We study a switching heroin epidemic model in this paper, in which the switching of supply of heroin occurs due to the flowering period and fruiting period of opium poppy plants. Precisely, we give three equations to represent the dynamics of the susceptible, the dynamics of the untreated drug addicts and the dynamics of the drug addicts under treatment, respectively, within a local population, and the coefficients of each equation are functions of Markov chains taking values in a finite state space. The first concern is to prove the existence and uniqueness of a global positive solution to the switching model. Then, the survival dynamics including the extinction and persistence of the untreated drug addicts under some moderate conditions are derived. The corresponding numerical simulations reveal that the densities of sample paths depend on regime switching, and larger intensities of the white noises yield earlier times for extinction of the untreated drug addicts. Especially, when the switching model degenerates to the constant model, we show the existence of the positive equilibrium point under moderate conditions, and we give the expression of the probability density function around the positive equilibrium point.
Citation: Hui Jiang, Ling Chen, Fengying Wei, Quanxin Zhu. Survival analysis and probability density function of switching heroin model[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 13222-13249. doi: 10.3934/mbe.2023590
We study a switching heroin epidemic model in this paper, in which the switching of supply of heroin occurs due to the flowering period and fruiting period of opium poppy plants. Precisely, we give three equations to represent the dynamics of the susceptible, the dynamics of the untreated drug addicts and the dynamics of the drug addicts under treatment, respectively, within a local population, and the coefficients of each equation are functions of Markov chains taking values in a finite state space. The first concern is to prove the existence and uniqueness of a global positive solution to the switching model. Then, the survival dynamics including the extinction and persistence of the untreated drug addicts under some moderate conditions are derived. The corresponding numerical simulations reveal that the densities of sample paths depend on regime switching, and larger intensities of the white noises yield earlier times for extinction of the untreated drug addicts. Especially, when the switching model degenerates to the constant model, we show the existence of the positive equilibrium point under moderate conditions, and we give the expression of the probability density function around the positive equilibrium point.
[1] | S. A. Ochoa-Orozco, J. C. Gutiérrez-Segura, A. M. Coral-Leiton, E. A. Trejos-Orozco, I. Gutirrez-Sanjun, J. D. Carvajal-Guevara, Chasing the dragon: A fatal case report of toxic leucoencé phalopathie due to inhaled heroin, Rev. Colomb. Psiquiat., 49 (2020), 289–292. https://doi.org/10.1016/j.rcp.2019.06.003 doi: 10.1016/j.rcp.2019.06.003 |
[2] | National, Institute on drug abuse. Available from: https://www.drugabuse.gov/drug-topics/opioids |
[3] | E. White, C. Comiskey, Heroin epidemics, treatment and ODE modelling, Math. Biosci., 208 (2007), 312–324. https://doi.org/10.1016/j.mbs.2006.10.008 doi: 10.1016/j.mbs.2006.10.008 |
[4] | S. Djilali, T. M. Touaoula, M. S. El-Hadi, A heroin epidemic model: Very general nonlinear incidence treat-age and global stability, Acta. Appl. Math., 152 (2017), 171–194. https://doi.org/10.1007/s10440-017-0117-2 doi: 10.1007/s10440-017-0117-2 |
[5] | J. Wang, J. Wang, T. Kuniya, Analysis of an age-structured multi-group heroin epidemic model, Appl. Math. Comput., 347 (2019), 78–100. https://doi.org/10.1016/j.amc.2018.11.012 doi: 10.1016/j.amc.2018.11.012 |
[6] | X. Duan, X. Li, M. Martcheva, Qualitative analysis on a diffusive age-structured heroin transmission model, Nonlinear Anal.-Real World Appl., 54 (2020), 103105. https://doi.org/10.1016/j.nonrwa.2020.103105 doi: 10.1016/j.nonrwa.2020.103105 |
[7] | J. Liu, T. Zhang, Global behaviour of a heroin epidemic model with distributed delays, Appl. Math. Lett., 24 (2011), 1685–1692. https://doi.org/10.1016/j.aml.2011.04.019 doi: 10.1016/j.aml.2011.04.019 |
[8] | G. Huang, A. Liu, A note on global stability for a heroin epidemic model with distributed delay, Appl. Math. Lett., 26 (2013), 687–691. https://doi.org/10.1016/j.aml.2013.01.010 doi: 10.1016/j.aml.2013.01.010 |
[9] | X. Abdurahman, Z. Teng, L. Zhang, Global dynamics in a heroin epidemic model with difffferent conscious stages and two distributed delays, Int. J. Biomath., 12 (2019), 1950038. https://doi.org/10.1142/S1793524519500384 doi: 10.1142/S1793524519500384 |
[10] | M. Ma, S. Liu, J. Li, Bifurcation of a heroin model with nonlinear incidence rate, Nonlinear Dyn., 88 (2017), 555–565. https://doi.org/10.1007/s11071-016-3260-9 doi: 10.1007/s11071-016-3260-9 |
[11] | L. Chen, F. Wei, Study on a susceptible-exposed-infected-recovered model with nonlinear incidence rate, Adv. Differ. Equations, 2020 (2020), 206. https://doi.org/10.1186/s13662-020-02662-5 doi: 10.1186/s13662-020-02662-5 |
[12] | S. Djilali, S. Bentout, T. M. Touaoula, A. Tridane, S. Kumar, Global behavior of Heroin epidemic model with time distributed delay and nonlinear incidence function, Results Phys., 31 (2021), 104953. https://doi.org/10.1016/j.rinp.2021.104953 doi: 10.1016/j.rinp.2021.104953 |
[13] | S. Bentout, Y. Chen, S. Djilali, Global dynamics of an SEIR model with two age structures and a nonlinear incidence, Acta. Appl. Math., 171 (2021), 1–27. https://doi.org/10.1007/s10440-020-00369-z doi: 10.1007/s10440-020-00369-z |
[14] | S. Liu, L. Zhang, Y. Xing, Dynamics of a stochastic heroin epidemic model, J. Comput. Appl. Math., 351 (2019), 260–269. https://doi.org/10.1016/j.cam.2018.11.005 doi: 10.1016/j.cam.2018.11.005 |
[15] | S. Liu, Z. Liang, X. Zhang, A. Li, Dynamics of a stochastic heroin epidemic modelwith bilinear incidence and varying population size, Int. J. Biomath., 12 (2019), 1950005. https://doi.org/10.1142/S1793524519500050 doi: 10.1142/S1793524519500050 |
[16] | Y. Wei, Q. Yang, G. Li, Dynamics of the stochastically perturbed heroin epidemic model under non-degenerate noises, Physica A, 526 (2019), 120914. https://doi.org/10.1016/j.physa.2019.04.150 doi: 10.1016/j.physa.2019.04.150 |
[17] | F. Wei, H. Jiang, Q. Zhu, Dynamical behaviors of a heroin population model with standard incidence rates between distinct patches, J. Frankl. Inst.-Eng. Appl. Math., 358 (2021), 4994–5013. https://doi.org/10.1016/j.jfranklin.2021.04.024 doi: 10.1016/j.jfranklin.2021.04.024 |
[18] | J. Liu, S. Wang, Dynamics in a stochastic heroin model with seasonal variation, Phys. A, 532 (2019), 121873. https://doi.org/10.1016/j.physa.2019.121873 doi: 10.1016/j.physa.2019.121873 |
[19] | M. Jovanović, V. Jovanović, Stability of stochastic heroin model with two distributed delays, Discrete Cont. Dyn. Sys.-B, 25 (2020), 2407–2432. https://doi.org/10.3934/dcdsb.2020016 doi: 10.3934/dcdsb.2020016 |
[20] | Q. Luo, X. Mao, Stochastic population dynamics under regime switching, J. Math. Anal. Appl., 334 (2007), 69–84. https://doi.org/10.1016/j.jmaa.2006.12.032 doi: 10.1016/j.jmaa.2006.12.032 |
[21] | M. Slatkin, The dynamics of a population in a Markovian environment, Ecology, 59 (1978), 249–256. https://doi.org/10.2307/1936370 doi: 10.2307/1936370 |
[22] | X. Zou, K. Wang, The protection zone for biological population in random environment, Math. Method. Appl. Sci., 36 (2013), 707–721. https://doi.org/10.1002/mma.2621 doi: 10.1002/mma.2621 |
[23] | S. He, F. Liu, Optimal finite-time passive controller design for uncertain nonlinear Markovian jumping systems, J. Frankl. Inst.-Eng. Appl. Math., 351 (2014), 3782–3796. https://doi.org/10.1016/j.jfranklin.2013.03.006 doi: 10.1016/j.jfranklin.2013.03.006 |
[24] | X. Zhang, D. Jiang, A. Alsaedi, T. Hayat, Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching, Appl. Math. Lett., 59 (2016), 87–93. https://doi.org/10.1016/j.aml.2016.03.010 doi: 10.1016/j.aml.2016.03.010 |
[25] | D. Greenhalgh, Y. Liang, X. Mao, Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching, Phys. A, 462 (2016), 684–704. https://doi.org/10.1016/j.physa.2016.06.125 doi: 10.1016/j.physa.2016.06.125 |
[26] | Q. Lin, L. Chen, C. Wen, F. Wei, Asymptotic properties of a stochastic Lotka-Volterra model with infinite delay and regime switching, Adv. Differ. Equations, 2018 (2018), 155. https://doi.org/10.1186/s13662-018-1609-8 doi: 10.1186/s13662-018-1609-8 |
[27] | Q. Liu, D. Jiang, N. Shi, Threshold behavior in a stochastic SIQR epidemic model with standard incidence and regime switching, Appl. Math. Comput., 316 (2018), 310–325. https://doi.org/27.10.1016/j.amc.2017.08.042 doi: 10.1016/j.amc.2017.08.042 |
[28] | H. Wang, D. Jiang, T. Hayat, A. Alsaedi, A. Bashir, Stationary distribution of stochastic NP ecological model under regime switching, Phys. A, 549 (2020), 124064. https://doi.org/10.1016/j.physa.2019.124064 doi: 10.1016/j.physa.2019.124064 |
[29] | N. D. Phu, D. O'Regan, T. D. Tuong, Longtime characterization for the general stochastic epidemic SIS model under regime-switching, Nonlinear Anal.-Hybrid Syst., 38 (2020), 100951. https://doi.org/10.1016/j.nahs.2020.100951 doi: 10.1016/j.nahs.2020.100951 |
[30] | X. Zhang, H. Peng, Stationary distribution of a stochastic cholera epidemic model with vaccination under regime switching, Appl. Math. Lett., 102 (2020), 106095. https://doi.org/10.1016/j.aml.2019.106095 doi: 10.1016/j.aml.2019.106095 |
[31] | B. Zhou, B. Han, D. Jiang, T. Hayat, A. Alsaedi, Ergodic stationary distribution and extinction of a hybrid stochastic SEQIHR epidemic model with media coverage, quarantine strategies and pre-existing immunity under discrete Markov switching, Appl. Math. Comput., 410 (2021), 126388. https://doi.org/10.1016/j.amc.2021.126388 doi: 10.1016/j.amc.2021.126388 |
[32] | J. Xu, Y. Wang, Z. Cao, Dynamics of a stochastic SIRS epidemic model with standard incidence under regime switching, Int. J. Biomath., 15 (2022), 2150074. https://doi.org/10.1142/S1793524521500741 doi: 10.1142/S1793524521500741 |
[33] | G. Li, Q. Yang, Y. Wei, Dynamics of stochastic heroin epidemic model with Levy jumps, J. Appl. Anal. Comput., 8 (2018), 998–1010. https://doi.org/10.11948/2018.99 doi: 10.11948/2018.99 |
[34] | F. Wei, C. Wang, Survival analysis of a single-species population model with fluctuations and migrations between patches, Appl. Math. Model., 81 (2020), 113–127. https://doi.org/10.1016/j.apm.2019.12.023 doi: 10.1016/j.apm.2019.12.023 |
[35] | F. Wei, L. Chen, Psychological effect on single-species population models in a polluted environment, Math. Biosci., 290 (2017), 22–30. https://doi.org/10.1016/j.mbs.2017.05.011 doi: 10.1016/j.mbs.2017.05.011 |
[36] | L. Chen, F. Wei, Persistence and distribution of a stochastic susceptible-infected-removed epidemic model with varying population size, Phys. A, 483 (2017), 386–397. https://doi.org/10.1016/j.physa.2017.04.114 doi: 10.1016/j.physa.2017.04.114 |
[37] | F. Wei, R. Xue, Stability and extinction of SEIR epidemic models with generalized nonlinear incidence, Math. Comput. Simul., 170 (2020), 1–15. https://doi.org/10.1016/j.matcom.2018.09.029 doi: 10.1016/j.matcom.2018.09.029 |
[38] | R. Lu, F. Wei, Persistence and extinction for an age-structured stochastic SVIR epidemic model with generalized nonlinear incidence rate, Phys. A, 513 (2019), 572–587. https://doi.org/10.1016/j.physa.2018.09.016 doi: 10.1016/j.physa.2018.09.016 |
[39] | F. Wei, J. Liu, Long-time behavior of a stochastic epidemic model with varying population size, Phys. A, 470 (2017), 146–153. https://doi.org/10.1016/j.physa.2016.11.031 doi: 10.1016/j.physa.2016.11.031 |
[40] | X. Mao, C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, London, 2006. https://doi.org/10.1142/p473 |
[41] | H. Peng, X. Zhang, Dynamics of a stochastic rabies epidemic model with Markovian switching, Int. J. Biomath., 14 (2021), 2150032. https://doi.org/10.1142/S1793524521500327 doi: 10.1142/S1793524521500327 |
[42] | B. Zhou, X. Zhang, D. Jiang, Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate, Chaos Solitons Fract., 137 (2020), 109865. https://doi.org/10.1016/j.chaos.2020.109865 doi: 10.1016/j.chaos.2020.109865 |
[43] | C. W. Gardiner, Handbook of stochastic methods for physics, chemistry and the natural sciences, Springer, Berlin, 1986. https://doi.org/10.1007/978-3-662-02452-2 |
[44] | H. Roozen, An asymptotic solution to a two-dimensional exit problem arising in population dynamics, SIAM J. Appl. Math., 49 (1989), 1793–1810. https://doi.org/10.2307/2101938 doi: 10.2307/2101938 |
[45] | D. Li, F. Wei, X. Mao, Stationary distribution and density function of a stochastic SVIR epidemic model, J. Frankl. Inst.-Eng. Appl. Math., 359 (2022), 9422–9449. https://doi.org/10.1016/j.jfranklin.2022.09.026 doi: 10.1016/j.jfranklin.2022.09.026 |
[46] | D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302 |
[47] | X. Mao, F. Wei, T. Wiriyakraikul, Positivity preserving truncated Euler-Maruyama method for stochastic Lotka-Volterra competition model, J. Comput. Appl. Math., 394 (2021), 113566. https://doi.org/10.1016/j.cam.2021.113566 doi: 10.1016/j.cam.2021.113566 |
[48] | Q. Guo, W. Liu, X. Mao, R. Yue, The partially truncated Euler-Maruyama method and its stability and boundedness, Appl. Numer. Math., 115 (2017), 235–251. https://doi.org/10.1016/j.apnum.2017.01.010 doi: 10.1016/j.apnum.2017.01.010 |