Research article

Positivity-preserving high-order compact difference method for the Keller-Segel chemotaxis model

  • Received: 27 January 2022 Revised: 29 March 2022 Accepted: 18 April 2022 Published: 05 May 2022
  • The paper is concerned with development of an accurate and effective positivity-preserving high-order compact difference method for solving the Keller-Segel chemotaxis model, which is a kind of nonlinear parabolic-parabolic system in mathematical biology. Firstly, a stiffly-stable five-step fourth-order fully implicit compact difference scheme is proposed. The new scheme not only has fourth-order accuracy in the spatial direction, but also has fourth-order accuracy in the temporal direction, and the computational strategy for the nonlinear chemotaxis term is provided. Then, a positivity-preserving numerical algorithm is presented, which ensures the non-negativity of cell density at all time without accuracy loss. And a time advancement algorithm is established. Finally, the proposed method is applied to the numerical simulation for chemotaxis phenomena, and the accuracy, stability and positivity-preserving of the new scheme are validated with several numerical examples.

    Citation: Lin Zhang, Yongbin Ge, Zhi Wang. Positivity-preserving high-order compact difference method for the Keller-Segel chemotaxis model[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 6764-6794. doi: 10.3934/mbe.2022319

    Related Papers:

  • The paper is concerned with development of an accurate and effective positivity-preserving high-order compact difference method for solving the Keller-Segel chemotaxis model, which is a kind of nonlinear parabolic-parabolic system in mathematical biology. Firstly, a stiffly-stable five-step fourth-order fully implicit compact difference scheme is proposed. The new scheme not only has fourth-order accuracy in the spatial direction, but also has fourth-order accuracy in the temporal direction, and the computational strategy for the nonlinear chemotaxis term is provided. Then, a positivity-preserving numerical algorithm is presented, which ensures the non-negativity of cell density at all time without accuracy loss. And a time advancement algorithm is established. Finally, the proposed method is applied to the numerical simulation for chemotaxis phenomena, and the accuracy, stability and positivity-preserving of the new scheme are validated with several numerical examples.



    加载中


    [1] J. T. Bonner, M. E. Hoffman, Evidence for a substance responsible for the spacing pattern of aggregation and fruiting in the cellular slime molds, J. Embryol. Exp. Morphol., 11 (1963), 571–589. https://doi.org/10.1242/dev.11.3.571 doi: 10.1242/dev.11.3.571
    [2] C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys, 15 (1953), 311–338. https://doi.org/10.1007/BF02476407 doi: 10.1007/BF02476407
    [3] E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5
    [4] E. F. Keller, L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225–234. https://doi.org/10.1016/0022-5193(71)90050-6 doi: 10.1016/0022-5193(71)90050-6
    [5] E. F. Keller, L. A. Segel, Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theor. Biol., 30 (1971), 235–248. https://doi.org/10.1016/0022-5193(71)90051-8 doi: 10.1016/0022-5193(71)90051-8
    [6] L. A. Segel, B. Stoeckly, Instability of a layer of chemostatic cells, attractant and degrading enzymes, J. Theor. Biol., 37 (1972), 561–585. https://doi.org/10.1016/0022-5193(72)90091-4 doi: 10.1016/0022-5193(72)90091-4
    [7] S. Childress, J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 217–237. https://doi.org/10.1016/0025-5564(81)90055-9 doi: 10.1016/0025-5564(81)90055-9
    [8] X. F. Chen, J. H. Hao, X. F. Wang, Y. P. Wu, Y. J. Zhang, Stability of spiky solution of Keller-Segel's minimal chemotaxis model, J. Differ. Equations, 257 (2014), 3102–3134. https://doi.org/10.1016/j.jde.2014.06.008 doi: 10.1016/j.jde.2014.06.008
    [9] T. Hillen, K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183–217. https://doi.org/10.1007/s00285-008-0201-3 doi: 10.1007/s00285-008-0201-3
    [10] T. Hashira, S. Ishida, T. Yokota, Finite time blow-up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differ. Equations, 264 (2018), 6459–6485. https://doi.org/10.1016/j.jde.2018.01.038 doi: 10.1016/j.jde.2018.01.038
    [11] L. Wang, Y. Li, C. Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 34 (2014), 789–802. http://dx.doi.org/10.3934/dcds.2014.34.789 doi: 10.3934/dcds.2014.34.789
    [12] J. I. Tello, M. Winkler, A chemotaxis system with logistic source, Commun. Partial Differ. Equations, 32 (2007), 849–877. https://doi.org/10.1080/03605300701319003 doi: 10.1080/03605300701319003
    [13] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences Ⅰ, Jahresber. Dtsch. Math. Ver, 105 (2003), 103–165.
    [14] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences Ⅰ, Jahresber. Dtsch. Math. Ver, 106 (2004), 51–69.
    [15] G. Arumugam, J. Tyagi, Keller-Segel chemotaxis models: a review, Acta Appl. Math., 171 (2021), 1–82. https://doi.org/10.1007/s10440-020-00374-2 doi: 10.1007/s10440-020-00374-2
    [16] A. Chertock, A. Kurganov, A second-order positivity preserving central-upwind scheme for chemo-taxis and haptotaxis models, Numer. Math., 111 (2008), 169–205. https://doi.org/10.1007/s00211-008-0188-0 doi: 10.1007/s00211-008-0188-0
    [17] A. Chertock, Y. Epshteyn, H. Hu, A. Kurganov, High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems, Adv. Comput. Math., 44 (2018), 327–350. https://doi.org/10.1007/s10444-017-9545-9 doi: 10.1007/s10444-017-9545-9
    [18] A. Adler, Chemotaxis in bacteria, Ann. Rev. Biochem, 44 (1975), 341–356. https://doi.org/10.1146/annurev.bi.44.070175.002013 doi: 10.1146/annurev.bi.44.070175.002013
    [19] E. O. Budrene, H. C. Berg, Complex patterns formed by motile cells of escherichia coli, Nature, 349 (1991), 630–633, https://doi.org/10.1038/349630a0 doi: 10.1038/349630a0
    [20] E. O. Budrene, H. C. Berg, Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 376 (1995), 49–53. https://doi.org/10.1038/376049a0 doi: 10.1038/376049a0
    [21] M. H. Cohen, A. Robertson, Wave propagation in the early stages of aggregation of cellular slime molds, J. Theor. Biol., 31 (1971), 101–118. https://doi.org/10.1016/0022-5193(71)90124-X doi: 10.1016/0022-5193(71)90124-X
    [22] V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, J. Theor. Biol., 42 (1973), 63–105. https://doi.org/10.1016/0022-5193(73)90149-5 doi: 10.1016/0022-5193(73)90149-5
    [23] X. Wang, Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly's compactness theorem, J. Math. Biol., 66 (2013), 1241–1266. https://doi.org/10.1007/s00285-012-0533-x doi: 10.1007/s00285-012-0533-x
    [24] E. Feireisl, P. Laurençot, H. Petzeltová, On convergence to equilibria for the Keller-Segel chemotaxis model, J. Differ. Equations, 236 (2007), 551–569. https://doi.org/10.1016/j.jde.2007.02.002 doi: 10.1016/j.jde.2007.02.002
    [25] T. Hillen, A. Potapov, The one-dimensional chemotaxis model global existence and asymptotic profile, Math. Method Appl. Sci., 27 (2004), 1783–1801. https://doi.org/10.1002/mma.569 doi: 10.1002/mma.569
    [26] K. Osaki, A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcialaj Ekvacioj, 44 (2001), 441–469.
    [27] X. F. Xiao, X. L. Feng, Y. N. He, Numerical simulations for the chemotaxis models on surfaces via a novel characteristic finite element method, Comput. Math. Appl., 78 (2019), 20–34. https://doi.org/10.1016/j.camwa.2019.02.004 doi: 10.1016/j.camwa.2019.02.004
    [28] X. Li, C. W. Shu, Y. Yang, Local discontinuous Galerkin method for the Keller-Segel chemotaxis model, J. Sci. Comput., 73 (2017), 943–967. https://doi.org/10.1007/s10915-016-0354-y doi: 10.1007/s10915-016-0354-y
    [29] L. Guo, X. Li, Y. Yang, Energy dissipative local discontinuous Galerkin methods for Keller-Segel chemotaxis model, J. Sci. Comput., 78 (2019), 1387–1404. https://doi.org/10.1007/s10915-018-0813-8 doi: 10.1007/s10915-018-0813-8
    [30] Y. Epshteyn, A. Izmirlioglu, Fully discrete analysis of a discontinuous finite element method for the Keller-Segel chemotaxis model, J. Sci. Comput., 40 (2009), 211–256. https://doi.org/10.1007/s10915-009-9281-5 doi: 10.1007/s10915-009-9281-5
    [31] Y. Epshteyn, A. Kurganov, New interior penalty discontinuous galerkin methods for the Keller-Segel chemotaxis model, SIAM J. Numer. Anal., 47 (2008), 386–408. https://doi.org/10.1137/07070423X doi: 10.1137/07070423X
    [32] M. Sulman, T. Nguyen, A positivity preserving moving mesh finite element method for the Keller-Segel chemotaxis model, J. Sci. Comput., 80 (2019), 649–666. https://doi.org/10.1007/s10915-019-00951-0 doi: 10.1007/s10915-019-00951-0
    [33] C. Qiu, Q. Liu, J. Yan, Third order positivity-preserving direct discontinuous Galerkin method with interface correction for chemotaxis Keller-Segel equations, J. Comput. Phys., 433 (2021), 110191. https://doi.org/10.1016/j.jcp.2021.110191 doi: 10.1016/j.jcp.2021.110191
    [34] F. Filbet, A finite volume scheme for the Patlak-Keller-Segel chemotaxis model, Numerisch Math., 104 (2006), 457–488. https://doi.org/10.1007/s00211-006-0024-3 doi: 10.1007/s00211-006-0024-3
    [35] A. Kurganov, E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160 (2000), 241–282. https://doi.org/10.1006/jcph.2000.6459 doi: 10.1006/jcph.2000.6459
    [36] Y. Epshteyn, Upwind-difference potentials method for Patlak-Keller-Segel chemotaxis model, J. Sci. Comput., 53 (2012), 689–713. https://doi.org/10.1007/s10915-012-9599-2 doi: 10.1007/s10915-012-9599-2
    [37] R. Tyson, L. G. Stern, R. J. LeVeque, Fractional step methods applied to a chemotaxis model, J. Math. Biol., 41 (2000), 455–475. https://doi.org/10.1007/s002850000038 doi: 10.1007/s002850000038
    [38] D. Manoussaki, A mechanochemical model of angiogenesis and vasculogenesis, Math. Model. Numer. Anal., 37 (2003), 581–599. https://doi.org/10.1007/10.1051/m2an:2003046 doi: 10.1007/10.1051/m2an:2003046
    [39] N. Saito, T. Suzuki, Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis, Appl. Math. Comput., 171 (2005), 72–90. https://doi.org/10.1016/j.amc.2005.01.037 doi: 10.1016/j.amc.2005.01.037
    [40] N. Saito, Conservative numerical schemes for the Keller-Segel system and numerical results, RIMS Kôkyûroku Bessatsu, 15 (2009), 125–146.
    [41] A. Acrivos, Heat transfer at high Pclet number from a small sphere freely rotating in a simple shear field, J. Fluid Mech., 46 (2006), 233–240. https://doi.org/10.1017/S0022112071000508 doi: 10.1017/S0022112071000508
    [42] D. Liu, H. L. Han, Y. L. Zheng, A high-order method for simulating convective planar Poiseuille flow over a heated rotating sphere, Int. J. Numer. Methods Heat Fluid Flow, 28 (2018), 1892–1929. https://doi.org/10.1108/HFF-12-2017-0525 doi: 10.1108/HFF-12-2017-0525
    [43] C. Gear, Numerical initial value problems in ordinary differential equations, Prentice Hall, 1971.
    [44] G. H. Gao, Z. Z. Sun, Compact difference schemes for heat equation with Neumann boundary conditions Ⅰ, Numer. Method Partial Differ. Equations, 29 (2013), 1459–1486. https://doi.org/10.1002/num.21760 doi: 10.1002/num.21760
    [45] X. D. Liu, S. Osher, Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes Ⅰ, SIAM J. Numer. Anal., 33 (1996), 760–779. https://doi.org/10.1137/0733038 doi: 10.1137/0733038
    [46] X. Zhang, C. W. Shu, Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments, Proc. R. Soc. A, 467 (2011), 2752–2776. https://doi.org/10.1098/rspa.2011.0153 doi: 10.1098/rspa.2011.0153
    [47] S. A. Orszag, M. Israelt, Numerical Simulation of Viscous Incompressible Flows, Ann. Rev. Fluid Mech., 6 (1974), 281–318. https://doi.org/10.1146/annurev.fl.06.010174.001433 doi: 10.1146/annurev.fl.06.010174.001433
    [48] S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103 (1992), 16–42. https://doi.org/10.1016/0021-9991(92)90324-R doi: 10.1016/0021-9991(92)90324-R
    [49] T. Wang, T. G. Liu, A consistent fourth-order compact scheme for solving convection-diffusion equation, Math. Numerica Sinica, 38 (2016), 391–404. https://doi.org/10.12286/jssx.2016.4.391 doi: 10.12286/jssx.2016.4.391
    [50] L. H. Thomas, Elliptic problems in linear difference equations over a network, Watson Sci. Comput. Lab. Columbia Univ., 1 (1949).
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1742) PDF downloads(115) Cited by(1)

Article outline

Figures and Tables

Figures(11)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog