Research article Special Issues

Estimation of stress-strength reliability from unit-Burr Ⅲ distribution under records data


  • Received: 27 March 2023 Revised: 24 April 2023 Accepted: 09 May 2023 Published: 22 May 2023
  • This paper explores estimation of stress-strength reliability based on upper record values. When the strength and stress variables follow unit-Burr Ⅲ distributions, a generalized inferential approach is proposed for estimating stress-strength reliability (SSR). Under the common strength and stress parameter case, two types of pivotal quantities are constructed respectively, and then the generalized point and interval estimates for SSR are proposed in consequence, where the associated Monte-Carlo sampling approach is provided for computation. In addition, when strength and stress variables feature unequal model parameters, different generalized point and confidence interval estimates are also established in this regard. Extensive simulation studies are conducted to examine the behavior of proposed methods. Finally, a real-life data example is presented for illustration.

    Citation: Yarong Yu, Liang Wang, Sanku Dey, Jia Liu. Estimation of stress-strength reliability from unit-Burr Ⅲ distribution under records data[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 12360-12379. doi: 10.3934/mbe.2023550

    Related Papers:

  • This paper explores estimation of stress-strength reliability based on upper record values. When the strength and stress variables follow unit-Burr Ⅲ distributions, a generalized inferential approach is proposed for estimating stress-strength reliability (SSR). Under the common strength and stress parameter case, two types of pivotal quantities are constructed respectively, and then the generalized point and interval estimates for SSR are proposed in consequence, where the associated Monte-Carlo sampling approach is provided for computation. In addition, when strength and stress variables feature unequal model parameters, different generalized point and confidence interval estimates are also established in this regard. Extensive simulation studies are conducted to examine the behavior of proposed methods. Finally, a real-life data example is presented for illustration.



    加载中


    [1] Z. Birnbaum, On a use of Mann-Whitney statistics, in Proceedings of the 3rd Berkeley symposium on mathematical statistics and probability, 1 (1956), 13–17.
    [2] Z. Birnbaum, R. McCarty, A distribution-free upper confidence bound for $P(Y < X)$ based on independent samples of $X$ and $Y$, Ann. Math. Stat., 29 (1958), 558–562. https://doi.org/10.1214/aoms/1177706631 doi: 10.1214/aoms/1177706631
    [3] A. Baklizi, Estimation of $P(X < Y)$ using record values in the one and two parameter exponential distributions, Commun. Stat.-Theor. M., 37 (2008), 692–698. https://doi.org/10.1080/03610920701501921 doi: 10.1080/03610920701501921
    [4] K. Krishnamoorthy, L. Yin, Confidence limits for stress–strength reliability involving Weibull models, J. Stat. Plan. Infer., 140 (2010), 1754–1764. https://doi.org/10.1016/j.jspi.2009.12.028 doi: 10.1016/j.jspi.2009.12.028
    [5] A. Ahmed, F. Batah, On the estimation of stress-strength model reliability parameter of power rayleigh distribution, Iraqi J. Sci., 2023,809–822. https://doi.org/10.24996/ijs.2023.64.2.27 doi: 10.24996/ijs.2023.64.2.27
    [6] A. Pak, M. Raqab, M. Mahmoudi, Estimation of stress-strength reliability $R = P(Y < X)$ based on Weibull record data in the presence of inter-record times, Alex. Eng. J., 61 (2022), 2130–2144. https://doi.org/10.1016/j.aej.2021.07.025 doi: 10.1016/j.aej.2021.07.025
    [7] R. Kumari, C. Lodhi, Y. Tripathi, Estimation of stress–strength reliability for inverse exponentiated distributions with application, Int. J. Qual. Reliab. Manage., 2022. https://doi.org/10.1142/S021853932150011X doi: 10.1142/S021853932150011X
    [8] A. Yadav, S. Singh, U. Singh, Bayesian estimation of stress-strength reliability for Lomax distribution under Type-Ⅱ hybrid censored data using asymmetric loss function, Life Cycle Reliab. Safe. Eng., 8 (2019), 257–267. https://doi.org/10.1007/s41872-019-00086-z doi: 10.1007/s41872-019-00086-z
    [9] A. Jafari, S. Bafekri, Inference on stress-strength reliability for the two-parameter exponential distribution based on generalized order statistics, Math. Popul. Stud., 28 (2021), 201–227. https://doi.org/10.1080/08898480.2021.1872230 doi: 10.1080/08898480.2021.1872230
    [10] R. Kumari, S. Arora, K. Mahajan, Estimation of stress-strength reliability for Dagum distribution based on progressive type-Ⅱ censored sample, Model Assist. Stat. Appl., 17(2) (2022), 109–122. https://doi.org/10.3233/MAS-220014 doi: 10.3233/MAS-220014
    [11] C. Luo, L. Shen, A. Xu, Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints, Reliab. Eng. Syst. Safe., 218 (2022), 108136. https://doi.org/10.1016/j.ress.2021.108136 doi: 10.1016/j.ress.2021.108136
    [12] A. Safariyan, M. Arashi, B. Arabi, Improved point and interval estimation of the stress–strength reliability based on ranked set sampling, Stat., 53 (2019), 101–125. https://doi.org/10.1080/02331888.2018.1547906 doi: 10.1080/02331888.2018.1547906
    [13] A. Salman, A. Hamad, On estimation of the stress–strength reliability based on lomax distribution, Mater. Sci. Eng., 571 (2019), 012038. https://doi.org/10.1088/1757-899X/571/1/012038 doi: 10.1088/1757-899X/571/1/012038
    [14] S. Kotz, M. Pensky, The Stress-Strength Model and its Generalizations: Theory and Applications, World Scientific, Singapore, 2003.
    [15] T. Abushal, Parametric inference of Akash distribution for Type-Ⅱ censoring with analyzing of relief times of patients, Aims Math., 6 (2021), 10789–10801. https://doi.org/10.3934/math.2021627 doi: 10.3934/math.2021627
    [16] J. Hu, P. Chen, Predictive maintenance of systems subject to hard failure based on proportional hazards model, Reliab. Eng. Syst. Safe., 196 (2020), 106707. https://doi.org/10.1016/j.ress.2019.106707 doi: 10.1016/j.ress.2019.106707
    [17] A. Kohansal, On estimation of reliability in a multicomponent stress-strength model for a Kumaraswamy distribution based on progressively censored sample, Stat. Pap., 60 (2019), 2185–2224. https://doi.org/10.1007/s00362-017-0916-6 doi: 10.1007/s00362-017-0916-6
    [18] H. Okasha, M. Nassar, S. Dobbah, E-Bayesian estimation of burr type Ⅻ model based on adaptive type-Ⅱ progressive hybrid censored data, AIMS Math., 6 (2021), 4173–4196. https://doi.org/10.3934/math.2021247 doi: 10.3934/math.2021247
    [19] S. Roy, B. Pradhan, A. Purakayastha, On inference and design under progressive Type-Ⅰ interval censoring scheme for inverse Gaussian lifetime model, Int. J. Qual. Reliab. Manage., 39 (2022), 1937–1962. https://doi.org/10.1108/IJQRM-07-2020-0222 doi: 10.1108/IJQRM-07-2020-0222
    [20] S. Singh, Y. Tripathi, Estimating the parameters of an inverse Weibull distribution under progressive Type-Ⅰ interval censoring, Stat. Pap., 59 (2018), 21–56. https://doi.org/10.1007/s00362-016-0750-2 doi: 10.1007/s00362-016-0750-2
    [21] L. Zhuang, A. Xu, X. Wang, A prognostic driven predictive maintenance framework based on Bayesian deep learning, Reliab. Eng. Syst. Safe., 234 (2023), 109181. https://doi.org/10.1016/j.ress.2023.109181 doi: 10.1016/j.ress.2023.109181
    [22] F. Lawless, Statistical Models and Methods for Lifetime Data, John Wiley & Sons, New Jersey, 2011.
    [23] N. Balakrishnan, E. Cramer, The Art of Progressive Censoring, Birkhäuser, New York, 2014.
    [24] K. Chandler, The distribution and frequency of record values, J. Royal Stat. Soc., 14 (1952), 220–228. https://doi.org/10.1111/j.2517-6161.1952.tb00115.x doi: 10.1111/j.2517-6161.1952.tb00115.x
    [25] A. Hassan, A. Marwa, H. Nagy, Estimation of $P(Y < X)$ using record values from the generalized inverted exponential distribution, Pak. J. Stat. Oper. Res., 2018,645–660. https://doi.org/10.18187/pjsor.v14i3.2201 doi: 10.18187/pjsor.v14i3.2201
    [26] F. Kızılaslan, The E-Bayesian and hierarchical Bayesian estimations for the proportional reversed hazard rate model based on record values, J. Stat. Comput. Sim., 87 (2017), 2253–2273. https://doi.org/10.1080/00949655.2017.1326118 doi: 10.1080/00949655.2017.1326118
    [27] B. Tarvirdizade, M. Ahmadpour, Estimation of the stress–strength reliability for the two-parameter bathtub-shaped lifetime distribution based on upper record values, Stat. Methodol., 31 (2016), 58–72. https://doi.org/10.1016/j.stamet.2016.01.005 doi: 10.1016/j.stamet.2016.01.005
    [28] M. Ahsanullah, Record Values: Theory and Applications, University Press of America, New York, 2004.
    [29] M. Jha, Y. Tripathi, S. Dey, Multicomponent stress-strength reliability estimation based on unit generalized Rayleigh distribution, Int. J. Qual. Reliab. Manage., 2021. https://doi.org/10.1108/IJQRM-07-2020-0245 doi: 10.1108/IJQRM-07-2020-0245
    [30] J. Mazucheli, A. Menezes, S. Chakraborty, On the one parameter unit-Lindley distribution and its associated regression model for proportion data, J. Appl. Stat., 46 (2019), 700–714. https://doi.org/10.1080/02664763.2018.1511774 doi: 10.1080/02664763.2018.1511774
    [31] F. Sultana, Y. Tripathi, M. Rastogi, Parameter estimation for the Kumaraswamy distribution based on hybrid censoring, Am. J. Math. Manage. Sci., 37 (2018), 243–261. https://doi.org/10.1080/01966324.2017.1396943 doi: 10.1080/01966324.2017.1396943
    [32] P. Chen, K. Buis, X. Zhao, A comprehensive toolbox for the gamma distribution: The gammadist package, J. Qual. Technol., 55 (2023), 75–87. https://doi.org/10.1080/00224065.2022.2053794 doi: 10.1080/00224065.2022.2053794
    [33] M. C. Korkmaz, E. Altun, M. Alizadeh, M. El-Morshedy, The log exponential-power distribution: Properties, estimations and quantile regression model, Math., 9 (2021), 2634. https://doi.org/10.3390/math9212634 doi: 10.3390/math9212634
    [34] M. C. Korkmaz, C. Chesneau, Z. S. Korkmaz, Transmuted unit Rayleigh quantile regression model: Alternative to beta and Kumaraswamy quantile regression models, Uni. Politeh. Buch. Sci. Bull. Ser. A, 83 (2021), 149–158.
    [35] M. C. Korkmaz, C. Chesneau, Z. S. Korkmaz, The unit folded normal distribution: A new unit probability distribution with the estimation procedures, quantile regression modeling and educational attainment applications, J. Reliab. Stat. Stud., 15 (2022), 261–298. https://doi.org/10.13052/jrss0974-8024.15111 doi: 10.13052/jrss0974-8024.15111
    [36] M. Jha, S. Dey, Y. Tripathi, Reliability estimation in a multicomponent stress–strength based on unit-Gompertz distribution, Int. J. Qual. Reliab. Manage., 37 (2020), 428–450. https://doi.org/10.1108/IJQRM-04-2019-0136 doi: 10.1108/IJQRM-04-2019-0136
    [37] R. Cruz, H. Salinas, C. Meza, Reliability estimation for stress-strength model based on unit-Half-Normal distribution, Symmetry, 14 (2022), 837. https://doi.org/10.3390/sym14040837 doi: 10.3390/sym14040837
    [38] S. Dey, L. Wang, Methods of estimation and bias corrected maximum likelihood estimators of unit-Burr Ⅲ distribution, Am. J. Math. Manage. Sci., 41, 316–333. https://doi.org/10.1080/01966324.2021.1963357 doi: 10.1080/01966324.2021.1963357
    [39] M. Jha, S. Dey, R. Alotaibi, Reliability estimation of a multicomponent stress-strength model for unit Gompertz distribution under progressive Type Ⅱ censoring, Qual. Reliab. Eng. Int., 36 (2020), 965–987. https://doi.org/10.1002/qre.2610 doi: 10.1002/qre.2610
    [40] K. Modi, V. Gill, Unit Burr-Ⅲ distribution with application, J. Stat. Manage. Syst., 23 (2020), 579–592. https://doi.org/10.1080/09720510.2019.1646503 doi: 10.1080/09720510.2019.1646503
    [41] D. Singh, M. Jha, Y. Tripathi, Reliability estimation in a multicomponent stress-strength model for unit-Burr Ⅲ distribution under progressive censoring, Qual. Technol. Quant. Manage., 19 (2022), 605–632. https://doi.org/10.1080/16843703.2022.2049508 doi: 10.1080/16843703.2022.2049508
    [42] S. Weerahandi, Generalized Inference in Repeated Measures: Exact Methods in MANOVA and Mixed Models, John Wiley & Sons, New Jersey, 2004.
    [43] M. Bader, A. Priest, Statistical aspects of fiber and bundle strength in hybrid composites, in Progress in Science and Engineering of Composites, (1982), 1129–1136.
    [44] D. Kundu, R. Gupta, Estimation of $R = P(Y < X)$ for Weibull distribution, Stat. Pap., 55 (2006), 270–280. https://doi.org/10.1109/TR.2006.874918 doi: 10.1109/TR.2006.874918
    [45] G. Pan, X. Wang, Z. Wang, Nonparametric statistical inference for $P(Y < X < Z)$, Sankhya A, 75 (2013), 118–138. https://doi.org/10.1007/s13171-012-0010-z doi: 10.1007/s13171-012-0010-z
    [46] N. Karam, S. Yousif, Reliability of $n$-cascade stress-strength $P(Y < X < Z)$ system for four different distributions, J. Phys. Conf. Ser., 1879 (2021), 032005. https://doi.org/10.1088/1742-6596/1879/3/032005 doi: 10.1088/1742-6596/1879/3/032005
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1430) PDF downloads(100) Cited by(2)

Article outline

Figures and Tables

Figures(2)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog