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Abstract: The paper is concerned with development of an accurate and effective positivity-preserving
high-order compact difference method for solving the Keller-Segel chemotaxis model, which is a
kind of nonlinear parabolic-parabolic system in mathematical biology. Firstly, a stiffly-stable five-
step fourth-order fully implicit compact difference scheme is proposed. The new scheme not only
has fourth-order accuracy in the spatial direction, but also has fourth-order accuracy in the temporal
direction, and the computational strategy for the nonlinear chemotaxis term is provided. Then, a
positivity-preserving numerical algorithm is presented, which ensures the non-negativity of cell density
at all time without accuracy loss. And a time advancement algorithm is established. Finally, the
proposed method is applied to the numerical simulation for chemotaxis phenomena, and the accuracy,
stability and positivity-preserving of the new scheme are validated with several numerical examples.

Keywords: Keller-Segel chemotaxis model; nonlinear advection diffusion reaction equation;
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1. Introduction

Chemotaxis, which is the phenomenon of directional movement for cells or microorganisms along
the concentration gradient of chemical stimuli in the tissue or living environment, plays a key role
in many complex biological processes such as tumor growth and development, disease state transfer,
human tissue development, pattern formation, bacterial aggregation and so on [1]. As early as the
1950s–1980s, many researchers studied the phenomena of chemotaxis in biology and proposed a series
of partial differential equations (PDEs) models related to chemotaxis [2–7]. The most classic is the
chemotaxis model proposed by Keller and Segel [3, 4] (namely the Keller-Segel chemotaxis model)
to simulate the aggregation phenomena of amoeba and dictyostelium discoideum. In this paper, we
consider the following common formulation of the Keller-Segel chemotaxis model, which is written in
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the dimensionless form as [3, 7, 8]{
ut + (χuvx)x = duxx, x ∈ Ω, t > 0,
vt = vxx − v + u, x ∈ Ω, t > 0,

(1.1)

with initial and homogeneous Neumann boundary conditions

u(x, 0) = φ1(x), v(x, 0) = φ2(x), x ∈ Ω, (1.2)
ux = vx = 0, x ∈ ∂Ω, t > 0. (1.3)

The meaning of each symbol is as follows

Ω: a smooth bounded domain with an outward normal vector defined on the
boundary ∂Ω, Ω := [a, b], a and b are constants,

u(x, t): the cell density, and it is unknown function,
v(x, t): the chemoattractant concentration, and it is also unknown function,
χ: a chemotactic sensitivity constant, and χ > 0,
d: diffusion rate, and d > 0,
φ1(x), φ2(x): known smooth functions.

The total mass
∫
Ω

u(x, t)dx =
∫
Ω

u(x, 0)dx is a constant as the temporal evolution under the boundary
conditions, so the system (1.1)–(1.3) is isolated.

Since the Keller-Segel chemotaxis models were proposed, it had fascinated a large number of
researchers in the mathematics and biology circles. So far, many types of chemotaxis models have
been developed. Such as, the minimal model [9], the quasilinear Keller-Segel model [10], the
Keller-Segel model with logistic source [11, 12] and so on (More detailed introduction can be seen
in [13–15] and references therein). A common property of these chemotaxis models is their ability to
mathematically cause the solutions to grow rapidly in the small neighborhood of the concentration
point/curve. The solutions may blow up or exhibit very strange spike behavior [16, 17]. This blow up
represents a mathematical description of the cell aggregate phenomenon that occurs in real biological
system [7, 18–22]. In order to employ the Keller-Segel model to explore the phenomenon of cell
aggregation, usually there are two theoretical research focuses: one is to prove that the Keller-Segel
parabolic equation blowns up in a finite time, and the δ-function generated by the blown-up solution is
used to describe it [7]. The other is to prove that the global solution of the system (1.1)–(1.3) is
uniformly bounded with respect to time and tends to the stationary solution (such as spikes and
patterns, etc.) under a large time [8, 23, 24]. For example, in one-dimensional (1D) space, the
homogeneous Neumann initial-boundary value problem (IBVP) for the Keller-Segel chemotaxis
model has a global solution and the solution is bounded [25, 26].

Capturing the numerical solutions of such blowup or spikes is still a very challenging task [17],
and it is very important for the modeling and analysis of chemotaxis system to establish accurate and
efficient numerical methods. The research of numerical solutions can not only be intuitively observed
by the dynamic behavior of the chemotaxis system, but also verify and supplement the theoretical
results. In recent years, the research on the numerical methods of the Keller-Segel chemotaxis model
mainly employs finite element methods (FEMs) [27–33] and finite volume methods
(FVMs) [16, 34–36], as well as some other fractional step (operator splitting) methods [37, 38], etc.
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But finite difference methods (FDMs) [39, 40] are rarely used. For example, (i) In terms of FEMs,
Epshteyn and Kurganov [31] proposed a series of new internal penalty discontinuous Galerkin (DG)
methods for solving the Keller-Segel chemotaxis model, and simulated the pre-blow-up time,
non-negativity and non-oscillation of the solutions. Li et al. [28] improved the method in [31] by
using the locally discontinuous Galerkin (LDG) method, and gave the optimal convergence rate of the
Keller-Segel chemotaxis model in the special finite element space before blow-up. (ii) In terms of
FVMs, Filbet [34] employed the FVM to study the Patlak-Keller-Segel chemotaxis model, and
simulated the blow-up characteristics of the chemotaxis model under the large mass of cells. Chertock
and Kurganov [16] proposed a second-order finite-volume center-upward scheme based on the work
in [35], and simulated the blow-up problem of the Keller-Segel model in the corners and the center
area, as well as the pattern formation of bacteria in the semi-solid state and liquid medium,
respectively. (iii) In terms of FDMs, Saito and Suzuki [39] developed a finite difference scheme for
the Keller-Segel chemotaxis model with the parabolic-elliptic coupling, which satisfies the
conservation of a discrete L1 norm error by applying the upwind technique. In order to develop a
numerical scheme to satisfy conservation of positivity and total mass, Saito [40] proposed a
conservative FDM for the Keller-Segel chemotaxis model with nonlinear diffusion.

Unfortunately, most of the numerical methods of the Keller-Segel chemotaxis models (1.1)–(1.3)
developed above are low accuracy [16,27,28,30–32,34,35,37–40]. Although some numerical methods
can achieve third-order [33, 36] or fourth-order [17, 29] accuracy in space, but the highest accuracy
is third-order in time. In addition, many numerical schemes are non-compact on spatial grid, and
conditionally stable, that is, a small time step size needs to be taken to satisfy its stability condition
and to obtain a high-resolution numerical solution. As we all know, a high-order compact (HOC)
difference scheme have the characteristics of small computational error, better numerical stability,
and small grid-point stencil, which has aroused extensive concerns of many researchers. Backward
differencing multi-step schemes have been proved to be the suitable method with highly accuracy and
relatively large stability area [41, 42]. Stiffly-stable schemes, which are backward differencing multi-
step schemes in nature, appear first in [43]. In order to obtain the high accurate numerical solutions
of the Keller-Segel chemotaxis model (1.1)–(1.3), in this paper, we attempt to develop a compact
difference scheme, which is fourth-order accuracy in both time and space for the interior grid points
and the boundaries, and stiffly-stable. To this end, first, we rewrite the Keller-Segel chemotaxis models
(1.1)–(1.3) as its equivalent form: nonlinear advection diffusion reaction (ADR) system as follows

Ut + Fx = DUxx + R, (x, t) ∈ [a, b] × (0,T ], (1.4)
U(x, 0) = φ(x), x ∈ [a, b], (1.5)
Ux(a, t) = Ux(b, t) = 0, t ∈ (0,T ], (1.6)

where

U :=
[
u
v

]
, F :=

[
χuvx

0

]
, D :=

[
d
1

]
, R :=

[
0

− v + u

]
, φ :=

[
φ1

φ2

]
.

[a, b] and (0,T ] represent space and time domains, respectively. D is constant diffusion coefficient.
Then, a fully implicit fourth-order compact difference scheme for the interior points is proposed for
solving the above-mentioned system. And at the same time, we refer to the method in [44] to deal with
homogeneous Neumann boundary condition (1.6), and develop a boundary scheme with fourth-order
accuracy. However, since the unknown functions u(x, t) and v(x, t) in the Keller-Segel chemotaxis
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model have actual biological significance, their values cannot be negative, otherwise their biological
significance will be lost. Therefore, we try to employ the methods in [33,45,46] to establish a suitable
positivity-preserving algorithm for the developed HOC difference scheme, so that the value of the
obtained cell density u(x, t) is non-negative, and the fourth-order accuracy is still maintained for the
positivity-preserving algorithm.

The outline of this paper is arranged as follows. In Section 2, the definition of the basic symbols
and lemmas required in the subsequent sections are given. An HOC difference scheme to solve the
system (1.1)–(1.3) is proposed, and the computational strategy for the nonlinear chemotaxis term is
provided in Section 3. We design a positive-preserving numerical algorithm and a time advancement
algorithm in Section 4. In Section 5, we choose several types of numerical examples to simulate the
non-constant stationary solution of the Keller-Segel chemotaxis model, and demonstrate the accuracy,
stability and positivity-preserving of the proposed method, respectively. The conclusion is given at the
end of this paper.

2. Preliminaries

First, we divide the domain [a, b] × (0,T ] with positive integers M and N. The space step size
h = (b − a)/N, and the time step size τ = T/M, respectively. (xi, tn) denotes the mesh points, where
xi = a + ih, tn = nτ, 0 ≤ i ≤ N , 0 ≤ n ≤ M. Figure 1 represents the one-dimensional space-time
discrete subdomain.

M

N0 x0

t

i-1 i i+1

n-4
n-3
n-2
n-1

n

Figure 1. Grid points stencil.

Then, we define Ωh = {xi|0 ≤ i ≤ N}, Ωτ = {tn|0 ≤ n ≤ M}, Ωhτ = Ωh × Ωτ. For any grid function
w ∈ Wτ = {wn|0 ≤ n ≤ M} defined on Ωτ, denote

wn− 1
2 =

1
2

(wn + wn−1), δtwn− 1
2 =

1
τ

(wn − wn−1),

∆twn =
1

12τ
(25wn − 48wn−1 + 36wn−2 − 16wn−3 + 3wn−4).

For any grid function w ∈ Wh = {wi|0 ≤ i ≤ N} defined on Ωh, denote

δxwi− 1
2
=

1
h

(wi − wi−1), 1 ≤ i ≤ N,
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δ2
xwi =

1
h2 (wi+1 − 2wi + wi−1), 1 ≤ i ≤ N − 1,

Next, for simplicity, we denote ∂
pw
∂ςp (x, t) := wςp(x, t), p ∈ Z+, ς may represents x or t. In order to

obtain the boundary schemes with the fourth-order accuracy, we use the Taylor expansion with Peano
remainder to process the homogeneous Neumann boundary condition (1.3), and obtain the following
theorem.

Theorem 2.1. For any function w(x) : Ωh →Wh, we have
(1) If w(x) ∈ C5[x0, x4], and wx(x0) = 0, then

w(x0) =
1

25
[48w(x1) − 36w(x2) + 16w(x3) − 3w(x4)] + O0(h4), (2.1)

where O0(h4) = − 2
25h4
∫ 1

0
(1− s)4[wx5(x0+ sh)−24wx5(x0+2sh)+81wx5(x0+3sh)−64wx5(x0+4sh)]ds.

(2) If w(x) ∈ C5[xN−4, xN], and wx(xN) = 0, then

w(xN) =
1

25
[48w(xN−1) − 36w(xN−2) + 16w(xN−3) − 3w(xN−4)] + ON(h4), (2.2)

where ON(h4) = 2
25h4
∫ 1

0
(1− s)4[wx5(xN − sh)− 24x5(xN − 2sh)+ 81wx5(xN − 3sh)− 64wx5(xN − 4sh)]ds.

Proof. First, we expand w(x1), w(x2), w(x3), w(x4) at w(x0) by using Taylor expansion with Peano
remainder [44]

w(x0 + h) =
k∑

l=0

hl

l!
wxl(x0) +

hk+1

k!

∫ 1

0
wxk+1(x0 + sh)(1 − s)kds, w ∈ Ck+1.

That is

w(x1) = w(x0) + hwx(x0) +
h2

2
wx2(x0) +

h3

6
wx3(x0) +

h4

24
wx4(x0) +

h5

24

∫ 1

0
wx5(x0 + sh)(1 − s)4ds,

(2.3)

w(x2) = w(x0) + 2hwx(x0) +
4h2

2
wx2(x0) +

8h3

6
wx3(x0) +

16h4

24
wx4(x0)

+
32h5

24

∫ 1

0
wx5(x0 + 2sh)(1 − s)4ds, (2.4)

w(x3) = w(x0) + 3hwx(x0) +
9h2

2
wx2(x0) +

27h3

6
wx3(x0) +

81h4

24
wx4(x0)

+
243h5

24

∫ 1

0
wx5(x0 + 3sh)(1 − s)4ds, (2.5)

w(x4) = w(x0) + 4hwx(x0) +
16h2

2
wx2(x0) +

64h3

6
wx3(x0) +

256h4

24
wx4(x0)

+
1024h5

24

∫ 1

0
wx5(x0 + 4sh)(1 − s)4ds. (2.6)
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Second, we multiply the left and right sides of the above Eqs (2.4)–(2.6) by α̃, β̃ and γ̃, and
respectively add with the left and right sides of Eq (2.3) to obtain the following linear form,

w(x1) + α̃w(x2) + β̃w(x3) + γ̃w(x4) = (1 + α̃ + β̃ + γ̃)w(x0) + (1 + 2α̃ + 3β̃ + 4γ̃)hwx(x0)

+ (1 + 4α̃ + 9β̃ + 16γ̃)
h2

2
wx2(x0) + (1 + 8α̃ + 27β̃ + 64γ̃)

h3

6
wx3(x0)

+ (1 + 16α̃ + 81β̃ + 256γ̃)
h4

24
wx4(x0) + Õ0(h5), (2.7)

where

Õ0(h5) =
h5

24

∫ 1

0
wx5(x0 + sh)(1 − s)4ds +

32h5

24
α̃

∫ 1

0
wx5(x0 + 2sh)(1 − s)4ds

+
243h5

24
β̃

∫ 1

0
wx5(x0 + 3sh)(1 − s)4ds +

1024h5

24
γ̃

∫ 1

0
wx5(x0 + 4sh)(1 − s)4ds

=
h5

24

∫ 1

0
(1 − s)4[wx5(x0 + sh) + 32α̃wx5(x0 + 2sh) + 243β̃wx5(x0 + 3sh) + 1024γ̃wx5(x0 + 4sh)]ds.

We let the coefficients of the second, third, and fourth-order derivatives in Eq (2.7) equal to 0, that is,
1 + 4α̃ + 9β̃ + 16γ̃ = 0, (2.8)
1 + 8α̃ + 27β̃ + 64γ̃ = 0, (2.9)
1 + 16α̃ + 81β̃ + 256γ̃ = 0. (2.10)

It is easy to solve the above linear Eqs (2.8)–(2.10) to obtain, α̃ = −3
4 , β̃ = 1

3 , γ̃ = − 1
16 . Substitute them

into Eq (2.7), and notice wx(x0) = 0, we have

wx(x0) =
1

12h
[48w(x1) − 36w(x2) + 16w(x3) − 3w(x4) − 25w(x0) − 48Õ0(h5)] = 0, (2.11)

then

w(x0) =
1

25
[48w(x1) − 36w(x2) + 16w(x3) − 3w(x4) − 25w(x0)] + O0(h4), (2.12)

where O0(h4) = − 2
25h4
∫ 1

0
(1− s)4[wx5(x0+ sh)−24wx5(x0+2sh)+81wx5(x0+3sh)−64wx5(x0+4sh)]ds.

In the similar way, Eq (2.2) also can be proved. □

For simplicity, for any grid function w ∈ Wh, define the following average operatorA, i.e.,

Awi =



1
25

(48w1 − 36w2 + 16w3 − 3w4), i = 0, (2.13)

1
12

(wn
i+1 + 10wn

i + wn
i−1), 1 ≤ i ≤ N − 1, (2.14)

1
25

(48wN−1 − 36wN−2 + 16wN−3 − 3wN−4), i = N. (2.15)
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In addition, we are inspired by Theorem 2.1, suppose w(x, t) ∈ C6,5([a, b] × (0,T ]), for 1 ≤ i ≤ N − 1,
define

Oxxi(h4) =
h4

24

∫ 1

0

{1
3

(1 − s)3[wx4(xi + sh) + wx4(xi − sh)]

−
1
5

(1 − s)5[wx6(xi + sh) + wx6(xi − sh)]
}
ds,

On
xxi(h

4) =
h4

24

∫ 1

0

{1
3

(1 − s)3[wx4(xi + sh, tn) + wx4(xi − sh, tn)]

−
1
5

(1 − s)5[wx6(xi + sh, tn) + wx6(xi − sh, tn)]
}
ds, 1 ≤ n ≤ M,

On
ti(τ

4) = −
τ4

6

∫ 1

0
(1 − µ)4[wt5(xi, tn − µτ) − 24wt5(xi, tn − 2µτ)

+ 81wt5(xi, tn − 3µτ) − 64wt5(xi, tn − 4µτ)]dµ, 4 ≤ n ≤ M,

On
0(h4) = −

2h4

25

∫ 1

0
(1 − s)4[wx5(x0 + sh, tn) − 24wx5(x0 + 2sh, tn)

+ 81wx5(x0 + 3sh, tn) − 64wx5(x0 + 4sh, tn)]ds, 4 ≤ n ≤ M,

On
N(h4) =

2h4

25

∫ 1

0
(1 − s)4[wx5(xN − sh, tn) − 24wx5(xN − 2sh, tn)

+ 81wx5(xN − 3sh, tn) − 64wx5(xN − 4sh, tn)]ds, 4 ≤ n ≤ M,

On
xi(h

4) =
h4

12

∫ 1

0

{1
3

(1 − s)3[wx4(xi + sh, tn) + wx4(xi − sh, tn)]

−
1
4

(1 − s)4[wx5(xi + sh, tn) + wx5(xi − sh, tn)]
}
ds, 1 ≤ n ≤ M,

On− 1
2

xxi (h4) =
h4

24

∫ 1

0

{1
3

(1 − s)3[wx4(xi + sh, tn− 1
2
) + wx4(xi − sh, tn− 1

2
)]

−
1
5

(1 − s)5[wx6(xi + sh, tn− 1
2
) + wx6(xi − sh, tn− 1

2
)]
}
ds, 1 ≤ n ≤ 3,

On− 1
2

ti (τ2) = −
τ2

16

∫ 1

0
(1 − µ)2[wt3(xi, tn− 1

2
+
µτ

2
) + wt3(xi, tn− 1

2
−
µτ

2
)]dµ, 1 ≤ n ≤ 3,

Õn− 1
2

i (τ2) = −
τ2

4

∫ 1

0
(1 − µ)[wt2(xi, tn− 1

2
+
µτ

2
) + wt2(xi, tn− 1

2
−
µτ

2
)]dµ, 1 ≤ n ≤ 3.

3. Derivation for the HOC difference scheme

In this section, we derive an HOC difference scheme for solving the Keller-Segel chemotaxis models
(1.1)–(1.3). Define a grid function U = {Un

i |0 ≤ i ≤ N, 0 ≤ n ≤ M} on Ωhτ to be the solution of (1.4)–

(1.6), where Un
i =

[
u(xi, tn)
v(xi, tn)

]
. Considering the semi-discrete difference form of Eq (1.4) at point xi, we

have

Uti + (Fx)i = DUxxi + Ri, 1 ≤ i ≤ N − 1. (3.1)
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For the second derivative term on the right-hand side (RHS) of Eq (3.1), by using the fourth-order
compact difference formula [47], i.e., Uxxi = A

−1δ2
xUi +A

−1Oxxi(h4), 1 ≤ i ≤ N − 1, and rearranging
it, we have

AUti +A(Fx)i = Dδ2
xUi +ARi + Oxxi(h4), 1 ≤ i ≤ N − 1. (3.2)

3.1. Fully implicit compact difference scheme

We consider Eq (3.2) at the nth time step, i.e.,

AUn
ti +A(Fx)n

i = Dδ2
xU

n
i +ARn

i + On
xxi(h

4), 1 ≤ i ≤ N − 1, 1 ≤ n ≤ M. (3.3)

And discrete the time derivative term on the left-hand side (LHS) of Eq (3.3) by using the fourth-order
backward differencing formula (BDF) [43], i.e.,

Un
ti = (25Un

i − 48Un−1
i + 36Un−2

i − 16Un−3
i + 3Un−4

i )/12τ + On
ti(τ

4)
:= ∆tU

n
i + On

ti(τ
4), 1 ≤ i ≤ N − 1, 4 ≤ n ≤ M.

Using the notations above, combining the initial and boundary conditions (1.5)–(1.6), and Lemma 2.1,
we can obtain

A∆tU
n
i +A(Fx)n

i = Dδ2
xU

n
i +ARn

i +Qn
i , 1 ≤ i ≤ N − 1, 4 ≤ n ≤ M, (3.4)

U0
i = φ(xi), 0 ≤ i ≤ N, (3.5)
Un

0 = AU
n
0 +Qn

0, 4 ≤ n ≤ M, (3.6)
Un

N = AU
n
N +Qn

N , 4 ≤ n ≤ M, (3.7)

where Qn
i = On

ti(τ
4) + On

xxi(h
4), Qn

0 = On
0(h4), and Qn

N = On
N(h4). Then, there exist constants c1, c2 and

c3 such that

|Qn
i | ≤


c1(h4), i = 0, 4 ≤ n ≤ M, (3.8)
c2(τ4 + h4), 1 ≤ i ≤ N − 1, 4 ≤ n ≤ M, (3.9)
c3(h4), i = N, 4 ≤ n ≤ M. (3.10)

Omitting the small terms Qn
i in Eqs (3.4)–(3.7), replacingUn

i with Un
i , we can get the difference scheme

for solving the Keller-Segel models (1.1)–(1.3) when n ≥ 4
A∆tUn

i +A(Fx)n
i = Dδ2

xU
n
i +ARn

i , 1 ≤ i ≤ N − 1, 4 ≤ n ≤ M. (3.11)
U0

i = φ(xi), 0 ≤ i ≤ N, (3.12)
Un

0 = AUn
0, 4 ≤ n ≤ M, (3.13)

Un
N = AUn

N , 4 ≤ n ≤ M. (3.14)

Considering the Fx in the difference schemes (3.11)–(3.14) are nonlinear, we move them to the
RHS of the equation, and use a nonlinear cycle iterative method to compute them. To obtain the
fourth-order accuracy in the spatial direction, we employ the following fourth-order Padé compact
difference scheme [48]

1
6

(Fx)n
i+1 +

2
3

(Fx)n
i +

1
6

(Fx)n
i−1 =

Fn
i+1 − Fn

i−1

2h
+ On

xi(h
4), 1 ≤ i ≤ N − 1, 1 ≤ n ≤ M, (3.15)

Mathematical Biosciences and Engineering Volume 19, Issue 7, 6764–6794.



6772

in which, for the values of Fx at the boundary points, we employ the consistent fourth-order boundary
scheme in [49], which is very stable for advection dominant problems, to compute them as follows

(Fx)n
0 +

14
15

(Fx)n
1 =

1
h

(−
184
75

Fn
0 +

703
180

Fn
1 −

89
30

Fn
2 +

67
30

Fn
3 −

77
90

Fn
4 +

41
300

Fn
5), (3.16)

(Fx)n
N −

14
15

(Fx)n
N−1 =

1
h

(
52
25

Fn
N −

1067
180

Fn
N−1 +

67
10

Fn
N−2 −

41
10

Fn
N−3 +

133
90

Fn
N−4 −

69
300

Fn
N−5). (3.17)

For the computation of the vx in Fx, we also use the fourth-order Padé scheme similar to Eq (3.15) and
the fourth-order boundary difference schemes similar to Eqs (3.13) and (3.14) to compute them.

Remark 3.1. In the computation, the nonlinear cycle iterative process is shown as follows

• At the nth time step, using (Fx)n−1
i to approximate (Fx)n

i , and then compute Un
i .

• Updating the values of (Fx)n
i , then compute Un

i again.

Repeat computations in turn till ∥Un,(k)
i − Un,(k−1)

i ∥ less than a small amount σ, set Un,(∗)
i ← Un,(k)

i ,
1 ≤ i ≤ N − 1, 1 ≤ n ≤ M, where k is iteration number and ∗ is the approximate convergent solution.
Then proceed the computation to the next time step.

Remark 3.2. Noticing that the schemes (3.11)–(3.14) requires to solve the system of nonlinear
algebraic equations at each time step, and the difference equation is tri-diagonal at each time step, we
can use the Thomas algorithm [50] to solve them. See the time advancement algorithm in Subsection
4.2 for details.

Remark 3.3. It is not difficult to find that Eqs (3.11)–(3.14) is a five-level fully implicit compact
difference scheme for solving the system (1.4)–(1.6). Nonetheless, the new difference scheme not only
has fourth-order accuracy in the spatial direction, but also has fourth-order accuracy in the temporal
direction. And the compactness above only refers to the spatial direction with three grid points,
however, it is not compact in the temporal direction since five time steps are involved.

Remark 3.4. Noticing the schemes (3.11)–(3.14) is five-level, when we use it to solve the system (1.4)–
(1.6) step by step, we need to compute the first, second, and third start-up time steps. We give the
computational method for them in the next part.

3.2. Computation for the start-up time steps

We consider Eq (3.2) at the (n − 1
2 )th time step, i.e.,

AU
n− 1

2
ti +A(Fx)

n− 1
2

i = Dδ2
xU

n− 1
2

i +ARn− 1
2

i + On− 1
2

xxi (h4), 1 ≤ i ≤ N − 1, 1 ≤ n ≤ 3. (3.18)

The Crank-Nicolson method is used to discretize the time derivative term on the LHS of Eq (3.18), i.e.,

U
n− 1

2
ti =

1
τ

(Un
i − U

n−1
i ) + On− 1

2
ti (τ2) := δtU

n− 1
2

i + On− 1
2

ti (τ2), 1 ≤ i ≤ N − 1, 1 ≤ n ≤ 3.

We take the weighted average of the nth and (n − 1)th time steps for other items. That is, Θn− 1
2

i =

1
2 (Θn

i + Θ
n−1
i ) + Õn− 1

2
i (τ2), 1 ≤ i ≤ N − 1, 1 ≤ n ≤ 3. (Θ could be U,F,R in Eq (3.18)). Similarly,
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combining the initial and boundary conditions (1.5),(1.6) and Lemma 2.1, we have

AδtU
n− 1

2
i +A(Fx)

n− 1
2

i = Dδ2
xU

n− 1
2

i +ARn− 1
2

i + Pn− 1
2

i , 1 ≤ i ≤ N − 1, 1 ≤ n ≤ 3, (3.19)
U0

i = φ(xi), 0 ≤ i ≤ N, (3.20)

U
n− 1

2
0 = AU

n− 1
2

0 + Pn− 1
2

0 , 1 ≤ n ≤ 3, (3.21)

U
n− 1

2
N = AU

n− 1
2

N + Pn− 1
2

N , 1 ≤ n ≤ 3, (3.22)

where Pn− 1
2

i = On− 1
2

ti (τ2) + On− 1
2

xxi (h4), Pn− 1
2

0 = On− 1
2

0 (h4), and Pn− 1
2

N = On− 1
2

N . Then, there exist constants c4,
c5 and c6 such that

|Pn− 1
2

i | ≤


c4(h4), i = 0, 1 ≤ n ≤ 3, (3.23)
c5(τ2 + h4), 1 ≤ i ≤ N − 1, 1 ≤ n ≤ 3, (3.24)
c6(h4), i = N, 1 ≤ n ≤ 3. (3.25)

Omitting the small terms Pn− 1
2

i in Eqs (3.19)–(3.22), replacing Un− 1
2

i with Un− 1
2

i , we can get the start-up
time steps difference scheme for solving the Keller-Segel models (1.1)–(1.3) as follows

AδtU
n− 1

2
i +A(Fx)

n− 1
2

i = Dδ2
xU

n− 1
2

i +ARn− 1
2

i , 1 ≤ i ≤ N − 1, 1 ≤ n ≤ 3, (3.26)
U0

i = φ(xi), 0 ≤ i ≤ N, (3.27)

Un− 1
2

0 = AUn− 1
2

0 , 1 ≤ n ≤ 3, (3.28)

Un− 1
2

N = AUn− 1
2

N , 1 ≤ n ≤ 3. (3.29)

Remark 3.5. For the computational strategy for chemotaxis term (Fx)
n− 1

2
i in the difference schemes

(3.26)–(3.29), similarly, we can employ Eqs (3.15)–(3.17) to compute them. At the same time, we
employ Eq (3.15) and the boundary difference schemes (3.28) and (3.29) to compute the vx in Fx.

Remark 3.6. Equations (3.26)–(3.29) is two-level implicit difference scheme. It has the second-order
accuracy in the temporal direction and the fourth-order accuracy in the spatial direction.

Remark 3.7. According to the derivation process above, for the start-up time steps schemes
(3.26)–(3.29), the Crank-Nicolson method is employed to discretize the temporal derivative term, and
the fourth-order compact difference formula is used to discretize the spatial derivative terms, so the
start-up time steps difference schemes (3.26)–(3.29) is unconditionally stable. For the fully implicit
four-order compact difference schemes (3.11)–(3.14), the BDF-4 formula is employed to discretize the
temporal derivative term, and the space derivative term is computed by using the fourth-order
compact difference formulas and the fourth-order Padé formulas respectively. Therefore, according
to [41–43], the fully implicit four-order compact difference schemes (3.11)–(3.14) is stiffly-stable.

3.3. Richardson’s extrapolation in time dimension

We can employ the difference schemes (3.26)–(3.29) to compute the start-up time steps (i.e., n =
1, 2, 3) from the initial value U0. Notice that the HOC difference schemes (3.11)–(3.14) have the
fourth-order accuracy in the temporal direction, however, the difference schemes (3.26)–(3.29) have
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only second-order accuracy. To obtain the same accuracy in the temporal direction as the schemes
(3.11)–(3.14), the accuracy of the start-up time steps is improved to the fourth-order by using the
Richardson extrapolation technique as follows

Un(τ, h) =
4U2n(τ/2, h) − Un(τ, h)

3
, (3.30)

where Un(τ, h) in the LHS of Eq (3.30) is the extrapolated numerical solution of the start-up time
steps. Un(τ, h) in the RHS of Eq (3.30) is the numerical solution when time step length is taken as τ.
U2n(τ/2, h) is the numerical solution when time step length is taken as τ/2.

Remark 3.8. We only use Eq (3.30) to extrapolate the start-up time steps (i.e., n = 1, 2, 3) step by step
on the basis of the difference schemes (3.26)–(3.29), and the extrapolated solutions for the start-up
time steps has the fourth-order accuracy in the temporal direction.

4. Numerical algorithm

In order to obtain the biologically non-negative positivity-preserving of the cell density u(xi, tn) and
the concentration of the chemoattractant v(xi, tn), we establish the positivity-preserving algorithm and
the time advancement algorithm based on the developed schemes in this section.

4.1. Positivity-preserving algorithm

The solution obtained by using the difference schemes (3.11)–(3.14) and (3.26)–(3.29) may
become negative, especially in the area where the value changes greatly in the physical domain, the
solution exhibits a large gradient. To force the positivity of the cell density u(xi, tn) and
chemoattractant concentration v(xi, tn) at all time discrete steps, similar to the [33] and using
Lemma 2.1, combining with the boundary discrete methods (3.6) and (3.7) and Eqs (3.21) and (3.22)
in Section 3, we define the following solutions average

U
n
i =



1
5

4∑
i=0

Un
i , i = 0, 0 < n ≤ M, (4.1)

1
6

Un
i−1 +

2
3

Un
i +

1
6

Un
i+1, i = 1, 2, · · · ,N − 1, 0 < n ≤ M, (4.2)

1
5

N∑
i=N−4

Un
i , i = N, 0 < n ≤ M. (4.3)

We use the following positivity-preserving limiter (PPL) [33, 45, 46] to filter the solution Un
i , i =

0, 1, · · · ,N, 0 < n ≤ M, at each time step and obtain the positivity-preserving solution Ũn
i ≥ 0, i =

0, 1, · · · ,N, 0 < n ≤ M, without losing the fourth-order accuracy.

Ũn
i = min

∣∣∣∣ U
n
i

U
n
i −ϖi

∣∣∣∣, 1 (Un
i − U

n
i ) + U

n
i , i = 0, 1, · · · ,N, 0 < n ≤ M, (4.4)
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where

ϖi =


min{Un

0,U
n
1,U

n
2,U

n
3,U

n
4}, i = 0, 0 < n ≤ M, (4.5)

min{Un
i−1,U

n
i ,U

n
i+1}, i = 1, 2, · · · ,N − 1, 0 < n ≤ M, (4.6)

min{Un
N ,U

n
N−1,U

n
N−2,U

n
N−3,U

n
N−4}, i = N, 0 < n ≤ M. (4.7)

Then, we establish the following positivity-preserving algorithm.

Algorithm 1. Positivity-preserving algorithm.
for n = 1, 2, · · · , M, do

1. Compute the solution Un
i o f the nth time step by using the di f f erence schemes (3.11)–(3.14)

and Eqs (3.26)–(3.29);
2. Compute the solutions average U

n
i o f the nth time step by using Eqs (4.1)–(4.3);

3. Compute the f iltered solutions Ũn
i o f the nth time step by using the PPL (4.4)–(4.7).

end for

4.2. Time advancement algorithm

Noticing that the implicit schemes (3.11)–(3.14) and Eqs (3.26)–(3.29) require to solve the system
of nonlinear algebraic equations at each time step. Because the difference equation is tri-diagonal and
only three grid points are used at each time step, we can solve them by using the Thomas algorithm [50].
And since the schemes (3.11)–(3.14) and Eqs (3.26)–(3.29) are nonlinear, linearized iterative strategy
is used to solve them. The time advancement algorithm with linearized iteration process is described
next page.

5. Numerical experiments

In this section, we employ several examples to verify the various performances of the proposed
method for solving the Keller-Segel chemotaxis models (1.1)–(1.3). First, we simulate the
non-constant stationary solution of the Keller-Segel chemotaxis model in Subsection 5.1, and
separately analyze the evolution of the solution over time and the asymptotic behavior of the solution
under the strong chemotaxis sensitivity coefficient χ. Second, we test the accuracy, convergence,
stability and positivity-preserving of the proposed method for solving the Keller-Segel chemotaxis
models (1.1)–(1.3) in Subsection 5.2.

We use homogeneous Neumann boundary conditions for all numerical examples. The computations
are programmed in Fortran 90 language with double precision arithmetic and are implemented on a
Intel(R)Core(TM) i7-8550U CPU@1.80 GHz 2.00 GHz , 8 GB RAM Windows workstation. The L∞,
L2 norm errors and convergence rate are defined as

L∞ = max
0≤i≤N

|UM
i − U(xi, tM)|, L2 =

√√
h

N∑
i=0

[UM
i − U(xi, tM)]2, Rate =

log[Lρ(h1)/Lρ(h2)]
log(h1/h2)

,

where U(xi, tM) and UM
i represent the exact and numerical solutions at point (xi, tM), respectively. Lρ(h1)

and Lρ(h2) denote the relevant Lρ norm errors when the grid sizes are h1 and h2, respectively, in which,
ρ could be∞ or 2.
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Algorithm 2. Time advancement algorithm.
Give the f unction values o f the initial time step, i.e., U0

i = φ(xi);
for n = 1, 2, · · · , M do

if 1 ≤ n ≤ 3 then
R2(n−1)

i = R2(n−1),(∗)
i (h, τ/2), R(n−1)

i = R(n−1),(∗)
i (h, τ);

Compute the f ollowing (n − 1)th time step chemotaxis terms by using Eqs (3.15)–(3.17);
(Fx)

2(n−1)
i = (Fx)

2(n−1),(∗)
i (h, τ/2), (Fx)

(n−1)
i = (Fx)

(n−1),(∗)
i (h, τ);

for k = 1, 2, 3, · · · do
Compute the boundary values Un

0 and Un
N by using Eqs (3.28)–(3.29), i.e.,

U2n,k
0 = AU2n,k−1

0 (h, τ/2), U2n,k
N = AU2n,k−1

N (h, τ/2);
Un,k

0 = AUn,k−1
0 (h, τ), Un,k

N = AUn,k−1
N (h, τ);

R2n,(k)
i = R2n,(k−1)

i (h, τ/2), Rn,(k)
i = Rn,(k−1)

i (h, τ);
Compute the f ollowing nth time step chemotaxis terms by using Eqs (3.15)–(3.17);
(Fx)

2n,(k)
i = (Fx)

2n,(k−1)
i (h, τ/2), (Fx)

n,(k)
i = (Fx)

n,(k−1)
i (h, τ);

Compute U2n,(k)
i (h, τ/2) and Un,(k)

i (h, τ) and by using Eqs (3.26)–(3.29) and the
Thomas algorithm;

if ||U2n,(k)
i (h, τ/2) − U2n,(k−1)

i (h, τ/2)|| < σ and ||Un,(k)
i (h, τ) − Un,(k−1)

i (h, τ)|| < σ then
U2n,(∗)

i (h, τ/2) = U2n,(k)
i (h, τ/2), Un,(∗)

i (h, τ) = Un,(k)
i (h, τ);

end if
end for

Compute the extrapolated solution Un,(∗)
i by using Eq (3.30);

else
for k = 1, 2, 3, · · · , do

Compute the boundary values Un
0 and Un

N by using Eqs (3.13) and (3.14), i.e.,
Un,k

0 = AUn,k−1
0 (h, τ), Un,k

N = AUn,k−1
N (h, τ);

Rn,(k)
i = Rn,(k−1)

i (h, τ);
Compute the f ollowing nth time step chemotaxis terms by using Eqs (3.15)–(3.17);
(Fx)

n,(k)
i = (Fx)

n,(k−1)
i (h, τ);

Compute Un,(k)
i (h, τ) and by using Eqs (3.11)–(3.14) and the Thomas algorithm;

if ||Un,(k)
i (h, τ) − Un,(k−1)

i (h, τ)|| < σ then
Un,(∗)

i (h, τ) = Un,(k)
i (h, τ);

end if
end for

end if
Compute the positivity − preserving solution Ũn

i by using the Algorithm 1.
end for

Note: k is iteration number and ∗ is convergent approximation solution.

5.1. Asymptotic behavior of the solution

In this subsection, we employ the proposed method to solve two different types of Keller-Segel’s
minimal models with different initial values, and analyze the evolution of the solutions over time and
the asymptotic behavior under strong chemotaxis sensitivity coefficients χ.
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5.1.1. Keller-Segel’s minimal model I

First, we consider the following Keller-Segel’ minimal chemotaxis model [8, 23]
ut = uxx − (χuvx)x, x ∈ Ω, t > 0, (5.1)
vt = vxx − v + u, x ∈ Ω, t > 0, (5.2)
ux = vx = 0, x ∈ ∂Ω, t > 0, (5.3)

where Ω = [0, π], and the initial conditions are as follows
u(x, 0) =

2
π
+ 0.01 cos(2x), x ∈ Ω,

v(x, 0) =
2
π
+ 0.01e−x, x ∈ Ω.

This system has a constant solution (ū, v̄), and the initial values of the system are a small disturbance
of the (ū, v̄). When χ > π, the constant solution is unstable. According to [23], this minimal model has
a monotonically decreasing non-constant stationary solution. In particular, the asymptotic expression
for the steady problem of the minimal model is given in [8] as follows

u(x, χ) =
2χ

cosh2(χx)
+

2(ϕ(χx) − c − (χx)2 coth l)
cosh2(χx)

+
O(1)e−µχx

χ
, (5.4)

v(x, χ) =
2 cosh(l − x)

sinh l
−

2
χ

ln(1 + e−2χx) +
O(1)
χ2 , (5.5)

where

µ =
tanh(l/2)

l
, c = 2 coth l

∫ ∞

0

z2φ2(z)
cosh2 z

dz, ϕ(y) = 2
∫ ∞

y
(c − z2 coth l)

φ2(y)φ1(z) − φ1(y)φ2(z)
cosh2 z

dz,

and φ1(y) := tanh y, φ2(y) := 1 − y tanh y, O(1) denotes a generic quantity bounded by a constant
depending only on l = π.

Case 1. The evolution process of the system (5.1)–(5.3) over time. Figure 2 shows the formation
process of the monotonic edge peak solution of the minimal model in [0, π], with N = 27, τ = 0.1h,
χ = 5. From left to right, they represent the initial values, intermediate changes and stationary solution
of (u, v), respectively. Figure 3 shows the space-time distributions of the stationary solution formed by
the evolution of u and v over time, respectively. From these figures, it is not difficult to find that (u, v)
stays near the above initial value for a long period of time, and starts to approach the left end of the
x−direction rapidly at t ≈ 10, and a sharp peak solution is formed at t ≈ 18 in the left boundary of
x−direction, and finally a stable edge peak solution is formed at t ≈ 20.

Case 2. The asymptotic behavior of the solution for the system (5.1)–(5.3) under the strong
chemotaxis coefficient χ. Figures 4 and 5 show the δ−function structure formed when the chemotaxis
coefficient χ is large. In each subfigure, the dotted dashed line (blue in the color map) represents the
stationary solution of the minimal models (5.1)–(5.3), and the solid line (purple in the color map)
represents the asymptotic expansion (5.4) and (5.5) of the stationary solution in [8]. As can be seen
from these subfigures, when the chemotaxis coefficient χ increases, the distribution of the cell density
u(x, t) tends to a δ−function, and the distribution of the chemical concentration v(x, t) tends to a
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Green’s function. And these monotonic stationary solutions are stable, which is in good agreement
with the asymptotic expansion (5.4) and (5.5).
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Figure 2. The Keller-Segel’s minimal model forms the monotonic edge peak solution in
[0, π], with N = 27, τ = 0.1h, χ = 5, respectively, for Problem 5.1.1.
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Figure 3. Space-time distribution of u(x, t) and v(x, t), with N = 27, τ = 0.1h, χ = 5, for
Problem 5.1.1.
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Figure 4. The asymptotic behavior of the monotonic stationary solution under the strong
chemotaxis coefficient χ = 2π, and 7π/3, for Problem 5.1.1.
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Figure 5. The asymptotic behavior of the monotonic stationary solution under the strong
chemotaxis coefficient χ = 7π/2, 13π/3, and 5π, for Problem 5.1.1.
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Figure 6. Numerical simulation of the minimal model showing evolution of cell density
u(x, t) and chemical concentrations v(x, t) to the steady state for Problem 5.1.2.
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5.1.2. Keller-Segel’s minimal model II

Next, we consider another Keller-Segel’s minimal chemotaxis model [9]
ut = duxx − (χuvx)x, x ∈ Ω, t > 0, (5.6)
vt = vxx − v + u, x ∈ Ω, t > 0, (5.7)
ux = vx = 0, x ∈ ∂Ω, t > 0, (5.8)

where Ω = [0, 1], and the initial conditions as follows{
u(x, 0) = 1, x ∈ Ω,
v(x, 0) = 1 + 0.1e−10x2

, x ∈ Ω.

In the computation below, we take the parameters d = 0.1, χ = 5, N = 50 and τ = 0.5 h. In Figure 6,
numerical simulations of the minimal model is plotted on a fixed domain [0, 1] with homogeneous
Neumann boundary, at different moments t = 0, 0.5, 1, 1.5, 2, 10. The cell density u(x, t) and chemical
concentration v(x, t) are plotted at distinct times, showing the growth of the minimal models (5.6)–(5.8)
solution as cells accumulate into a sharp boundary peak. Figure 7 shows the stationary solution and
space-time distribution of minimal models (5.6)–(5.8) evolving over time.
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Figure 7. The time evolution and space-time distribution of u(x, t) and v(x, t) for Problem
5.1.2.
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5.2. Performance testing

In this subsection, we employ three different types of examples to test the performances of the
developed difference schemes in this paper for solving the Keller-Segel chemotaxis models (1.1)–(1.3),
which include the accuracy, stability and positivity-preserving.

5.2.1. Accuracy and stability test without PPL

First, we study the accuracy and stability of the difference scheme without PPL for solving the
system (1.1)–(1.3). To this end, we consider the Keller-Segel chemotaxis model with two additional
fluxes r1(x, t) and r2(x, t) on the RHS of system (1.1)–(1.3) as follows{

ut = duxx − (χuvx)x + r1(x, t), x ∈ [0, π], t > 0, (5.9)
vt = vxx − v + u + r2(x, t), x ∈ [0, π], t > 0, (5.10)

with homogeneous Neumann boundary conditions, where χ = d = 1 and the fluxes are given by{
r1(x, t) = 0.1(2 − 2 sin2(x) − cos(x))e−2(cos(x)−2t) + 0.001(4 sin2(x) + cos(x))e−4(cos(x)−2t),

r2(x, t) = −0.02(2 sin2(x) + cos(x))e−2(cos(x)−2t).

The initial conditions u(x, 0) and v(x, 0) are given by the exact solution{
u(x, t) = 0.05e−2(cos(x)−2t), x ∈ [0, π], t > 0,
v(x, t) = 0.01e−2(cos(x)−2t), x ∈ [0, π], t > 0.

In this computation, we take the time step length τ = 0.5 h, and T = 1. Figure 8 shows that the L∞,
L2 norm errors and convergence rates of the cell density u(x, t) and the chemoattractant concentration
v(x, t), respectively. Where, we take space step length h = π/512, π/256, π/128, π/64, π/32 from left
to right. It is not difficult to find from Figure 8 that in the two cases, when we take a large time step
length τ = O(h), the difference scheme can still converge with the fourth-order. In Table 1, we set
grid ratio λ = τ/h, and take numbers of grids N = 128, 256, 512, to test the stability of the difference
schemes when the grid ratio λ gradually increases, respectively. According to the Table 1, we find the
difference schemes have better stability. Through this numerical experiment, the theoretical results of
this paper are well verified.
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10-4
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10-2

Figure 8. The L∞, L2 norm errors and convergence rates of u(x, t) and v(x, t), with h =
π/512, π/256, π/128, π/64, π/32, for Problem 5.2.1.
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Table 1. The L2 norm errors with T = 1, τ = λh for Problem 5.2.1.

N λ ||u(x, t)||L2 ||v(x, t)||L2

1.6 1.90183885 × 10−3 4.46117184 × 10−4

128 3.2 3.05696889 × 10−2 6.44435586 × 10−3

6.4 0.157946045 3.57732805 × 10−2

3.2 1.88335130 × 10−3 4.43559935 × 10−4

256 6.4 3.02299103 × 10−2 6.41183666 × 10−3

12.8 0.156489068 3.56039197 × 10−2

6.4 1.87394020 × 10−3 4.42512138 × 10−4

512 12.8 3.00583105 × 10−2 6.39577452 × 10−3

25.6 0.155756164 3.55191849 × 10−2

5.2.2. Accuracy and stability test with PPL

Next, we test the accuracy and stability of the proposed method with positivity or bound-preserving
limiter (BPL) for solving Keller-Segel chemotaxis models (1.1)–(1.3). Meanwhile, we will compare
the computed results with those without PPL. To this end, we continue to consider the Keller-Segel
chemotaxis models (5.9) and (5.10) with additional fluxes in Subsection 5.2.1. We take χ = d = 1, but
the fluxes are

{
r1(x, t) = −e−2t cos(2x), x ∈ [0, 2π], t > 0,
r2(x, t) = 0, x ∈ [0, 2π], t > 0.

The initial conditions u(x, 0) and v(x, 0) are given by the exact solution u(x, t) = v(x, t) = e−t cos(x).

In Table 2, we list the L∞, L2 norm errors and convergence rate of the cell density u(x, t) with/without
BPL when τ = 0.1h,T = 0.2, for Problem 5.2.2, and compare the computed results with those in [33].
It can be observed from this table that the results obtained by the proposed method can not only
converge with the fourth-order accuracy before adopting the BPL, but also the fourth-order accuracy
are maintained after adopting the BPL. However, the computed result in [33] has only third-order
accuracy, and the errors obtained by the proposed method is 2-3 orders of magnitude lower than the
errors obtained in [33]. Tables 3 and 4 show that the L∞, L2 norm errors and convergence rates of the
cell density u(x, t) and chemoattractant concentration v(x, t) with/without BPL when τ = 0.5h,T = 1
for Problem 5.2.2, respectively. From these two tables, it can still be found that when we take a large
time step τ = O(h), the results obtained before and after the BPL using the proposed method can
converge well at the fourth-order rate, which is consistent with the theoretical analysis. In Table 5, we
run the code to terminal time T = 10, and test the accuracy and stability of the proposed method for
solving the example before and after the BPL is applied under the large time. In Table 6, we continue
to set the grid ratio λ gradually increases, take the numbers of spatial grids to be N = 128, 256, 512,
and test the stability of the proposed method before and after the application of the BPL. According to
the results in Tables 5 and 6, it is not difficult to find that the proposed method has better stability. At
the same time, it can still maintain its better stability and accuracy after using the BPL.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 6764–6794.



6785

Table 2. The L∞, L2 norm errors and convergence rates of the cell density u(x, t) with/without
BPL when T = 0.2, for Problem 5.2.2.

DDGIC [33] Present
N L∞ Rate L2 Rate L∞ Rate L2 Rate

Without BPL 20 1.03 ×10−2 2.09 ×10−2 5.8617 ×10−4 5.3365 ×10−4

40 1.29 ×10−3 3.00 2.58 ×10−3 3.01 1.0570 ×10−5 5.7933 1.1851 ×10−5 5.4828
80 1.61 ×10−4 3.00 3.23 ×10−4 3.00 3.9484 ×10−7 4.7426 6.2345 ×10−7 4.2486
160 2.02 ×10−5 3.00 4.03×10−5 3.00 2.4827 ×10−8 3.9913 4.1140 ×10−8 3.9217

With BPL 20 1.62 ×10−2 3.22 ×10−2 5.8626 ×10−4 5.3044 ×10−4

40 2.02 ×10−3 3.00 3.96 ×10−3 3.02 1.0569 ×10−5 5.7936 1.1682 ×10−5 5.5048
80 2.49 ×10−4 3.00 4.92 ×10−4 3.00 3.9485 ×10−7 4.7424 6.2024 ×10−7 4.2353

160 3.03 ×10−5 3.01 6.10 ×10−5 3.01 2.4828 ×10−8 3.9913 4.1088 ×10−8 3.9160

Table 3. The L∞, L2 norm errors and convergence rates of the cell density u(x, t) with/without
BPL when τ = 0.5h,T = 1, for Problem 5.2.2.

Without BPL With BPL
N L∞ Rate L2 Rate L∞ Rate L2 Rate

80 2.7863 ×10−7 4.6338 ×10−7 2.7639 ×10−7 4.5993×10−7

160 1.5129 ×10−8 4.2030 2.1520×10−8 4.4284 1.5089 ×10−8 4.1951 2.1473 ×10−8 4.4208
320 9.0424 ×10−10 4.0645 1.4247 ×10−9 3.9169 9.0357 ×10−10 4.0617 1.4242 ×10−9 3.9143
640 5.7456 ×10−11 3.9762 9.1295 ×10−11 3.9640 5.7441 ×10−11 3.9755 9.1294 ×10−11 3.9635

Table 4. The L∞, L2 norm errors and convergence rates of the chemoattractant concentration
v(x, t) with/without BPL when τ = 0.5h,T = 1, for Problem 5.2.2.

Without BPL With BPL
N L∞ Rate L2 Rate L∞ Rate L2 Rate

80 4.1435 ×10−7 4.8902 ×10−7 4.1383 ×10−7 4.8765×10−7

160 7.6151 ×10−9 5.7658 1.3173×10−8 5.2142 7.6052 ×10−9 5.7659 1.3143×10−8 5.2135
320 3.4929 ×10−10 4.4464 5.7228×10−10 4.5247 3.4904 ×10−10 4.4455 5.7189 ×10−10 4.5224
640 2.1072 ×10−11 4.0510 3.8368 ×10−11 3.8987 2.1066 ×10−11 4.0504 3.8367 ×10−11 3.8978

Table 5. The L∞, L2 norm errors and convergence rates of the cell density u(x, t) with/without
BPL when τ = 0.5h,T = 10, for Problem 5.2.2.

Without BPL With BPL
N L∞ Rate L2 Rate L∞ Rate L2 Rate

40 8.8211 ×10−6 2.2281×10−5 8.9652 ×10−6 2.2551 ×10−5

80 2.3580 ×10−7 5.2253 5.9122 ×10−7 5.2360 2.3455 ×10−7 5.2564 5.8833 ×10−7 5.2604
160 7.0236 ×10−9 5.0692 1.7556 ×10−8 5.0737 6.9909 ×10−9 5.0683 1.7476 ×10−8 5.0732
320 2.2230 ×10−10 4.9816 5.5329 ×10−10 4.9878 2.2174 ×10−10 4.9785 5.5187 ×10−10 4.9849
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Table 6. The L2 norm errors with T = 1, τ = λh for Problem 5.2.2.

Without BPL With BPL
N λ

||u(x, t)||L2 ||v(x, t)||L2 ||u(x, t)||L2 ||v(x, t)||L2

0.8 2.44275621 ×10−7 2.32548959 ×10−7 2.44251556 ×10−7 2.32541521 ×10−7

128 1.6 4.12539846 ×10−6 4.08528057 ×10−6 4.12539156 ×10−6 4.08528573 ×10−6

3.2 4.29367914 ×10−5 4.27542760 ×10−5 4.29367655 ×10−5 4.27542869 ×10−5

1.6 2.84830351 ×10−7 2.82032442 ×10−7 2.84830336 ×10−7 2.82032579 ×10−7

256 3.2 4.15261429 ×10−6 4.12202397 ×10−6 4.15261330 ×10−6 4.12202449 ×10−6

6.4 4.27785111 ×10−5 4.26368908 ×10−5 4.27785074 ×10−5 4.26368920 ×10−5

3.2 2.85940363 ×10−7 2.83668988 ×10−7 2.85940383 ×10−7 2.83669012 ×10−7

512 6.4 4.14356752 ×10−6 4.11576085 ×10−6 4.14356738 ×10−6 4.11576090 ×10−6

12.8 4.26764280 ×10−5 4.25537056 ×10−5 4.26764276 ×10−5 4.25537057 ×10−5

5.2.3. Mass conservation and non-negativity of cell density with PPL

In this example, we test the mass conservation and the capability of positivity-preserving by using
proposed HOC difference schemes for the cell density and chemoattractant concentration problem. We
choose the following initial conditions for the Keller-Segel chemotaxis models (1.1)–(1.3)

{
u(x, 0) = 840e−84x2

, x ∈ [−0.5, 0.5],
v(x, 0) = 420e−42x2

, x ∈ [−0.5, 0.5],

where χ = d = 1. Noticing that the solution of the system does not blow up under 1D setting, but the
cell density u(x, t) will appear high concentration aggregation phenomenon in the central area of the
domain [−0.5, 0.5]. Next we take τ = 10−4h to solve the Keller-Segel chemotaxis model by using the
proposed method with/without PPL applied, respectively.

Figure 9 shows the comparison of cell density u(x, t) and chemoattractant concentration v(x, t) with
T = 6 × 10−5, N = 50 in the whole domain [−0.5, 0.5] and near the left and right boundary points
before and after applying the PPL by using the proposed method. From these two figures, it can be
seen that before applying the PPL, the cell density u(x, t) appears high concentration aggregation and
strong oscillations around the center x = 0 of the domain [−0.5, 0.5]. Meanwhile, it can be seen
that there are many small negative values around x = 0 and the left and right boundaries x = −0.5
and 0.5. These negative values make the cell density u(x, t) lose the biological significance. However,
the chemoattractant concentration v(x, t) dose not appear negative in the whole domain [−0.5, 0.5] and
near the left and right boundary points, and the concentration curve is smooth and non-oscillating.
After applying the PPL, it can be observed that all the negative values of cell density u(x, t) have been
removed, and the oscillation around x = 0 is effectively reduced. The chemoattractant concentration
v(x, t) is highly consistent with that before applying the PPL. Figure 10 shows the three-dimensional
space-time density distribution of cell density u(x, t) and the projections on the xou plane and the xot
plane when T = 6× 10−5 and N = 50, before and after applying the PPL, respectively. From these two
figures, it is obvious that the PPL maintains the non-negativity of the cell density u(x, t).
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Figure 9. Cell density u(x, t) and chemical concentration v(x, t) with/without PPL, T =
6 × 10−5, N = 50, for Problem 5.2.3.
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(a) Numerical solution u(x, t), without PPL (b) Numerical solution u(x, t), with PPL

(c) Projection on the xou plane, without PPL (d) Projection on the xou plane, with PPL

(e) Projection on the xot plane, without PPL (f) Projection on the xot plane, with PPL

Figure 10. Cell density u(x, t) with/without PPL, T = 6 × 10−5, N = 50, for Problem 5.2.3.
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Figure 11. Cell density u(x, t) with/without PPL, T = 1 × 10−4, for Problem 5.2.3.
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Figure 11 shows the comparison of the cell density curve and its projection on the xou plane when
T = 1 × 10−4, N = 50 and N = 100 by using the proposed method before and after the application of
the PPL, respectively. According to these two figures and combined with Figure 9, it can be observed
that under different spatial grid numbers N and terminal time T , the cell density u(x, t) has high
concentration aggregation and strong oscillation around x = 0, as well as varying degrees of negative
values. The proposed method by applying the PPL can remove the corresponding negative values and
reduce its oscillation, so that the density curve becomes smoother. In addition, we can also observe
that when the same spatial grid number N is used, as the terminal time T gradually increases, the
value of the cell density u(x, t) around x = 0 increases, and the oscillation range becomes larger.
When the terminal time T remains unchanged, with the increase of the spatial grid number N, the cell
density u(x, t) also shows an increasing trend around x = 0, but the oscillation range shrinks. This
shows that the increase of the spatial grid number N and the different terminal time T appear different
degrees of cell aggregation phenomenon for the Keller-Segel chemotaxis model.

Table 7 shows that the discrete mass of the proposed scheme at different time T with τ = 2×10−6, h =
2 × 10−2 for Problem 5.2.3. According to this table, we can observe that the discrete mass of the
proposed scheme is conserved without PPL. It is still conserved by using PPL when the function
appears smooth and less oscillation, but the PPL will affect the mass conservation if the oscillation is
large.

Table 7. Discrete mass of the proposed scheme at different time T with τ = 2 × 10−6, h =
2 × 10−2 for Problem 5.2.3.

Without PPL With PPL
T

u(x, t) v(x, t) u(x, t) v(x, t)

0 162.44807874630230 114.86780975206030 162.44807874630230 114.86780975206030
1 × 10−5 162.44807849592370 114.86841358171030 162.44807881083100 114.86841358171130
2 × 10−5 162.44807848055690 114.86889743508030 162.44807884422080 114.86889743508440
3 × 10−5 162.44807846726100 114.86938131439360 162.44807874630230 114.86938131440120
5 × 10−5 162.44807839126990 114.87034916215640 163.22724305521810 114.87034940954960
6 × 10−5 162.44807723190240 114.87083314187080 170.95675526219190 114.87086274404420
1 × 10−4 162.44780587880110 114.87276955342190 213.01987683008530 114.87394873660160

6. Conclusions

In this paper, an HOC difference scheme with positivity-preserving for solving the Keller-Segel
chemotaxis model is proposed, and the computational strategy for the nonlinear chemotaxis term in the
difference scheme is provided. The truncation error is O(τ4 + h4), that is, it has fourth-order accuracy
in both spatial and temporal directions. A positivity-preserving numerical algorithm that ensures the
non-negativity of the cell density at all time and maintains the fourth-order without accuracy loss, and
a time advancement algorithm is established. Finally, through several numerical experiments, the non-
constant stationary solutions of the Keller-Segel chemotaxis model are simulated, and the accuracy,
stability and positivity-preserving of the present difference scheme are validated.

The proposed high accurate numerical method can be directly extended to solve the
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two-dimensional Keller-Segel chemotaxis model. However, because the chemotaxis model is a
nonlinear coupled system in two-dimensional cases, it may encounter a higher computational time
cost. At the same time, the solution of the chemotaxis model maybe blow up in finite time [15], so
capturing the blow-up solution will be a challenging task [16]. We are trying to solve the
two-dimensional Keller-Segel chemotaxis model by using adaptive moving grid and multi-grid
acceleration techniques. This work is in progress, and the research results will be reported in the near
future.
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