Taking the reproduction law of vermin into consideration, we formulate a hierarchical age-structured model to describe the optimal management of vermin by contraception control. It is shown that the model is well-posed, and the solution has a separable form. The existence of optimal management policy is established via a minimizing sequence and the use of compactness, while the structure of optimal strategy is obtained by using an adjoint system and normal cones. To show the compactness, we use the Fréchet-Kolmogorov theorem and its generalization. To construct the adjoint system, we give some continuity results. Finally, an illustrative example is given.
Citation: Rong Liu, Fengqin Zhang. A hierarchical age-structured model of optimal vermin management by contraception[J]. Mathematical Biosciences and Engineering, 2023, 20(4): 6691-6720. doi: 10.3934/mbe.2023288
Taking the reproduction law of vermin into consideration, we formulate a hierarchical age-structured model to describe the optimal management of vermin by contraception control. It is shown that the model is well-posed, and the solution has a separable form. The existence of optimal management policy is established via a minimizing sequence and the use of compactness, while the structure of optimal strategy is obtained by using an adjoint system and normal cones. To show the compactness, we use the Fréchet-Kolmogorov theorem and its generalization. To construct the adjoint system, we give some continuity results. Finally, an illustrative example is given.
[1] | F. Zhang, H. Liu, Modeling and Research on Contraception Control of the Vermin, Science Press, Beijing, 2021. |
[2] | J. Jacob, J. Rahmini, J. Sudarmaji, The impact of imposed female sterility on field populations of ricefield rats (Rattus argentiventer), Agric., Ecosyst. Environ., 115 (2006), 281–284. https://doi.org/10.1016/j.agee.2006.01.001 doi: 10.1016/j.agee.2006.01.001 |
[3] | J. Jacob, G. R. Singleton, L. A. Hinds, Fertility control of rodent pests, Wildl. Res., 35 (2008), 487–493. https://doi.org/10.1071/WR07129 doi: 10.1071/WR07129 |
[4] | Rodent Pests, Ecology of rodent infestation in forest area, 2023. Available from: http://www.chinarodent.com/index.php?m=contentc=indexa=showcatid=26id=79 |
[5] | P. Magal, S. Ruan, Structured-Population Models in Biology and Epidemiology, Springer, Berlin, 2008. |
[6] | S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics, Springer, Berlin, 2000. |
[7] | L. Aniţa, S. Aniţa, Note on some periodic optimal harvesting problems for age-structured population dynamics, Appl. Math. Comput., 276 (2016), 21–30. https://doi.org/10.1016/j.amc.2015.12.010 doi: 10.1016/j.amc.2015.12.010 |
[8] | P. Golubtsov, S. Steinshamn, Analytical and numerical investigation of optimal harvest with a continuously age-structured model, Ecol. Modell., 392 (2019), 67–81. https://doi.org/10.1016/j.ecolmodel.2018.11.010 doi: 10.1016/j.ecolmodel.2018.11.010 |
[9] | L. Li, C. P. Ferreira, B. Ainseba, Optimal control of an age-structured problem modelling mosquito plasticity, Nonlinear Anal.: Real World Appl., 45 (2019), 157–169. https://doi.org/10.1016/j.nonrwa.2018.06.014 doi: 10.1016/j.nonrwa.2018.06.014 |
[10] | Z. He, M. Wang, Z. Ma, Optimal birth control problems for nonlinear age-structured population dynamics, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 589–594. https://doi.org/10.3934/dcdsb.2004.4.589 doi: 10.3934/dcdsb.2004.4.589 |
[11] | Z. He, Y. Liu, An optimal birth control problem for a dynamical population model with size-structure, Nonlinear Anal.: Real World Appl., 13 (2012), 1369–1378. https://doi.org/10.1016/j.nonrwa.2011.11.001 doi: 10.1016/j.nonrwa.2011.11.001 |
[12] | R. Liu, G. Liu, Optimal birth control problems for a nonlinear vermin population model with size-structure, J. Math. Anal. Appl., 449 (2017), 265–291. http://dx.doi.org/10.1016/j.jmaa.2016.12.010 doi: 10.1016/j.jmaa.2016.12.010 |
[13] | Y. Li, Z. Zhang, Y. Lv, Z. Liu, Optimal harvesting for a size-stage-structured population model, Nonlinear Anal.: Real World Appl., 44 (2018), 616–630. https://doi.org/10.1016/j.nonrwa.2018.06.001 doi: 10.1016/j.nonrwa.2018.06.001 |
[14] | N. Kato, Optimal harvesting for nonlinear size-structured population dynamics, J. Math. Anal. Appl., 342 (2008), 1388–1398. https://doi.org/10.1016/j.jmaa.2008.01.010 doi: 10.1016/j.jmaa.2008.01.010 |
[15] | N. Hritonenko, Y. Yatsenko, R. Goetz, A. Xabadia, Maximum principle for a size-structured model of forest and carbon sequestration management, Appl. Math. Lett., 21 (2008), 1090–1094. https://doi.org/10.1016/j.aml.2007.12.006 doi: 10.1016/j.aml.2007.12.006 |
[16] | R. Liu, G. Liu, Optimal contraception control for a nonlinear vermin population model with size-structure, Appl. Math. Optim., 79 (2019), 231–256. https://doi.org/10.1007/s00245-017-9428-y doi: 10.1007/s00245-017-9428-y |
[17] | R. Liu, G. Liu, Optimal contraception control for a size-structured population model with extra mortality, Appl. Anal., 99 (2020), 658–671. https://doi.org/10.1080/00036811.2018.1506875 doi: 10.1080/00036811.2018.1506875 |
[18] | W. S. C. Gurney, R. M. Nisbet, Ecological stability and social hierarchy, Theor. Popul. Biol., 16 (1979), 48–80. https://doi.org/10.1016/0040-5809(79)90006-6 doi: 10.1016/0040-5809(79)90006-6 |
[19] | A. S. Ackleh, K. Deng, S. Hu, A quasilinear hierarchical size-structured model: Well-posedness and approximation, Appl. Math. Optim., 51 (2005), 35–59. https://doi.org/10.1007/s00245-004-0806-2 doi: 10.1007/s00245-004-0806-2 |
[20] | Z. He, D. Ni, Y. Liu, Theory and approximation of solutions to a hierarchical age-structured population model, J. Appl. Anal. Comput., 8 (2018), 1326–1341. https://doi.org/10.11948/2018.1326 doi: 10.11948/2018.1326 |
[21] | D. Yan, X. Fu, Asymptotic behavior of a hierarchical size-structured population model, Evol. Equations Control Theory, 7 (2018), 293–316. https://doi.org/10.3934/eect.2018015 doi: 10.3934/eect.2018015 |
[22] | Z. He, D. Ni, S. Wang, Optimal harvesting of a hierarchical age-structured population system, Int. J. Biomath., 12 (2019), 1950091. https://doi.org/10.1142/S1793524519500918 doi: 10.1142/S1793524519500918 |
[23] | Z. He, M. Han, Theoretical results of optimal harvesting in a hierarchical size-structured population system with delay, Int. J. Biomath., 14 (2021), 2150054. https://doi.org/10.1142/S1793524521500546 doi: 10.1142/S1793524521500546 |
[24] | B. K. Kakumani, S. K. Tumuluri, Extinction and blow-up phenomena in a non-linear gender structured population model, Nonlinear Anal.: Real World Appl., 28 (2016), 290–299. https://doi.org/10.1016/j.nonrwa.2015.10.005 doi: 10.1016/j.nonrwa.2015.10.005 |
[25] | H. Liu, R. Wang, F. Zhang, Q. Li, Research advances of contraception control of rodent pest in China, Acta Ecologica Sinica, 31 (2011), 5484–5494. |
[26] | K. Yosida, Functional Analysis, 6$^{th}$ edition, Springer, Berlin, 1980. |
[27] | V. Barbu, Mathematical Methods in Optimization of Differential Systems, Kluwer Academic Publishers, Boston, 1994. |