Research article

High-accuracy positivity-preserving numerical method for Keller-Segel model

  • Received: 04 January 2023 Revised: 10 February 2023 Accepted: 23 February 2023 Published: 06 March 2023
  • The Keller-Segel model is a time-dependent nonlinear partial differential system, which couples a reaction-diffusion-chemotaxis equation with a reaction-diffusion equation; the former describes cell density, and the latter depicts the concentration of chemoattractants. This model plays a vital role in the simulation of the biological processes. In view of the fact that most of the proposed numerical methods for solving the model are low-accuracy in the temporal direction, we aim to derive a high-precision and stable compact difference scheme by using a finite difference method to solve this model. First, a fourth-order backward difference formula and compact difference operators are respectively employed to discretize the temporal and spatial derivative terms in this model, and a compact difference scheme with the space-time fourth-order accuracy is proposed. To keep the accuracy of its boundary with the same order as the main scheme, a Taylor series expansion formula with the Peano remainder is used to discretize the boundary conditions. Then, based on the new scheme, a multigrid algorithm and a positivity-preserving algorithm which can guarantee the fourth-order accuracy are established. Finally, the accuracy and reliability of the proposed method are verified by diverse numerical experiments. Particularly, the finite-time blow-up, non-negativity, mass conservation and energy dissipation are numerically simulated and analyzed.

    Citation: Lin Zhang, Yongbin Ge, Xiaojia Yang. High-accuracy positivity-preserving numerical method for Keller-Segel model[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 8601-8631. doi: 10.3934/mbe.2023378

    Related Papers:

  • The Keller-Segel model is a time-dependent nonlinear partial differential system, which couples a reaction-diffusion-chemotaxis equation with a reaction-diffusion equation; the former describes cell density, and the latter depicts the concentration of chemoattractants. This model plays a vital role in the simulation of the biological processes. In view of the fact that most of the proposed numerical methods for solving the model are low-accuracy in the temporal direction, we aim to derive a high-precision and stable compact difference scheme by using a finite difference method to solve this model. First, a fourth-order backward difference formula and compact difference operators are respectively employed to discretize the temporal and spatial derivative terms in this model, and a compact difference scheme with the space-time fourth-order accuracy is proposed. To keep the accuracy of its boundary with the same order as the main scheme, a Taylor series expansion formula with the Peano remainder is used to discretize the boundary conditions. Then, based on the new scheme, a multigrid algorithm and a positivity-preserving algorithm which can guarantee the fourth-order accuracy are established. Finally, the accuracy and reliability of the proposed method are verified by diverse numerical experiments. Particularly, the finite-time blow-up, non-negativity, mass conservation and energy dissipation are numerically simulated and analyzed.



    加载中


    [1] E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5
    [2] E. F. Keller, L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225–234. https://doi.org/10.1016/0022-5193(71)90050-6
    [3] L. Guo, X. J. H. Li, Y. Yang, Energy dissipative local discontinuous galerkin methods for Keller-Segel Chemotaxis Model, J. Sci. Comput., 78 (2019), 1387–1404. https://doi.org/10.1007/s10915-018-0813-8 doi: 10.1007/s10915-018-0813-8
    [4] J. Shen, J. Xu, Unconditionally bound preserving and energy dissipative schemes for a class of Keller–Segel equations, SIAM J. Numer. Anal., 58 (2020), 1674–1695. https://doi.org/10.1137/19M1246705 doi: 10.1137/19M1246705
    [5] J. T. Bonner, M. E. Hoffman, Evidence for a substance responsible for the spacing pattern of aggregation and fruiting in the cellular slime molds, J. Embryol. Exp. Morphol., 11 (1963), 571–589. https://doi.org/10.1242/dev.11.3.571 doi: 10.1242/dev.11.3.571
    [6] C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311–338. https://doi.org/10.1007/BF02476407 doi: 10.1007/BF02476407
    [7] S. Childress, J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 217–237. https://doi.org/10.1016/0025-5564(81)90055-9 doi: 10.1016/0025-5564(81)90055-9
    [8] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences slowromancapi@, Jahresber. Dtsch. Math.-Ver., 105 (2003), 103–165.
    [9] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences slowromancapii@, Jahresber. Dtsch. Math.-Ver., 106 (2004), 51–69.
    [10] G. Arumugam, J. Tyagi, Keller-Segel chemotaxis models: A review, Acta Appl. Math., 171 (2021), 1–82. https://doi.org/10.1007/s10440-020-00374-2 doi: 10.1007/s10440-020-00374-2
    [11] T. Hillen, A. Potapov, The one-dimensional chemotaxis model global existence and asymptotic profile, Math. Meth. Appl. Sci., 27 (2004), 1783–1801. https://doi.org/10.1002/mma.569 doi: 10.1002/mma.569
    [12] Z. A. Wang, J. S. Zheng, Global boundedness of the fully parabolic Keller-Segel system with signal-dependent motilities, Acta Appl. Math., 171 (2021), 1-19. https://doi.org/10.1007/s10440-021-00392-8 doi: 10.1007/s10440-021-00392-8
    [13] X. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discret. Contin. Dyn. Syst., 35 (2015), 1891–1904. https://doi.org/10.3934/dcds.2015.35.1891 doi: 10.3934/dcds.2015.35.1891
    [14] D. Horstmann, G. F. Wang, Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., 12 (2001), 159–177. https://doi.org/10.1017/S0956792501004363 doi: 10.1017/S0956792501004363
    [15] M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748–767. https://doi.org/10.1016/j.matpur.2013.01.020 doi: 10.1016/j.matpur.2013.01.020
    [16] W. B. Chen, Q. Q. Liu, J. Shen, Error estimates and blow-up analysis of a finite-element approximation for the parabolic-elliptic Keller-Segel system, Int. J. Numer. Anal. Mod., 19 (2022), 275–298. https://doi.org/10.48550/arXiv.2212.07655 doi: 10.48550/arXiv.2212.07655
    [17] A. Adler, Chemotaxis in bacteria, Ann. Rev. Biochem., 44 (1975), 341–356. https://doi.org/10.1146/annurev.bi.44.070175.002013
    [18] E. O. Budrene, H. C. Berg, Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 376 (1995), 49–53. https://doi.org/10.1038/376049a0 doi: 10.1038/376049a0
    [19] N. Saito, T. Suzuki, Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis, Appl. Math. Comput., 171 (2005), 72–90. https://doi.org/10.1016/j.amc.2005.01.037 doi: 10.1016/j.amc.2005.01.037
    [20] N. Saito, Conservative numerical schemes for the Keller-Segel system and numerical results. RIMS Kôkyûroku Bessatsu, 15 (2009), 125–146. https://doi.org/10.1137/07070423X
    [21] X. F. Xiao, X. L. Feng, Y. N. He, Numerical simulations for the chemotaxis models on surfaces via a novel characteristic finite element method, Comput. Math. Appl., 78 (2019), 20–34. https://doi.org/10.1016/j.camwa.2019.02.004 doi: 10.1016/j.camwa.2019.02.004
    [22] Y. Epshteyn, A. Kurganov, New interior penalty discontinuous galerkin methods for the Keller-Segel chemotaxis model, SIAM J. Numer. Anal., 47 (2009), 386–408. https://doi.org/10.1137/07070423X
    [23] X. J. H. Li, C.-W. Shu, Y. Yang, Local discontinuous Galerkin method for the Keller-Segel chemotaxis model, J. Sci. Comput., 73 (2017), 943-967. https://doi.org/10.1007/s10915-016-0354-y doi: 10.1007/s10915-016-0354-y
    [24] M. Sulman, T. Nguyen, A positivity preserving moving mesh finite element method for the Keller-Segel chemotaxis model, J. Sci. Comput., 80 (2019), 649–666. https://doi.org/10.1007/s10915-019-00951-0
    [25] C. X. Qiu, Q. Y. Liu, J. Yan, Third order positivity-preserving direct discontinuous Galerkin method with interface correction for chemotaxis Keller-Segel equations, J. Comput. Phys., 433 (2021), 110191. https://doi.org/10.1016/j.jcp.2021.110191 doi: 10.1016/j.jcp.2021.110191
    [26] M. Dehghan, M. Abbaszadeh, The simulation of some chemotactic bacteria patterns in liquid medium which arises in tumor growth with blow-up phenomena via a generalized smoothed particle hydrodynamics (GSPH) method, Eng. Comput., 35 (2019), 875–892. https://doi.org/10.1007/s00366-018-0638-y doi: 10.1007/s00366-018-0638-y
    [27] F. Filbet, A finite volume scheme for the Patlak-Keller-Segel chemotaxis model, Numer. Math., 104 (2006), 457–488. https://doi.org/10.1007/s00211-006-0024-3 doi: 10.1007/s00211-006-0024-3
    [28] A. Chertock, A. Kurganov, A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models, Numer. Math., 111 (2008), 169–205. https://doi.org/10.1007/s00211-008-0188-0 doi: 10.1007/s00211-008-0188-0
    [29] A. Kurganov, E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160 (2000), 241–282. https://doi.org/10.1006/jcph.2000.6459 doi: 10.1006/jcph.2000.6459
    [30] Y. Epshteyn, Upwind-difference potentials method for Patlak-Keller-Segel chemotaxis model, J. Sci. Comput., 53 (2012), 689–713. https://doi.org/10.1007/s10915-012-9599-2 doi: 10.1007/s10915-012-9599-2
    [31] R. Tyson, L. G. Stern, R. J. LeVeque, Fractional step methods applied to a chemotaxis model, J. Math. Biol., 41 (2000), 455–475. https://doi.org/10.1007/s002850000038 doi: 10.1007/s002850000038
    [32] D. Manoussaki, A mechanochemical model of angiogenesis and vasculogenesis, ESAIM: Math. Model. Numer. Anal., 37 (2003), 581–599. https://doi.org/10.1051/m2an:2003046 doi: 10.1051/m2an:2003046
    [33] A. Chertock, Y. Epshteyn, H. R. Hu, A. Kurganov, High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems, Adv. Comput. Math., 44 (2018), 327–350. https://doi.org/10.1007/s10444-017-9545-9 doi: 10.1007/s10444-017-9545-9
    [34] J. G. Liu, L. Wang, Z. N. Zhou, Positivity-preserving and asymptotic preserving method for 2D Keller-Segal equations. Math. Comput., 87 (2018), 1165–1189. https://doi.org/10.1090/mcom/3250
    [35] J. J. Benito, A. García, L. Gavete, M. Negreanu, F. Ureña, A. M. Vargas, Solving a fully parabolic chemotaxis system with periodic asymptotic behavior using generalized finite difference method, Appl. Numer. Math., 157 (2020), 356–371. https://doi.org/10.1016/j.apnum.2020.06.011 doi: 10.1016/j.apnum.2020.06.011
    [36] C. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall, 1971.
    [37] K. E. Brenan, S. L. Campbell, L. R. Petzold, The Numerical Solution of Initial Value Problems in Differential-Algebraic Equations, Elsevier, New York, 1989.
    [38] D. Liu, H. L. Han, Y. L. Zheng, A high-order method for simulating convective planar Poiseuille flow over a heated rotating sphere. Int. J. Numer. Methods Heat Fluid Flow, 28 (2018), 1892–1929. https://doi.org/10.1108/HFF-12-2017-0525
    [39] S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103 (1992), 16–42. https://doi.org/10.1016/0021-9991(92)90324-R doi: 10.1016/0021-9991(92)90324-R
    [40] T. Wang, T. G. Liu, A consistent fourth-order compact finite difference scheme for solving vorticity-stream function form of incompressible Navier-Stokes equations, Numer. Math. Theor. Meth. Appl., 12 (2019), 312–330. https://doi.org/10.4208/nmtma.OA-2018-0043 doi: 10.4208/nmtma.OA-2018-0043
    [41] A. Brandt, Multi-level adaptive solution to boundary-value problems, Math. Comput., 31 (1977), 330–390. https://doi.org/10.2307/2006422 doi: 10.2307/2006422
    [42] P. Wesseling, An Introduction to Multigrid Methods. Wiley, Chichester, 1992.
    [43] S. Vincent, J. -P. Caltagirone, A one-cell local multigrid method for solving unsteady incompressible multiphase flows, J. Comput. Phys., 163(2000), 172–215. https://doi.org/10.1006/jcph.2000.6566 doi: 10.1006/jcph.2000.6566
    [44] C. Liu, Z. Liu, S. McCormick, Multigrid methods for flow transition in a planar channel, Comput. Phys. Commun., 65 (1991), 188–200. https://doi.org/10.1016/0010-4655(91)90171-G doi: 10.1016/0010-4655(91)90171-G
    [45] J. Zhang, On convergence and performance of iterative methods with fourth-order compact schemes, Numer. Methods Partial Differ. Equ., 14 (1998), 263–280. https://doi.org/10.1002/(SICI)1098-2426(199803)14:2<263::AID-NUM8>3.0.CO;2-M doi: 10.1002/(SICI)1098-2426(199803)14:2<263::AID-NUM8>3.0.CO;2-M
    [46] X.-D. Liu, S. Osher, Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes slowromancapi@, SIAM J. Numer. Anal., 33 (1996), 760–779. https://doi.org/10.1137/0733038 doi: 10.1137/0733038
    [47] Luis M. Abia, J. C. López-Marcos, J. Martínez, Blow-up for semidiscretizations of reaction-diffusion equations, Appl. Numer. Math., 20 (1996), 145–156. https://doi.org/10.1016/0168-9274(95)00122-0 doi: 10.1016/0168-9274(95)00122-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1494) PDF downloads(132) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog