Research article Special Issues

Predicting the cognitive function status in end-stage renal disease patients at a functional subnetwork scale


  • Received: 13 December 2023 Revised: 01 February 2024 Accepted: 02 February 2024 Published: 20 February 2024
  • Brain functional networks derived from functional magnetic resonance imaging (fMRI) provide a promising approach to understanding cognitive processes and predicting cognitive abilities. The topological attribute parameters of global networks are taken as the features from the overall perspective. It is constrained to comprehend the subtleties and variances of brain functional networks, which fell short of thoroughly examining the complex relationships and information transfer mechanisms among various regions. To address this issue, we proposed a framework to predict the cognitive function status in the patients with end-stage renal disease (ESRD) at a functional subnetwork scale (CFSFSS). The nodes from different network indicators were combined to form the functional subnetworks. The area under the curve (AUC) of the topological attribute parameters of functional subnetworks were extracted as features, which were selected by the minimal Redundancy Maximum Relevance (mRMR). The parameter combination with improved fitness was searched by the enhanced whale optimization algorithm (E-WOA), so as to optimize the parameters of support vector regression (SVR) and solve the global optimization problem of the predictive model. Experimental results indicated that CFSFSS achieved superior predictive performance compared to other methods, by which the mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE) were up to 0.5951, 0.0281 and 0.9994, respectively. The functional subnetwork effectively identified the active brain regions associated with the cognitive function status, which offered more precise features. It not only helps to more accurately predict the cognitive function status, but also provides more references for clinical decision-making and intervention of cognitive impairment in ESRD patients.

    Citation: Yu Lu, Tongqiang Liu, Quan Sheng, Yutao Zhang, Haifeng Shi, Zhuqing Jiao. Predicting the cognitive function status in end-stage renal disease patients at a functional subnetwork scale[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 3838-3859. doi: 10.3934/mbe.2024171

    Related Papers:

  • Brain functional networks derived from functional magnetic resonance imaging (fMRI) provide a promising approach to understanding cognitive processes and predicting cognitive abilities. The topological attribute parameters of global networks are taken as the features from the overall perspective. It is constrained to comprehend the subtleties and variances of brain functional networks, which fell short of thoroughly examining the complex relationships and information transfer mechanisms among various regions. To address this issue, we proposed a framework to predict the cognitive function status in the patients with end-stage renal disease (ESRD) at a functional subnetwork scale (CFSFSS). The nodes from different network indicators were combined to form the functional subnetworks. The area under the curve (AUC) of the topological attribute parameters of functional subnetworks were extracted as features, which were selected by the minimal Redundancy Maximum Relevance (mRMR). The parameter combination with improved fitness was searched by the enhanced whale optimization algorithm (E-WOA), so as to optimize the parameters of support vector regression (SVR) and solve the global optimization problem of the predictive model. Experimental results indicated that CFSFSS achieved superior predictive performance compared to other methods, by which the mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE) were up to 0.5951, 0.0281 and 0.9994, respectively. The functional subnetwork effectively identified the active brain regions associated with the cognitive function status, which offered more precise features. It not only helps to more accurately predict the cognitive function status, but also provides more references for clinical decision-making and intervention of cognitive impairment in ESRD patients.



    加载中


    [1] Centers for Disease Control and Prevention, Chronic kidney disease in the United States, 2019, Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, 2019. Available from: https://www.cdc.gov/kidneydisease/publications-resources/ckd-national-facts.html.
    [2] M. K. Tamura, K. Yaffe, Dementia and cognitive impairment in ESRD: diagnostic and therapeutic strategies, Kidney Int., 79 (2011), 14–22. https://doi.org/10.1038/ki.2010.336 doi: 10.1038/ki.2010.336
    [3] L. A. Hawkins, S. Kilian, A. Firek, T. M. Kashner, C. J. Firek, H. Silvet, Cognitive impairment and medication adherence in outpatients with heart failure, Heart Lung, 41 (2012), 572–582. https://doi.org/10.1016/j.hrtlng.2012.06.001 doi: 10.1016/j.hrtlng.2012.06.001
    [4] M. K. Tamura, K. E. Covinsky, G. M. Chertow, K. Yaffe, C. S. Landefeld, C. E. McCulloch, Functional status of elderly adults before and after initiation of dialysis, N. Engl. J. Med., 361 (2009), 1539–1547. https://doi.org/10.1056/NEJMoa0904655 doi: 10.1056/NEJMoa0904655
    [5] B. W. Zhou, X. Wang, Q. F. Yang, F. Q. Wu, L. Tang, J. Wang, et al., Topological alterations of the brain functional network in type 2 diabetes mellitus patients with and without mild cognitive impairment, Front. Aging Neurosci., 14 (2022), 834319. https://doi.org/10.3389/fnagi.2022.834319 doi: 10.3389/fnagi.2022.834319
    [6] J. A. Contreras, J. Goñi, S. L. Risacher, E. Amico, K. Yoder, M. Dzemidzic, et al., Cognitive complaints in older adults at risk for Alzheimer's disease are associated with altered resting-state networks, Alzheimer's Dementia: Diagn., Assess. Dis. Monit., 6 (2017), 40–49. https://doi.org/10.1016/j.dadm.2016.12.004 doi: 10.1016/j.dadm.2016.12.004
    [7] Z. Q. Jiao, Y. X. Ji, P. Gao, S. H. Wang, Extraction and analysis of brain functional statuses for early mild cognitive impairment using variational auto-encoder, J. Ambient Intell. Hum. Comput., 14 (2020), 5439–5450. https://doi.org/10.1007/s12652-020-02031-w doi: 10.1007/s12652-020-02031-w
    [8] X. L. Shen, E. S. Finn, D. Scheinost, M. D. Rosenberg, M. M. Chun, X. Papademetris, et al., Using connectome-based predictive modeling to predict individual behavior from brain connectivity, Nat. Protoc., 12 (2017), 506–518. https://doi.org/10.1038/nprot.2016.178 doi: 10.1038/nprot.2016.178
    [9] X. Li, C. J. Yang, P. Xie, Y. Han, R. Su, Z. Y. Li, et al., The diagnosis of amnestic mild cognitive impairment by combining the characteristics of brain functional network and support vector machine classifier, J. Neurosci Methods, 363 (2021), 109334. https://doi.org/10.1016/j.jneumeth.2021.109334 doi: 10.1016/j.jneumeth.2021.109334
    [10] B. Zhou, X. J. Dou, W. Wang, H. X. Yao, F. Feng, P. Wang, et al., Structural and functional connectivity abnormalities of the default mode network in patients with Alzheimer's disease and mild cognitive impairment within two independent datasets, Methods, 205 (2022), 29–38. https://doi.org/10.1016/j.ymeth.2022.06.001 doi: 10.1016/j.ymeth.2022.06.001
    [11] D. Zhang, Y. Y. Chen, H. Wu, L. Lin, Q. Xie, C. Chen, et al., Associations of the disrupted functional brain network and cognitive function in end-stage renal disease patients on maintenance hemodialysis: A graph theory-based study of resting-state functional magnetic resonance imaging, Front. Aging Neurosci., 15 (2021), 716719. https://doi.org/10.3389/fnhum.2021.716719 doi: 10.3389/fnhum.2021.716719
    [12] Y. Y. Zhang, Y. F. Xue, X. Wu, L. S. Qiao, Z. X. Wang, D. G. Shen, Selecting multiple node statistics jointly from functional connectivity networks for brain disorders identification, Brain Topogr., 35 (2022), 559–571. https://doi.org/10.1007/s10548-022-00914-z doi: 10.1007/s10548-022-00914-z
    [13] Y. Min, C. Liu, L. J. Zuo, Y. J. Wang, Z. X. Li, The relationship between altered degree centrality and cognitive function in mild subcortical stroke: A resting-state fMRI study, Brain Res., 1798 (2023), 148125. https://doi.org/10.1016/j.brainres.2022.148125 doi: 10.1016/j.brainres.2022.148125
    [14] J. H. Yu, M. M. Kanchi, I. Rawtaer, L. Feng, A. P. Kumar, E. H. Kua, et al., The functional and structural connectomes of telomere length and their association with cognition in mild cognitive impairment, Cortex, 132 (2020), 29–40. https://doi.org/10.1016/j.cortex.2020.08.006 doi: 10.1016/j.cortex.2020.08.006
    [15] Y. X. Mao, T. Q. Wang, M. L. Duan, H. Y. Men, Multi-objective optimization of semi-submersible platforms based on a support vector machine with grid search optimized mixed kernels surrogate model, Ocean Eng., 260 (2022), 112077. https://doi.org/10.1016/j.oceaneng.2022.112077 doi: 10.1016/j.oceaneng.2022.112077
    [16] W. Zeng, Y. K. Liao, Y. Chen, Q. Y. Diao, Z. Y. Fu, F. Y. Yao, Research on classification and recognition of the skin tumors by laser ultrasound using support vector machine based on particle swarm optimization, Opt. Laser Technol., 158 (2023), 108810. https://doi.org/10.1016/j.optlastec.2022.108810 doi: 10.1016/j.optlastec.2022.108810
    [17] C. F. Ye, S. Mori, P. Chan, T. Ma, Connectome-wide network analysis of white matter connectivity in Alzheimer's disease, NeuroImage: Clin., 22 (2019), 101690. https://doi.org/10.1016/j.nicl.2019.101690 doi: 10.1016/j.nicl.2019.101690
    [18] S. H. Wang, Y. D. Zhang, G. Liu, P. Phillips, T. F. Yuan, Detection of Alzheimer's disease by three-dimensional displacement field estimation in structural magnetic resonance imaging, J. Alzheimer's Dis., 50 (2016), 233–248. https://doi.org/10.3233/JAD-150848 doi: 10.3233/JAD-150848
    [19] Y. D. Zhang, Z. C. Dong, P. Phillips, S. H. Wang, G. Ji, J. Yang, et al., Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning, Front. Comput. Neurosci., 9 (2015), 66. https://doi.org/10.3389/fncom.2015.00066 doi: 10.3389/fncom.2015.00066
    [20] L. L. Sun, X. Y. Liang, D. N. Duan, J. Liu, Y. H. Chen, X. D. Wang, et al., Structural insight into the individual variability architecture of the functional brain connectome, NeuroImage, 259 (2022), 119387. https://doi.org/10.1016/j.neuroimage.2022.119387 doi: 10.1016/j.neuroimage.2022.119387
    [21] S. Chakraborty, S. Sharma, A. K. Saha, S. Chakraborty, SHADE–WOA: A metaheuristic algorithm for global optimization, Appl. Soft Comput., 113 (2021), 107866. https://doi.org/10.1016/j.asoc.2021.107866 doi: 10.1016/j.asoc.2021.107866
    [22] M. Rubinov, O. Sporns, Complex network measures of brain connectivity: uses and interpretations, NeuroImage, 52 (2010), 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003 doi: 10.1016/j.neuroimage.2009.10.003
    [23] M. P. van den Heuvel, R. C. Mandl, C. J. Stam, R. S. Kahn, H. E. Hulshoff Pol, Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis, J. Neurosci., 30 (2010), 15915–15926. https://doi.org/10.1523/JNEUROSCI.2874-10.2010 doi: 10.1523/JNEUROSCI.2874-10.2010
    [24] F. Özyurt, A fused CNN model for WBC detection with MRMR feature selection and extreme learning machine, Soft Comput., 24 (2020), 8163–8172. https://doi.org/10.1007/s00500-019-04383-8 doi: 10.1007/s00500-019-04383-8
    [25] X. Y. Liang, C. H. Yeh, A. Connelly, F. Calamante, A novel method for extracting hierarchical functional subnetworks based on a multisubject spectral clustering approach, Brain connect., 9 (2019), 399–414. https://doi.org/10.1089/brain.2019.0668 doi: 10.1089/brain.2019.0668
    [26] D. Zhang, Y. Y. Chen, H. Wu, L. Lin, Q. Xie, C. Chen, et al., Associations of the Disrupted Functional Brain Network and Cognitive Function in End-Stage Renal Disease Patients on Maintenance Hemodialysis: A Graph Theory-Based Study of Resting-State Functional Magnetic Resonance Imaging, Front. Hum. Neurosci., 15 (2021), 716719. https://doi.org/10.3389/fnhum.2021.716719 doi: 10.3389/fnhum.2021.716719
    [27] M. H. Nadimi-Shahraki, H. Zamani, S. Mirjalili, Enhanced whale optimization algorithm for medical feature selection: A COVID-19 case study, Comput. Biol. Med., 148 (2022), 105858. https://doi.org/10.1016/j.compbiomed.2022.105858 doi: 10.1016/j.compbiomed.2022.105858
    [28] W. H. He, J. J. Wang, Y. P. Liu, Z. P. Qin, C. M. Sun, H. You, et al., A Novel Symmetrical Peak Fitting Method Based on Improved WOA Algorithm for the Analysis of Microchip Electrophoresis Signals, Symmetry, 14 (2022), 2603. https://doi.org/10.3390/sym14122603 doi: 10.3390/sym14122603
    [29] J. Du, H. Zhu, J. Zhou, P. W. Lu, Y. G. Qiu, L. Yu, et al., Structural brain network disruption at preclinical stage of cognitive impairment due to cerebral small vessel disease, Neuroscience, 449 (2020), 99–115. https://doi.org/10.1016/j.neuroscience.2020.08.037 doi: 10.1016/j.neuroscience.2020.08.037
    [30] F. Fang, Y. Gao, P. E. Schulz, S. Selvaraj, Y. Zhang, Brain controllability distinctiveness between depression and cognitive impairment, J. Affective Disord., 294 (2021), 847–856. https://doi.org/10.1016/j.jad.2021.07.106 doi: 10.1016/j.jad.2021.07.106
    [31] I. Lazarou, S. Nikolopoulos, S. I. Dimitriadis, I. Y. Kompatsiaris, M. Spilioti, M. Tsolaki, Is brain connectome research the future frontier for subjective cognitive decline? A systematic review, Clin. Neurophysiol., 130 (2019), 1762–1780. https://doi.org/10.1016/j.clinph.2019.07.004 doi: 10.1016/j.clinph.2019.07.004
    [32] X. B. Chen, H. Zhang, Y. Gao, C. Y. Wee, G. Li, D. G. Shen, High-order resting-state functional connectivity network for MCI classification, Hum. Brain Mapp., 37 (2016), 3282–3296. https://doi.org/10.1002/hbm.23240 doi: 10.1002/hbm.23240
    [33] C. D. Yang, P. Y. Wang, J. Tan, Q. S. Liu, X. W. Li, Autism spectrum disorder diagnosis using graph attention network based on spatial-constrained sparse functional brain networks, Comput. Biol. Med., 139 (2021), 104963. https://doi.org/10.1016/j.compbiomed.2021.104963 doi: 10.1016/j.compbiomed.2021.104963
    [34] J. H. Wang, X. D. Wang, M. R. Xia, X. H. Liao, A. Evans, Y. He, GRETNA: a graph theoretical network analysis toolbox for imaging connectomics, Front. Hum. Neurosci., 9 (2015), 386. https://doi.org/10.3389/fnhum.2015.00386 doi: 10.3389/fnhum.2015.00386
    [35] F. Belotti, F. Peracchi, Fast leave-one-out methods for inference, model selection, and diagnostic checking, Stata J., 20 (2020), 785–804. https://doi.org/10.1177/1536867X20976312 doi: 10.1177/1536867X20976312
    [36] J. J. Zhu, Y. F. Qian, B. Zhang, X. H. Li, Y. Bai, X. S. Li, et al., Abnormal synchronization of functional and structural networks in schizophrenia, Brain Imaging Behav., 14 (2020), 2232–2241. https://doi.org/10.1007/s11682-019-00175-8 doi: 10.1007/s11682-019-00175-8
    [37] Y. D. Zhang, S. H. Wang, P. Phillips, J. Q. Yang, T. F. Yuan, Three-dimensional eigenbrain for the detection of subjects and brain regions related with Alzheimer's disease, J. Alzheimer's Dis., 50 (2016), 1163–1179. https://doi.org/10.3233/JAD-150988 doi: 10.3233/JAD-150988
    [38] M. R. Xia, J. H. Wang, Y. He, BrainNet Viewer: a network visualization tool for human brain connectomics, PloS one, 8 (2013), e68910. https://doi.org/10.1371/journal.pone.0068910 doi: 10.1371/journal.pone.0068910
    [39] Y. Liang, Y. J. Chen, H. Li, T. D. Zhao, X. Sun, N. Shu, et al., Disrupted functional connectivity related to differential degeneration of the cingulum bundle in mild cognitive impairment patients, Curr. Alzheimer Res., 12 (2015), 255–265. https://doi.org/10.2174/1567205012666150302155336 doi: 10.2174/1567205012666150302155336
    [40] Y. D. Zhang, S. H. Wang, Y. X. Sui, M. Yang, B. Liu, H. Cheng, et al., Multivariate approach for Alzheimer's disease detection using stationary wavelet entropy and predator-prey particle swarm optimization, J. Alzheimer's Dis., 65 (2018), 855–869. https://doi.org/10.3233/JAD-170069 doi: 10.3233/JAD-170069
    [41] B. Zhou, X. J. Dou, W. Wang, H. X. Yao, F. Feng, P. Wang, et al., Structural and functional connectivity abnormalities of the default mode network in patients with Alzheimer's disease and mild cognitive impairment within two independent datasets, Methods, 205 (2022), 29–38. https://doi.org/10.1016/j.ymeth.2022.06.001 doi: 10.1016/j.ymeth.2022.06.001
    [42] A. F. Struck, M. Boly, G. Hwang, V. Nair, J. Mathis, A. Nencka, et al., Regional and global resting-state functional MR connectivity in temporal lobe epilepsy: Results from the Epilepsy Connectome Project, Epilepsy Behav., 117 (2021), 107841. https://doi.org/10.1016/j.yebeh.2021.107841 doi: 10.1016/j.yebeh.2021.107841
    [43] Y. Min, C. Liu, L. J. Zuo, Y. J. Wang, Z. X. Li, The relationship between altered degree centrality and cognitive function in mild subcortical stroke: A resting-state fMRI study, Brain Res., 1798 (2023), 148125. https://doi.org/10.1016/j.brainres.2022.148125 doi: 10.1016/j.brainres.2022.148125
    [44] Z. Q. Jiao, T. X. Jiao, J. H. Zhang, H. F. Shi, B. N. Wu, Y. D. Zhang, Sparse structure deep network embedding for transforming brain functional network in early mild cognitive impairment classification, Int. J. Imaging Syst. Technol., 31 (2021), 1197–1210. https://doi.org/10.1002/ima.22531 doi: 10.1002/ima.22531
    [45] C. S. Tang, M. Y. Wei, J. D. Sun, S. H. Wang, Y. D. Zhang, CsAGP: Detecting Alzheimer's Disease from Multimodal Images via Dual-Transformer with Cross-Attention and Graph Pooling, J. King Saud Univ. Comput. Inf. Sci., 35 (2023), 101618. https://doi.org/10.1016/j.jksuci.2023.101618 doi: 10.1016/j.jksuci.2023.101618
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(993) PDF downloads(53) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog