03.037 doi: 10.1016/j.matcom.2021.03.037
    [33] R. Yang, J. Wei, The effect of delay on a diffusive predator-prey system with modified Leslie-Gower functional response, Bull. Malays. Math. Sci. Soc., 40 (2017), 51–73. https://doi.org/10.1007/s40840-015-0261-7 doi: 10.1007/s40840-015-0261-7
    [34] Q. Liu, Y. Lin, J. Cao, Global Hopf bifurcation on two-delays Leslie-Gower predator-prey system with a prey refuge, Comput. Math. Method. Med., 2014 (2014), 1–12. https://doi.org/10.1155/2014/619132 doi: 10.1155/2014/619132
    [35] B. Barman, B. Ghosh, Explicit impacts of harvesting in delayed predator-prey models, Chaos, Soliton Fractals, 122 (2019), 213–228. https://doi.org/10.1016/j.chaos.2019.03.002 doi: 10.1016/j.chaos.2019.03.002
    [36] S. Ruan, J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impulsive Syst. Ser. A, 10 (2003), 863–874. http://dx.doi.org/10.1093/imammb/18.1.41 doi: 10.1093/imammb/18.1.41
    [37] B. Ghosh, B. Barman, M. Saha, Multiple dynamics in a delayed predator-prey model with asymmetric functional and numerical responses, Math. Methods Appl. Sci., 46 (2023), 5187–5207. https://doi.org/10.1002/mma.8825 doi: 10.1002/mma.8825
    [38] B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, 41 (1981).
    [39] X. Chen, X. Wang, Qualitative analysis and control for predator-prey delays system, Chaos, Soliton Fractals, 123 (2019), 361–372. https://doi.org/10.1016/j.chaos.2019.04.023 doi: 10.1016/j.chaos.2019.04.023
    [40] M. Peng, Z. Zhang, Z. Qu, Q. Bi, Qualitative analysis in a delayed Van der Pol oscillator, Physica A, 544 (2020), 123482. https://doi.org/10.1016/j.physa.2019.123482 doi: 10.1016/j.physa.2019.123482
    [41] L. Zhu, X. Wang, Z. Zhang, S. Shen, Global stability and bifurcation analysis of a rumor propagation model with two discrete delays in social networks, Int. J. Bifurcation Chaos, 30 (2020), 2050175. https://doi.org/10.1142/S0218127420501758 doi: 10.1142/S0218127420501758
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(954) PDF downloads(134) Cited by(0)

Article outline

Figures and Tables

Figures(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog