A nonempty subset $ D $ of vertices in a graph $ \Gamma = (V, E) $ is said is an offensive alliance, if every vertex $ v \in \partial(D) $ satisfies $ \delta_D(v) \geq \delta_{\overline{D}}(v) + 1 $; the cardinality of a minimum offensive alliance of $ \Gamma $ is called the offensive alliance number $ \alpha ^o(\Gamma) $ of $ \Gamma $. An offensive alliance $ D $ is called global, if every $ v \in V - D $ satisfies $ \delta_D(v) \geq \delta_{\overline{D}}(v) + 1 $; the cardinality of a minimum global offensive alliance of $ \Gamma $ is called the global offensive alliance number $ \gamma^o(\Gamma) $ of $ \Gamma $. For a finite commutative ring with identity $ R $, $ \Gamma(R) $ denotes the zero divisor graph of $ R $. In this paper, we compute the offensive alliance (global, independent, and independent global) numbers of $ \Gamma(\mathbb{Z}_n) $, for some cases of $ n $.
Citation: José Ángel Juárez Morales, Jesús Romero Valencia, Raúl Juárez Morales, Gerardo Reyna Hernández. On the offensive alliance number for the zero divisor graph of $ \mathbb{Z}_n $[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 12118-12129. doi: 10.3934/mbe.2023539
A nonempty subset $ D $ of vertices in a graph $ \Gamma = (V, E) $ is said is an offensive alliance, if every vertex $ v \in \partial(D) $ satisfies $ \delta_D(v) \geq \delta_{\overline{D}}(v) + 1 $; the cardinality of a minimum offensive alliance of $ \Gamma $ is called the offensive alliance number $ \alpha ^o(\Gamma) $ of $ \Gamma $. An offensive alliance $ D $ is called global, if every $ v \in V - D $ satisfies $ \delta_D(v) \geq \delta_{\overline{D}}(v) + 1 $; the cardinality of a minimum global offensive alliance of $ \Gamma $ is called the global offensive alliance number $ \gamma^o(\Gamma) $ of $ \Gamma $. For a finite commutative ring with identity $ R $, $ \Gamma(R) $ denotes the zero divisor graph of $ R $. In this paper, we compute the offensive alliance (global, independent, and independent global) numbers of $ \Gamma(\mathbb{Z}_n) $, for some cases of $ n $.
[1] | P. Kristiansen, S. M, Hedetniemi, S. T. Hedetniemi, Alliances in graphs, J. Combin. Math. Combin. Comput., 48 (2004), 157–177. |
[2] | J. M. Sigarreta, J. A. Rodríguez, On defensive alliances and line graphs, Appl. Math. Letters, 19 (2006), 1345–1350. https://doi.org/10.1016/j.aml.2006.02.001 doi: 10.1016/j.aml.2006.02.001 |
[3] | T. W. Haynes S. T. Hedetniemi, M. A. Henning, Global defensive alliances in graphs, Electr. J. Combin., 10 (2003), 47–47. https://doi.org/10.37236/1740 doi: 10.37236/1740 |
[4] | M. C. Dourado, L. Faria, M. A. Pizana, D. Rautenbach, J. L. Szwarcfiter, On defensive alliances and strong global offensive alliances, Discrete Appl. Math., 163 (2014), 136–141. https://doi.org/10.1016/j.dam.2013.06.029 doi: 10.1016/j.dam.2013.06.029 |
[5] | N. J. Rad, A note on the global offensive alliances in graphs, Discrete Appl. Math., 250 (2018), 373–376. https://doi.org/10.1016/j.dam.2018.04.019 doi: 10.1016/j.dam.2018.04.019 |
[6] | J. A. Rodríguez, J. M. Sigarreta, Global offensive alliances in graphs, Electr. Notes Discrete Math., 25 (2006), 157–164. https://doi.org/10.1016/j.endm.2006.06.074 doi: 10.1016/j.endm.2006.06.074 |
[7] | J. A. Rodriguez, J. M. Sigarreta, Offensive alliances in cubic graphs, preprint arXiv: math/0610023. |
[8] | R. C. Brigham, R. D. Dutton, T. W. Haynes, S. T. Hedetniemi, Powerful alliances in graphs, Discrete Math., 309 (2009), 2140–2147. https://doi.org/10.1016/j.disc.2006.10.026 doi: 10.1016/j.disc.2006.10.026 |
[9] | A. Harutyunyan, S. Legay, Linear time algorithms for weighted offensive and powerful alliances in trees, Theor. Computer Sci., 582 (2015), 17–26. https://doi.org/10.1016/j.tcs.2015.03.017 doi: 10.1016/j.tcs.2015.03.017 |
[10] | S. Ouatiki, M. Bouzefrane, A lower bound on the global powerful alliance number in trees, RAIRO-Operations Res., 55 (2021), 495–503. https://doi.org/10.1051/ro/2021028 doi: 10.1051/ro/2021028 |
[11] | K.H. Shafique, R.D. Dutton, Maximum alliance-free and minimum alliance-cover sets, Congressus Numer., 162 (2003), 139–146. |
[12] | J.A. Rodríguez, J.M. Sigarreta, Global defensive $k$-alliances in graphs, Discrete Appl. Math., 157 (2009), 211–218. https://doi.org/10.1016/j.dam.2008.02.006 doi: 10.1016/j.dam.2008.02.006 |
[13] | S. Bermudo, J. A. Rodríguez, J. M. Sigarreta, I. G. Yero, On global offensive $k$-alliances in graphs, Appl. Math. Letters, 23 (2010), 1454–1458. https://doi.org/10.1016/j.aml.2010.08.008 doi: 10.1016/j.aml.2010.08.008 |
[14] | H. Fernau, J. A. Rodríguez, J. M. Sigarreta, Offensive $r$-alliances in graphs, Discrete Appl. Math., 157 (2009), 177–182. https://doi.org/10.1016/j.dam.2008.06.001 doi: 10.1016/j.dam.2008.06.001 |
[15] | A. Cami, H. Balakrishnan, N. Deo, R. D. Dutton, On the complexity of finding optimal global alliances, J. Combinator. Math. Combinator. Comput., 58 (2006), 23. |
[16] | J. M. Sigarreta, S. Bermudo, H. Fernau, On the complement graph and defensive k-alliances, Discrete Appl. Math., 157 (2009), 1687–1695. https://doi.org/10.1016/j.dam.2008.12.006 doi: 10.1016/j.dam.2008.12.006 |
[17] | A. Gaikwad, S. Maity, On structural parameterizations of the offensive alliance problem, In Combinatorial Optimization and Applications: 15th International Conference, COCOA 2021, Tianjin, China, December 17–19, 2021, Proceedings, Springer International Publishing, (2021), 579–586. |
[18] | O. Favaron, G. Fricke, W. Goddard, S. Hedetniemi, S. Hedetniemi, P. Kristiansen, R. Skaggs, Offensive alliances in graphs, Discuss. Math. Graph Theory, 24 (2004), 263–275. |
[19] | I. Beck, Coloring of commutative rings, J. Algebra, (1988), 208–226. https://doi.org/10.1016/0021-8693(88)90202-5 doi: 10.1016/0021-8693(88)90202-5 |
[20] | D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434–447. |
[21] | N. Muthana, A. Mamouni, On defensive alliance in zero-divisor graphs, J. Algebra Appl., 20 (2020), 2150155. https://doi.org/10.1142/S0219498821501553 doi: 10.1142/S0219498821501553 |
[22] | R. Juárez, G. Reyna, O. Rosario, J. Romero, On global offensive alliance in zero-divisor graphs, Mathematics, 10 (2022), 298. https://doi.org/10.3390/math10030298 doi: 10.3390/math10030298 |
[23] | D. Bennis, B. El Alaoui, K. Ouarghi, On global defensive $k$-alliances in zero-divisor graphs of finite commutative rings, J. Algebra Appl., (2022), 2350127. https://doi.org/10.1142/S021949882350127X doi: 10.1142/S021949882350127X |
[24] | S. Pirzada, M. Aijaz, M. I. Bhat, On zero divisor graphs of the rings $\mathbb{Z}_n$, Afrika Matematika, 31 (2020), 727–737. https://doi.org/10.1007/s13370-019-00755-3 doi: 10.1007/s13370-019-00755-3 |
[25] | E. E. AbdAlJawad, H. Al-Ezeh, Domination and Independence Numbers of $\Gamma(\mathbb{Z}_n)$, Int. Math. Forum, 3 (2008), 503–511. |